Search results for: large language models (LLMS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16216

Search results for: large language models (LLMS)

16 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 175
15 Targeting Tumour Survival and Angiogenic Migration after Radiosensitization with an Estrone Analogue in an in vitro Bone Metastasis Model

Authors: Jolene M. Helena, Annie M. Joubert, Peace Mabeta, Magdalena Coetzee, Roy Lakier, Anne E. Mercier

Abstract:

Targeting the distant tumour and its microenvironment whilst preserving bone density is important in improving the outcomes of patients with bone metastases. 2-Ethyl-3-O-sulphamoyl-estra1,3,5(10)16-tetraene (ESE-16) is an in-silico-designed 2- methoxyestradiol analogue which aimed at enhancing the parent compound’s cytotoxicity and providing a more favourable pharmacokinetic profile. In this study, the potential radiosensitization effects of ESE-16 were investigated in an in vitro bone metastasis model consisting of murine pre-osteoblastic (MC3T3-E1) and pre-osteoclastic (RAW 264.7) bone cells, metastatic prostate (DU 145) and breast (MDA-MB-231) cancer cells, as well as human umbilical vein endothelial cells (HUVECs). Cytotoxicity studies were conducted on all cell lines via spectrophotometric quantification of 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide. The experimental set-up consisted of flow cytometric analysis of cell cycle progression and apoptosis detection (Annexin V-fluorescein isothiocyanate) to determine the lowest ESE-16 and radiation doses to induce apoptosis and significantly reduce cell viability. Subsequent experiments entailed a 24-hour low-dose ESE-16-exposure followed by a single dose of radiation. Termination proceeded 2, 24 or 48 hours thereafter. The effect of the combination treatment was investigated on osteoclasts via tartrate-resistant acid phosphatase (TRAP) activity- and actin ring formation assays. Tumour cell experiments included investigation of mitotic indices via haematoxylin and eosin staining; pro-apoptotic signalling via spectrophotometric quantification of caspase 3; deoxyribonucleic acid (DNA) damage via micronuclei analysis and histone H2A.X phosphorylation (γ-H2A.X); and Western blot analyses of bone morphogenetic protein-7 and matrix metalloproteinase-9. HUVEC experiments included flow cytometric quantification of cell cycle progression and free radical production; fluorescent examination of cytoskeletal morphology; invasion and migration studies on an xCELLigence platform; and Western blot analyses of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor receptor 1 and 2. Tumour cells yielded half-maximal growth inhibitory concentration (GI50) values in the nanomolar range. ESE-16 concentrations of 235 nM (DU 145) and 176 nM (MDA-MB-231) and a radiation dose of 4 Gy were found to be significant in cell cycle and apoptosis experiments. Bone and endothelial cells were exposed to the same doses as DU 145 cells. Cytotoxicity studies on bone cells reported that RAW 264.7 cells were more sensitive to the combination treatment than MC3T3-E1 cells. Mature osteoclasts were more sensitive than pre-osteoclasts with respect to TRAP activity. However, actin ring morphology was retained. The mitotic arrest was evident in tumour and endothelial cells in the mitotic index and cell cycle experiments. Increased caspase 3 activity and superoxide production indicated pro-apoptotic signalling in tumour and endothelial cells. Increased micronuclei numbers and γ-H2A.X foci indicated increased DNA damage in tumour cells. Compromised actin and tubulin morphologies and decreased invasion and migration were observed in endothelial cells. Western blot analyses revealed reduced metastatic and angiogenic signalling. ESE-16-induced radiosensitization inhibits metastatic signalling and tumour cell survival whilst preferentially preserving bone cells. This low-dose combination treatment strategy may promote the quality of life of patients with metastatic bone disease. Future studies will include 3-dimensional in-vitro and murine in-vivo models.

Keywords: angiogenesis, apoptosis, bone metastasis, cancer, cell migration, cytoskeleton, DNA damage, ESE-16, radiosensitization.

Procedia PDF Downloads 162
14 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 169
13 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water

Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard

Abstract:

Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.

Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment

Procedia PDF Downloads 121
12 Utilization of Developed Single Sequence Repeats Markers for Dalmatian Pyrethrum (Tanacetum cinerariifolium) in Preliminary Genetic Diversity Study on Natural Populations

Authors: F. Varga, Z. Liber, J. Jakše, A. Turudić, Z. Šatović, I. Radosavljević, N. Jeran, M. Grdiša

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.; Asteraceae), a source of the commercially dominant plant insecticide pyrethrin, is a species endemic to the eastern Adriatic. Genetic diversity of T. cinerariifolium was previously studied using amplified fragment length polymorphism (AFLP) markers. However, microsatellite markers (single sequence repeats - SSRs) are more informative because they are codominant, highly polymorphic, locus-specific, and more reproducible, and thus are most often used to assess the genetic diversity of plant species. Dalmatian pyrethrum is an outcrossing diploid (2n = 18) whose large genome size and high repeatability have prevented the success of the traditional approach to SSR markers development. The advent of next-generation sequencing combined with the specifically developed method recently enabled the development of, to the author's best knowledge, the first set of SSRs for genomic characterization of Dalmatian pyrethrum, which is essential from the perspective of plant genetic resources conservation. To evaluate the effectiveness of the developed SSR markers in genetic differentiation of Dalmatian pyrethrum populations, a preliminary genetic diversity study was conducted on 30 individuals from three geographically distinct natural populations in Croatia (northern Adriatic island of Mali Lošinj, southern Adriatic island of Čiovo, and Mount Biokovo) based on 12 SSR loci. Analysis of molecular variance (AMOVA) by randomization test with 10,000 permutations was performed in Arlequin 3.5. The average number of alleles per locus, observed and expected heterozygosity, probability of deviations from Hardy-Weinberg equilibrium, and inbreeding coefficient was calculated using GENEPOP 4.4. Genetic distance based on the proportion of common alleles (DPSA) was calculated using MICROSAT. Cluster analysis using the neighbor-joining method with 1,000 bootstraps was performed with PHYLIP to generate a dendrogram. The results of the AMOVA analysis showed that the total SSR diversity was 23% within and 77% between the three populations. A slight deviation from Hardy-Weinberg equilibrium was observed in the Mali Lošinj population. Allele richness ranged from 2.92 to 3.92, with the highest number of private alleles observed in the Mali Lošinj population (17). The average observed DPSA between 30 individuals was 0.557. The highest DPSA (0.875) was observed between several pairs of Dalmatian pyrethrum individuals from the Mali Lošinj and Mt. Biokovo populations, and the lowest between two individuals from the Čiovo population. Neighbor-joining trees, based on DPSA, grouped individuals into clusters according to their population affiliation. The separation of Mt. Biokovo clade was supported (bootstrap value 58%), which is consistent with the previous study on AFLP markers, where isolated populations from Mt. Biokovo differed from the rest of the populations. The developed SSR markers are an effective tool for assessing the genetic diversity and structure of natural Dalmatian pyrethrum populations. These preliminary results are encouraging for a future comprehensive study with a larger sample size across the species' range. Combined with the biochemical data, these highly informative markers could help identify potential genotypes of interest for future development of breeding lines and cultivars that are both resistant to environmental stress and high in pyrethrins. Acknowledgment: This work has been supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) insecticidal potential’- (PyrDiv) (IP-06-2016-9034) and by project KK.01.1.1.01.0005, Biodiversity and Molecular Plant Breeding, at the Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

Keywords: Asteraceae, genetic diversity, genomic SSRs, NGS, pyrethrum, Tanacetum cinerariifolium

Procedia PDF Downloads 114
11 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device

Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres

Abstract:

The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.

Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device

Procedia PDF Downloads 281
10 Assessing Diagnostic and Evaluation Tools for Use in Urban Immunisation Programming: A Critical Narrative Review and Proposed Framework

Authors: Tim Crocker-Buque, Sandra Mounier-Jack, Natasha Howard

Abstract:

Background: Due to both the increasing scale and speed of urbanisation, urban areas in low and middle-income countries (LMICs) host increasingly large populations of under-immunized children, with the additional associated risks of rapid disease transmission in high-density living environments. Multiple interdependent factors are associated with these coverage disparities in urban areas and most evidence comes from relatively few countries, e.g., predominantly India, Kenya, Nigeria, and some from Pakistan, Iran, and Brazil. This study aimed to identify, describe, and assess the main tools used to measure or improve coverage of immunisation services in poor urban areas. Methods: Authors used a qualitative review design, including academic and non-academic literature, to identify tools used to improve coverage of public health interventions in urban areas. Authors selected and extracted sources that provided good examples of specific tools, or categories of tools, used in a context relevant to urban immunization. Diagnostic (e.g., for data collection, analysis, and insight generation) and programme tools (e.g., for investigating or improving ongoing programmes) and interventions (e.g., multi-component or stand-alone with evidence) were selected for inclusion to provide a range of type and availability of relevant tools. These were then prioritised using a decision-analysis framework and a tool selection guide for programme managers developed. Results: Authors reviewed tools used in urban immunisation contexts and tools designed for (i) non-immunization and/or non-health interventions in urban areas, and (ii) immunisation in rural contexts that had relevance for urban areas (e.g., Reaching every District/Child/ Zone). Many approaches combined several tools and methods, which authors categorised as diagnostic, programme, and intervention. The most common diagnostic tools were cross-sectional surveys, key informant interviews, focus group discussions, secondary analysis of routine data, and geographical mapping of outcomes, resources, and services. Programme tools involved multiple stages of data collection, analysis, insight generation, and intervention planning and included guidance documents from WHO (World Health Organisation), UNICEF (United Nations Children's Fund), USAID (United States Agency for International Development), and governments, and articles reporting on diagnostics, interventions, and/or evaluations to improve urban immunisation. Interventions involved service improvement, education, reminder/recall, incentives, outreach, mass-media, or were multi-component. The main gaps in existing tools were an assessment of macro/policy-level factors, exploration of effective immunization communication channels, and measuring in/out-migration. The proposed framework uses a problem tree approach to suggest tools to address five common challenges (i.e. identifying populations, understanding communities, issues with service access and use, improving services, improving coverage) based on context and available data. Conclusion: This study identified many tools relevant to evaluating urban LMIC immunisation programmes, including significant crossover between tools. This was encouraging in terms of supporting the identification of common areas, but problematic as data volumes, instructions, and activities could overwhelm managers and tools are not always suitably applied to suitable contexts. Further research is needed on how best to combine tools and methods to suit local contexts. Authors’ initial framework can be tested and developed further.

Keywords: health equity, immunisation, low and middle-income countries, poverty, urban health

Procedia PDF Downloads 139
9 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
8 Effect of Varied Climate, Landuse and Human Activities on the Termite (Isoptera: Insecta) Diversity in Three Different Habitats of Shivamogga District, Karnataka, India

Authors: C. M. Kalleshwaraswamy, G. S. Sathisha, A. S. Vidyashree, H. B. Pavithra

Abstract:

Isoptera are an interesting group of social insects with different castes and division of labour. They are primarily wood-feeders, but also feed on a variety of other organic substrates, such as living trees, leaf litter, soil, lichens and animal faeces. The number of species and their biomass are especially large in tropics. In natural ecosystems, they perform a beneficial role in nutrient cycles by accelerating decomposition. The magnitude and dimension of ecological role played by termites is a function of their diversity, population density, and biomass. Termite assemblage composition has a strong response to habitat disturbance and may be indicative of quantitative changes in the decomposition process. Many previous studies in Western Ghat region of India suggest increased anthropogenic activities that adversely affect the soil macrofauna and diversity. Shivamogga district provides a good opportunity to study the effect of topography, cropping pattern, human disturbance on the termite fauna, thereby acquiring accurate baseline information for conservation decision making. The district has 3 distinct agro-ecological areas such as maidan area, semi-malnad and Western Ghat region. Thus, the district provides a unique opportunity to study the effect of varied climate and anthropogenic disturbance on the termite diversity. The standard protocol of belt transects method developed by Eggleton et al. (1997) was used for sampling termites. Sampling was done at monthly interval from September-2014 to August-2015 in Western Ghats, semi-malnad and maidan habitats. The transect was 100m long and 2m wide and divided into 20 contiguous sections, each 5 x 2m in each habitat. Within each section, all the probable microhabitats of termites were searched, which include dead logs, fallen tree, branch, sticks, leaf litter, vegetation etc.,. All the castes collected were labelled, preserved in 80% alcohol, counted and identified to species level. The number of encounters of a species in the transect was used as an indicator of relative abundance of species. The species diversity, species richness, density were compared in three different habitats such as Western Ghats, semi-malnad and maidan region. The study indicated differences in the species composition in the three different habitats. A total of 15 species were recorded which belonging to four sub family and five genera in three habitats. Eleven species viz., Odontotermes obesus, O. feae, O. anamallensis, O. bellahunisensis, O. adampurensis, O. boveni, Microcerotermes fletcheri, M. pakistanicus, Nasutitermes anamalaiensis, N. indicola, N. krishna were recorded in Western Ghat region. Similarly, 11 species viz., Odontotermes obesus, O. feae, O. anamallensis, O. bellahunisensis, O. hornii, O. bhagwathi, Microtermes obesi, Microcerotermes fletcheri, M. pakistanicus, Nasutitermes indicola and Pericapritermes sp. were recorded in semi-malnad habitat. However, only four species viz., O. obesus, O. feae, Microtemes obesi and Pericapritermes sp. species were recorded in maidan area. Shannon’s wiener diversity index (H) showed that Western Ghats had more species dominance (1.56) followed by semi- malnad (1.36) and lowest in maidan (0.89) habitats. Highest value of simpson’s index (D) was observed in Western Ghats habitat (0.70) with more diverse species followed by semi-malnad (0.58) and lowest in maidan (0.53). Similarly, evenness was highest (0.65) in Western Ghats followed by maidan (0.64) and least in semi-malnad habitat (0.54). Menhinick’s index (Dmn) value was ranging from 0.03 to 0.06 in different habitats in the study area. Highest index was observed in Western Ghats (0.06) followed by semi-malnad (0.05) and lowest in maidan (0.03). The study conclusively demonstrated that Western Ghat had highest species diversity compared to semi-malnad and maidan habitat indicating these two habitats are continuously subjected to anthropogenic disturbances. Efforts are needed to conserve the uncommon species which otherwise may become extinct due to human activities.

Keywords: anthropogenic disturbance, isoptera, termite species diversity, Western ghats

Procedia PDF Downloads 270
7 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 279
6 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19

Authors: Lan Cheng, Harry Qin, Yang Wang

Abstract:

Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.

Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis

Procedia PDF Downloads 114
5 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 66
4 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
3 Innovative Practices That Have Significantly Scaled up Depot Medroxy Progesterone Acetate-SC Self-Inject Services

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background The Delivering Innovations in Selfcare (DISC) project promotes universal access to quality selfcare services beginning with subcutaneous depot medroxy progesterone acetate (DMPA-SC) contraceptive self-injection (SI) option. Self-inject (SI) offers women a highly effective and convenient option that saves them frequent trips to providers. Its increased use has the potential to improve the efficiency of an overstretched healthcare system by reducing provider workloads. State Social and Behavioral Change Communications (SBCC) Officers lead project demand creation and service delivery innovations that have resulted in significant increases in SI uptake among women who opt for injectables. Strategies Service Delivery Innovations The implementation of the "Moment of Truth (MoT)" innovation helped providers overcome biases and address client fear and reluctance to self-inject. Bi-annual program audits and supportive mentoring visits helped providers retain their competence and motivation. Proper documentation, tracking, and replenishment of commodities were ensured through effective engagement with State Logistics Units. The project supported existing state monitoring and evaluation structures to effectively record and report subcutaneous depot medroxy progesterone acetate (DMPA-SC) service utilization. Demand creation Innovations SBCC Officers provide oversight, routinely evaluate performance, trains, and provides feedback for the demand creation activities implemented by community mobilizers (CMs). The scope and intensity of training given to CMs affect the outcome of their work. The project operates a demand creation model that uses a schedule to inform the conduct of interpersonal and group events. Health education sessions are specifically designed to counter misinformation, address questions and concerns, and educate target audience in an informed choice context. The project mapped facilities and their catchment areas and enlisted the support of identified influencers and gatekeepers to enlist their buy-in prior to entry. Each mobilization event began with pre-mobilization sensitization activities, particularly targeting male groups. Context-specific interventions were informed by the religious, traditional, and cultural peculiarities of target communities. Mobilizers also support clients to engage with and navigate online digital Family Planning (FP) online portals such as DiscoverYourPower website, Facebook page, digital companion (chat bot), interactive voice response (IVR), radio and television (TV) messaging. This improves compliance and provides linkages to nearby facilities. Results The project recorded 136,950 self-injection (SI) visits and a self-injection (SI) proportion rate that increased from 13 percent before the implementation of interventions in 2021 to 62 percent currently. The project cost-effectively demonstrated catalytic impact by leveraging state and partner resources, institutional platforms, and geographic scope to scale up interventions. The project also cost effectively demonstrated catalytic impact by leveraging on the state and partner resources, institutional platforms, and geographic scope to sustainably scale-up these strategies. Conclusion Using evidence-informed iterations of service delivery and demand creation models have been useful to significantly drive self-injection (SI) uptake. It will be useful to consider this implementation model during program design. Contemplation should also be given to systematic and strategic execution of strategies to optimize impact.

Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, innovation, service delivery, demand creation.

Procedia PDF Downloads 75
2 Understanding Patterns of Hard Coral Demographics in Kenyan Reefs to Inform Restoration

Authors: Swaleh Aboud, Mishal Gudka, David Obura

Abstract:

Background: Coral reefs are becoming increasingly vulnerable due to several threats ranging from climate change to overfishing. This has resulted in increased management and conservation efforts to protect reefs from degradation and facilitate recovery. Recruitmentof new individuals are isimportant in the recovery process and critical for the persistence of coral reef ecosystems. Local coral community structure can be influenced by successful recruit settlement, survival, and growth Understanding coral recruitment patterns can help quantify reef resilience and connectivity, establish baselines and track changes and evaluate the effectiveness of reef restoration and conservation efforts. This study will examine the abundance and spatial pattern of coral recruits and how this relates to adult community structure, including the distribution of thermal resistance and sensitive genera and their distribution in different management regimes. Methods: Coral recruit and demography surveys were conducted from 2020 to 2022, covering 35 sites in 19coral reef locations along the Kenyan coast. These included marine parks, reserves, community conservation areas (CMAs), and open access areas from the north (Marereni) to the south (Kisite) coast of Kenya and across different reef habitats. The data was collected through the underwater visual census (UVC) technique. We counted adult corals (>10 cm diameter)of23 selected genera using belt transects (25 by 1 m) and sampling of 1 m2 quadrat (at an interval of 5m) for all coloniesless than 10 cm diameter. The benthic cover was collected using photo quadrats. The surveys were only done during the northeast monsoon season. The data wereanalyzed using the R program to see the distribution patterns and the Kruskal Wallis test to see whether there was a significant difference. Spearman correlation was also applied to assess the relationship between the distribution of coral genera in recruits and adults. Results: A total of 44 different coral genera were recorded for recruits, ranging from 3at Marereni to 30at Watamu Marine Reserve. Recruit densities ranged from 1.2±1.5recruit m-2 (mean±SD) at Likoni to 10.3± 8.4 recruit m-2 at Kisite Marine Park. The overall densityof recruitssignificantly differed between reef locations, with Kisite Marine Park and Reserve and Likonihaving significantly large differences from all the other locations, while Vuma, Watamu, Malindi, and Kilifi had significantly lower differences from all the other locations. The recruit generadensity along the Kenya coastwas divided into two clusters, one of which only included sites inKisite Marine Park. Adult colonies were dominated by Porites massive, Acropora, Platygyra, and Favites, whereas recruits were dominated by Porites branching, Porites massive, Galaxea, and Acropora. However, correlation analysis revealed a statistically significant positive correlation (r=0.81, p<0.05) between recruit and adult coral densities across the 23 coral genera. Marereni, which had the lowest densityof recruits, has only thermallyresistant coral genera, while Kisite Marine Park, with the highest recruit densities, has over 90% thermal sensitive coral genera. A weak positive correlation was found between recruit density and coralline algae, dead standing corals, and turf algae, whereas a weak negative correlation was found between recruit density and bare substrate and macroalgae. Between management regimes, marine reserves were found to have more recruits than no-take zones (marine parks and CMAs) and open access areas, although the difference was not significant. Conclusion: There was a statistically significant difference in the density of recruits between different reef locations along the Kenyan coast. Although the dominating genera of adults and recruits were different, there was a strong positive correlation between their coral communities, which could indicate self-recruitment processes or consistent distance seedings (of the same recruit genera). Sites such as Kisite Marine Park, with high recruit densities but dominated by thermally sensitive genera, will, on the other hand, be adversely affected by future thermal stress. This could imply that reducing the threats to coral reefs such as overfishingcould allow for their natural regeneration and recovery.

Keywords: coral recruits, coral adult size-class, cora demography, resilience

Procedia PDF Downloads 124
1 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring

Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis

Abstract:

Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.

Keywords: earth observation, monitoring, natural hazards, remote sensing

Procedia PDF Downloads 39