Search results for: pull mechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3284

Search results for: pull mechanism

1694 α-Amylase Inhibitory Activity of Some Tunisian Aromatic and Medicinal Plants

Authors: Hamdi Belfeki, Belgacem Chandoul, Mnasser Hassouna, Mondher Mejri

Abstract:

Aqueous and ethanolic extracts of eight Tunisian aromatic and medicinal plants (TAMP) were characterized by studying their composition in polyphenols and also their antiradical and antioxidant capacities. In absence and in the presence of the various extracts, α-amylase from Bacillus subtlis activity, was measured in order to detect a potential inhibition. The total contents of polyphenols and flavonoid vary in function of TAMP and the mobile phase used for the extraction (distilled water or ethanol). The ethanolic extracts showed the most significant antiradical and antioxidant activities. Only the extracts from Coriandrum sativum showed a significant inhibiting effect on the α-amylase activity. This inhibiting capacity could be correlated with the chemical profile of the two extracts, due to the fact that they have the greatest amount of total flavonoid. The ethanolic extract has the most important antioxidant and anti-radicalizing activities among the sixteen extracts studied. The inhibition kinetics of the two coriander extracts were evaluated by pre-incubation method, using Lineweaver-Burk’s equation, obtained by linearization of Michaeilis-Menten’s expression. The results showed that both extracts exercised a competitive inhibition mechanism.

Keywords: α-amylase, antioxidant activity, aromatic and medicinal plants, inhibition

Procedia PDF Downloads 450
1693 Using Blockchain Technology to Extend the Vendor Managed Inventory for Sustainability

Authors: Elham Ahmadi, Roshaali Khaturia, Pardis Sahraei, Mohammad Niyayesh, Omid Fatahi Valilai

Abstract:

Nowadays, Information Technology (IT) is changing the way traditional enterprise management concepts work. One of the most dominant IT achievements is the Blockchain Technology. This technology enables the distributed collaboration of stakeholders for their interactions while fulfilling the security and consensus rules among them. This paper has focused on the application of Blockchain technology to enhance one of traditional inventory management models. The Vendor Managed Inventory (VMI) has been considered one of the most efficient mechanisms for vendor inventory planning by the suppliers. While VMI has brought competitive advantages for many industries, however its centralized mechanism limits the collaboration of a pool of suppliers and vendors simultaneously. This paper has studied the recent research for VMI application in industries and also has investigated the applications of Blockchain technology for decentralized collaboration of stakeholders. Focusing on sustainability issue for total supply chain consisting suppliers and vendors, it has proposed a Blockchain based VMI conceptual model. The different capabilities of this model for enabling the collaboration of stakeholders while maintaining the competitive advantages and sustainability issues have been discussed.

Keywords: vendor managed inventory, VMI, blockchain technology, supply chain planning, sustainability

Procedia PDF Downloads 225
1692 Radix Saposhnikoviae Suppresses Allergic Contact Dermatitis in Mice by Regulating DCs Activated Th1-Type Cells

Authors: Hailiang Liu, Yan Ni, Jie Zheng, Xiaoyan Jiang, Min Hong

Abstract:

Allergic contact dermatitis (ACD) is a commonly clinical type IV allergic skin disease, with the pathological features of infiltration by mononuclear cells and tissue necrosis. Traditional Chinese medicine Radix Saposhnikoviae (RS) is traditionally employed to treat exogenous evils, rubella, itching, rheumatism and tetanus. Meanwhile, it is an important component of the commonly used anti-allergy compound. It’s now widely used as an immuno-modulating agent in mixed herbal decoctions to treat inflammation. However, its mechanism of anti-allergy remains unknown. RS was found to reduce ear thickness, as well as the infiltration of eosinophils. The proliferation of T lymphocytes was inhibited significantly by RS, markedly decreased IFN-γ levels in the supernatant of cells cultured and serum were detected with the treatment of RS. RS significantly decreased the amount of DCs in the mouse lymph nodes, and inhibited the expression of CD4 0 and CD86. Meanwhile, T-bet mRNA expression was down remarkably regulated by RS. These results indicate that RS cures Th1-induced allergic skin inflammation by regulating Th1/Th2 balance with decreasing Th1 differentiation, which might be associated with DCs.

Keywords: allergic contact dermatitis, Radix saposhnikoviae, dendritic cells, T-bet, GATA-3, CD4+ CD25+ Foxp3+ treg cells

Procedia PDF Downloads 374
1691 Corporate Governance and Firm Performance: An Empirical Study from Pakistan

Authors: Mohammed Nishat, Ahmad Ghazali

Abstract:

This study empirically inspects the corporate governance and firm performance, and attempts to analyze the corporate governance and control related variables which are hypothesized to have effect on firm’s performance. Current study attempts to assess the mechanism and efficiency of corporate governance to achieve high level performance for the listed firms on the Karachi Stock Exchange (KSE) for the period 2005 to 2008. To evaluate the firm performance level this study investigate the firm performance using three measures; Return on assets (ROA), Return on Equity (ROE) and Tobin’s Q. To check the link between firm performances with the corporate governance three categories of corporate governance variables are tested which includes governance, ownership and control related variables. Fixed effect regression model is used to examine the relation among governance and corporate performance for 267 KSE listed Pakistani firms. The result shows that governance related variables like block shareholding by individuals have positive impact on firm performance. When chief executive officer is also the board chairperson then it is observed that performance of firm is adversely affected. Also negative relationship is found between share held by insiders and performance of firm. Leverage has negative influence on the firm performance and size of firm is positively related with performance of the firm.

Keywords: corporate governance, agency cost, KSE, ROA, Tobin’s Q

Procedia PDF Downloads 409
1690 Developing a Regulator for Improving the Operation Modes of the Electrical Drive Motor

Authors: Baghdasaryan Marinka

Abstract:

The operation modes of the synchronous motors used in the production processes are greatly conditioned by the accidentally changing technological and power indices.  As a result, the electrical drive synchronous motor may appear in irregular operation regimes. Although there are numerous works devoted to the development of the regulator for the synchronous motor operation modes, their application for the motors working in the irregular modes is not expedient. In this work, to estimate the issues concerning the stability of the synchronous electrical drive system, the transfer functions of the electrical drive synchronous motors operating in the synchronous and induction modes have been obtained.  For that purpose, a model for investigating the frequency characteristics has been developed in the LabView environment. Frequency characteristics for assessing the transient process of the electrical drive system, operating in the synchronous and induction modes have been obtained, and based on their assessment, a regulator for improving the operation modes of the motor has been proposed. The proposed regulator can be successfully used to prevent the irregular modes of the electrical drive synchronous motor, as well as to estimate the operation state of the drive motor of the mechanism with a changing load.

Keywords: electrical drive system, synchronous motor, regulator, stability, transition process

Procedia PDF Downloads 156
1689 Screening for Antibacterial, Antifungal and Cytotoxic Agents in Three Hard Coral Species from Persian Gulf

Authors: Maryam Ehsanpou, Majid Afkhami, Flora Mohammadizadeh, Amirhoushang Bahri, Rastin Afkhami

Abstract:

Within the frame of a biodiversity and bioactivity study of marine macro organisms from the Persian Gulf, three hard coral species extracts were investigated for cytotoxic, antibacterial and antifungal activities against five human pathogenic microorganisms. All concentrations of extracts from three hard corals showed no antifungal activity towards the tested strains. In antibacterial assays, the hard coral extracts showed significant activity solely against Staphylococcus aureus with MICs ranging from 3 to 9 μg/ml. The highest antibacterial activity was found in the aqueous methanol extract of Porites compressa with an inhibition zone of 22 mm against Staphylococcus aureus at 18 μg/ml extract concentration. Methanol extracts from Porites harrisoi and Porites compressa exhibited only weak cytotoxic activities. It is important for future research to concentrate on finding the mechanisms employed by corals to defend themselves against invasion, the mechanism of infections and the type of chemical compounds in coral extracts that inhibit antibacterial growth or proliferation in underexplored areas such as the Persian Gulf.

Keywords: antibacterial, antifungal, cytotoxic, hard corals, Persian Gulf

Procedia PDF Downloads 489
1688 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 34
1687 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 445
1686 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 144
1685 Activation of AMPK-TSC axis is involved in cryptotanshinone inhibition of mTOR signaling in cancer cells

Authors: Wenxing Chen, Guangying Chen, Yin Lu, Shile Huang

Abstract:

Cryptotanshinone (CPT), a fat-soluble tanshinone from Salvia miltiorrhiza Bunge, has been demonstrated to inhibit mTOR pathway, resulting in inhibition of cancer cell proliferation. However, the molecular mechanism how CPT acts on mTOR is unknown. Here, cancer cells expressing rapamycin-resistant mutant mTOR are also sensitive to CPT, while phosphorylation of AMPK and TSC2 was activated, suggesting that CPT inhibition of mTOR maybe due to activating upstream of mTOR, AMPK, but not directly binding to and inhibiting mTOR. Further results indicated that Compound C, inhibitor of AMPK, could partially reversed CPT inhibition effect on cancer cells, and dominant-negative AMPK in cancer cells conferred resistance to CPT inhibition of 4EBP1 and phosphorylation of S6K1, as well as sh-AMPK. Furthermore, compared with MEF cells with AMPK positive, MEF cells with AMPK knock out are less sensitive to CPT by the findings that 4E-BP1 and phosphorylation of S6K1 express comparatively much. Furthermore, downexpression of TSC2 slightly recovered expression of 4EBP1 and phosphorylation of S6K1, while co-immunoprecipitation of TSC2 did not affect expression of TSC1 by CPT. Collectively, the above-mentioned results suggest that CPT inhibited mTOR pathway mostly was due to activation of AMPK-TSC2 pathway rather than specific inhibition of mTOR and then induction of subsequent lethal cellular effect.

Keywords: cryptotanshinone, AMPK, TSC2, mTOR, cancer cells

Procedia PDF Downloads 490
1684 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 134
1683 CFD Simulation for Air-Borne Infection Analysis in AII-Room

Authors: Young Kwon Yang, In Sung Kang, Jung Ha Hwang, Jin Chul Park

Abstract:

The present study is a foundational study for performance improvements on isolation wards to prevent proliferation of secondary infection of infectious diseases such as SARS, H1N1, and MERS inside hospitals. Accordingly, the present study conducted an analysis of the effect of sealing mechanisms and filling of openings on ensuring air tightness performance in isolation wards as well as simulation on air currents in improved isolation wards. The study method is as follows. First, previous studies on aerial infection type and mechanism were reviewed, and the review results were utilized as basic data of analysis on simulation of air current. Second, national and international legislations and regulations in relation to isolation wards as well as case studies on developed nations were investigated in order to identify the problems in isolation wards in Korea and improvement plans. Third, construction and facility plans were compared and analyzed between general and isolation wards focusing on large general hospitals in Korea, thereby conducting comparison and analysis on the performance and effects of air-tightness of general and isolation wards through CFD simulations. The study results showed that isolation wards had better air-tightness performance than that of general wards.

Keywords: AII Room, air-borne infection, CFD, computational fluid dynamics

Procedia PDF Downloads 287
1682 Treatment of the Modern Management Mechanism of the Debris Flow Processes Expected in the Mletiskhevi

Authors: G. Chakhaia, S. Gogilava, L. Tsulukidze, Z. Laoshvili, I. Khubulava, S. Bosikashvili, T. Gugushvili

Abstract:

The work reviewed and evaluated various genesis debris flow phenomena recently formatted in the Mletiskhevi, accordingly it revealed necessity of treatment modern debris flow against measures. Based on this, it is proposed the debris flow against truncated semi cone shape construction, which elements are contained in the car’s secondary tires. its constituent elements (sections), due to the possibilities of amortization and geometric shapes is effective and sustainable towards debris flow hitting force. The construction is economical, because after crossing the debris flows in the river bed, the riverbed is not cleanable, also the elements of the building are resource saving. For assessment of influence of cohesive debris flow at the construction and evaluation of the construction effectiveness have been implemented calculation in the specific assumptions with approved methodology. According to the calculation, it was established that after passing debris flow in the debris flow construction (in 3 row case) its hitting force reduces 3 times, that causes reduce of debris flow speed and kinetic energy, as well as sedimentation on a certain section of water drain in the lower part of the construction. Based on the analysis and report on the debris flow against construction, it can be said that construction is effective, inexpensive, technically relatively easy-to-reach measure, that’s why its implementation is prospective.

Keywords: construction, debris flow, sections, theoretical calculation

Procedia PDF Downloads 193
1681 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods

Authors: Jamshid Hussain, Kuen Song Lin

Abstract:

For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.

Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS

Procedia PDF Downloads 9
1680 Raman and Dielectric Relaxation Investigations of Polyester-CoFe₂O₄ Nanocomposites

Authors: Alhulw H. Alshammari, Ahmed Iraqi, S. A. Saad, T. A. Taha

Abstract:

In this work, we present for the first time the study of Raman spectra and dielectric relaxation of polyester polymer-CoFe₂O₄ (5.0, 10.0, 15.0, and 20.0 wt%) nanocomposites. Raman spectroscopy was applied as a sensitive structural identification technique to characterize the polyester-CoFe₂O₄ nanocomposites. The images of AFM confirmed the uniform distribution of CoFe₂O₄ inside the polymer matrix. Dielectric relaxation was employed as an important analytical technique to obtain information about the ability of the polymer nanocomposites to store and filter electrical signals. The dielectric relaxation analyses were carried out on the polyester-CoFe₂O₄ nanocomposites at different temperatures. An increase in dielectric constant ε₁ was observed for all samples with increasing temperatures due to the alignment of the electric dipoles with the applied electric field. In contrast, ε₁ decreased with increasing frequency. This is attributed to the difficulty for the electric dipoles to follow the electric field. The α relaxation peak that appeared at a high frequency shifted to higher frequencies when increasing the temperature. The activation energies for Maxwell-Wagner Sillar (MWS) changed from 0.84 to 1.01 eV, while the activation energies for α relaxations were 0.54 – 0.94 eV. The conduction mechanism for the polyester- CoFe₂O₄ nanocomposites followed the correlated barrier hopping (CBH) model.

Keywords: AC conductivity, activation energy, dielectric permittivity, polyester nanocomposites

Procedia PDF Downloads 115
1679 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 128
1678 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 278
1677 Study of Strontium Sorption onto Indian Bentonite

Authors: Pankaj Pathak, Susmita Sharma

Abstract:

Incessant industrial growth fulfill the energy demand of present day society, at the same time it produces huge amount of waste which could be hazardous or non-hazardous in nature. These wastes are coming out from different sources viz, nuclear power, thermal power, coal mines which contain different types of contaminants and one of the emergent contaminant is strontium, used in the present study. The isotope of strontium (Sr90) is radioactive in nature with half-life of 28.8 years and permissible limit of strontium in drinking water is 1.5 ppm. Above the permissible limit causes several types of diseases in human being. Therefore, safe disposal of strontium into ground becomes a biggest challenge for the researchers. In this context, bentonite is being used as an efficient material to retain strontium onto ground due to its specific physical, chemical and mineralogical properties which exhibits higher cation exchange capacity and specific surface area. These properties influence the interaction between strontium and bentonite, which is quantified by employing a parameter known as distribution coefficient. Batch test was conducted, and sorption isotherms were modelled at different interaction time. The pseudo first-order and pseudo second order kinetic models have been used to fit experimental data, which helps to determine the sorption rate and mechanism.

Keywords: bentonite, interaction time, sorption, strontium

Procedia PDF Downloads 305
1676 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution

Authors: Haiyan Wu, Ying Liu, Shaoyun Shi

Abstract:

Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.

Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction

Procedia PDF Downloads 136
1675 Kinetics and Mechanism of Oxidation of Co (II) Ternary Complexes Involving N-(2-Acetamido) Iminodiacete and Some Amino Acids Acid by Periodate

Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed

Abstract:

The kinetics of oxidation of the cobalt (II) complexes, [CoII(ADA)(Gly)(H2O)2]-, (ADA = N-(2-acetamido) iminodi-acetic acid and (Gly = Glycine) by periodate in aqueous acetate medium to cobalt (III) have been studied spectrophotometrically at 530 nm over the 30–50°C and a variety pH 4.57-5.25 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Gly)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])}. Also, the kinetics of oxidation of the cobalt(II) complexes, [CoII(ADA)(Val)(H2O)2]- (ADA = N-(2-acetamido) iminodi-acetic acid and (Val = valine) by periodate in aqueous medium to cobalt (III) have been studied spectrophotometrically at 580 nm over the 30–50°C and a variety pH 4.3-5.12 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Val)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])}

Keywords: periodate, oxidation, cobalt (II), glycine, valine acid, n-(2-acetamido imino-diacetato)

Procedia PDF Downloads 212
1674 Experimental and Numerical Investigation on Delaminated Composite Plate

Authors: Sreekanth T. G., Kishorekumar S., Sowndhariya Kumar J., Karthick R., Shanmugasuriyan S.

Abstract:

Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out.

Keywords: composites, delamination, natural frequency, mode shapes

Procedia PDF Downloads 108
1673 Design and Implementation of Medium Access Control Based Routing on Real Wireless Sensor Networks Testbed

Authors: Smriti Agarwal, Ashish Payal, B. V. R. Reddy

Abstract:

IEEE 802.15.4 is a Low Rate Wireless Personal Area Networks (LR-WPAN) standard combined with ZigBee, which is going to enable new applications in Wireless Sensor Networks (WSNs) and Internet of Things (IoT) domain. In recent years, it has become a popular standard for WSNs. Wireless communication among sensor motes, enabled by IEEE 802.15.4 standard, is extensively replacing the existing wired technology in a wide range of monitoring and control applications. Researchers have proposed a routing framework and mechanism that interacts with the IEEE 802.15.4 standard using software platform. In this paper, we have designed and implemented MAC based routing (MBR) based on IEEE 802.15.4 standard using a hardware platform “SENSEnuts”. The experimental results include data through light and temperature sensors obtained from communication between PAN coordinator and source node through coordinator, MAC address of some modules used in the experimental setup, topology of the network created for simulation and the remaining battery power of the source node. Our experimental effort on a WSN Testbed has helped us in bridging the gap between theoretical and practical aspect of implementing IEEE 802.15.4 for WSNs applications.

Keywords: IEEE 802.15.4, routing, WSN, ZigBee

Procedia PDF Downloads 406
1672 Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures

Authors: Haleh Hamidpour

Abstract:

Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method.

Keywords: direct performance-based design, ductility demands, inelastic seismic performance, yield mechanism

Procedia PDF Downloads 333
1671 The Batch Method Approach for Adsorption Mechanism Processes of Some Selected Heavy Metal Ions and Methylene Blue by Using Chemically Modified Luffa Cylindrica

Authors: Akanimo Emene, Mark D. Ogden, Robert Edyvean

Abstract:

Adsorption is a low cost, efficient and economically viable wastewater treatment process. Utilization of this treatment process has not been fully applied due to the complex and not fully understood nature of the adsorption system. To optimize its process is to choose a sufficient adsorbent and to study further the experimental parameters that influence the adsorption design system. Chemically modified adsorbent, Luffa cylindrica, was used to adsorb heavy metal ions and an organic pollutant, methylene blue, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion or organic pollutant concentration, ionic strength, and pH of solution were studied. The experimental data were analyzed with kinetic and isotherm models. The antagonistic effect of the methylene and some heavy metal ions were recorded. An understanding of the use of this treated Luffa cylindrica for the removal of these toxic substances will establish and improve the commercial application of the adsorption process in treatment of contaminated waters.

Keywords: adsorption, heavy metal ions, Luffa cylindrica, wastewater treatment

Procedia PDF Downloads 197
1670 Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies

Authors: Abeer S. Elsherbiny, Ali H. Gemeay

Abstract:

In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy.

Keywords: adsorption, graphene oxide, kinetics, malachite green

Procedia PDF Downloads 411
1669 The UN Mediation in the Armed Conflict of Nepal and El Salvador: A Cross-Regional Comparative Perspective Study

Authors: Anu S. Krishna

Abstract:

The paper tries to analyse the UN involvement/intervention in the case of intra-state armed conflict of El Salvador and Nepal comparatively. The peace mission in El Salvador is considered to be the most successful missions of UN ever since it started involving in the peace-building activities. Meanwhile, in the armed conflict of South Asian country, Nepal, the result seemed to be disappointing in comparison with its counterpart. The study on this paper takes three variables as the success or failure of international mediation, i.e., a) signing of the peace agreement, b) disarmament/demobilization and c) constitutional mechanism. A significant amount of scholarship looks at the case of ONUSAL (United Nations Mission in El Salvador). Meanwhile, the armed conflict of Nepal and the role of UNMIN (United Nations Mediation in Nepal) are under researched so far. The paper thus tries to throw light on these cross-regional contexts that share certain similarities and dissimilarities in the nature of conflict. In addition, the international third-party involvement and their way of approaching both the cases differ, which again affected the mediation outcome. The paper tries to argue that, since the approach of the UN led international mediation in theses peace missions were contextual and varied from case to case, thus, finally affected the mediation outcome too.

Keywords: Nepal, UNMIN, El Salvador, ONUSAL, international mediation, armed conflict

Procedia PDF Downloads 393
1668 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 199
1667 Antimicrobial Activity of the Natural Products Derived from Phyllanthus Emblica and Gracilaria Fisheri Against Staphylococcus Aureus

Authors: Woraprat Amnuaychaichana

Abstract:

Several medicinal plants are well known to contain active constituents such as flavonoids and phenolic compounds with are plausible candidates for therapeutic purposes. An infectious disease caused by microbial infection is the leading cause of death. Antibiotics are typically used to eradicate these microbes, but recent evidence indicates that they are developing antibiotic-resistant effects. This study focused on antimicrobial activities of Phyllanthus emblica and Gracilaria fisheri using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. The extracts were screened against Staphylococcus aureus. Five concentrations of plant extracts were used to determine the minimum inhibitory concentration (MIC) by 2-fold dilution of plant extract. The results indicated that G. fisheri extract gave the maximum zones of inhibition of 11.7 mm against S. aureus while P. emblica showed no effects. The MIC values of G. fisheri extract against S. aureus was 500 µg/ml. To summarise, G. fisheri extracts demonstrated high efficacy of antibacterial activity against Gram-positive S. aureus, which may pave the way for developing a formulation containing this plant. G. fisheri extract should be subjected to additional investigation in order to determine the mechanism of action of its antimicrobial activity.

Keywords: antibacterial activity, Staphylococcus aureus, gracilaria fishery, Phyllanthus emblica

Procedia PDF Downloads 189
1666 The Role of Poling Protocol on Augmentation of Magnetoelectricity in BCZT/NZFO Layered Composites

Authors: Pankhuri Bansal, Sanjeev Kumar

Abstract:

We examined the exotic role of electrical poling of layered BCZT-NZFO bulk composite for sustainable advancement of magnetoelectric (ME) technology. Practically, it seems quite difficult to access the full potential of ME composites due to their weak ME coupling performances. Using a standard poling protocol, we successfully deployed the coupling performance of laminated ME composite, comprised of a ferroelectric (FE) layer of BCZT and a ferrite layer of NZFO. However, the ME coupling constant of laminated composite is optimized by lowering the volume fraction of the FE component to strengthen the mechanical strain in the piezoelectric layer while fixing the thickness of the magnetostrictive ferrite layer. Here, we employed systematic zero field cooled (ZFC) and field cooled (FC) electrical poling protocol on morphotropic phase boundary (MPB) based BCZT composition, well-appreciated for it’s remarkable electromechanical activity. We report a record augmentation in magnetoelectric coupling as a consequence of a prudent field-cooled poling mechanism. On the basis of our findings, we emphasize that the degree of magnetoelectricity may be significantly improved for the miniaturization of efficient devices via proper execution of the poling technique.

Keywords: magnetoelectric, lead-free, ferroelctric, ferromagnetic, energy harvesting

Procedia PDF Downloads 44
1665 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease

Authors: Feng Zhang

Abstract:

Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.

Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand

Procedia PDF Downloads 220