Search results for: leadership models
6088 A Risk-Based Modeling Approach for Successful Adoption of CAATTs in Audits: An Exploratory Study Applied to Israeli Accountancy Firms
Authors: Alon Cohen, Jeffrey Kantor, Shalom Levy
Abstract:
Technology adoption models are extensively used in the literature to explore drivers and inhibitors affecting the adoption of Computer Assisted Audit Techniques and Tools (CAATTs). Further studies from recent years suggested additional factors that may affect technology adoption by CPA firms. However, the adoption of CAATTs by financial auditors differs from the adoption of technologies in other industries. This is a result of the unique characteristics of the auditing process, which are expressed in the audit risk elements and the risk-based auditing approach, as encoded in the auditing standards. Since these audit risk factors are not part of the existing models that are used to explain technology adoption, these models do not fully correspond to the specific needs and requirements of the auditing domain. The overarching objective of this qualitative research is to fill the gap in the literature, which exists as a result of using generic technology adoption models. Followed by a pretest and based on semi-structured in-depth interviews with 16 Israeli CPA firms of different sizes, this study aims to reveal determinants related to audit risk factors that influence the adoption of CAATTs in audits and proposes a new modeling approach for the successful adoption of CAATTs. The findings emphasize several important aspects: (1) while large CPA firms developed their own inner guidelines to assess the audit risk components, other CPA firms do not follow a formal and validated methodology to evaluate these risks; (2) large firms incorporate a variety of CAATTs, including self-developed advanced tools. On the other hand, small and mid-sized CPA firms incorporate standard CAATTs and still need to catch up to better understand what CAATTs can offer and how they can contribute to the quality of the audit; (3) the top management of mid-sized and small CPA firms should be more proactive and updated about CAATTs capabilities and contributions to audits; and (4) All CPA firms consider professionalism as a major challenge that must be constantly managed to ensure an optimal CAATTs operation. The study extends the existing knowledge of CAATTs adoption by looking at it from a risk-based auditing approach. It suggests a new model for CAATTs adoption by incorporating influencing audit risk factors that auditors should examine when considering CAATTs adoption. Since the model can be used in various audited scenarios and supports strategic, risk-based decisions, it maximizes the great potential of CAATTs on the quality of the audits. The results and insights can be useful to CPA firms, internal auditors, CAATTs developers and regulators. Moreover, it may motivate audit standard-setters to issue updated guidelines regarding CAATTs adoption in audits.Keywords: audit risk, CAATTs, financial auditing, information technology, technology adoption models
Procedia PDF Downloads 706087 Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes
Authors: Zahreddine Hafsi, Manoranjan Mishra , Sami Elaoud
Abstract:
Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity.Keywords: capillary pressure, EOR process, immiscible flow, numerical modelling
Procedia PDF Downloads 1326086 The Types of Collaboration Models Driven by Public Art Establishment–Case Study of Taichung City
Authors: Cheng-Lung Yu, Ying-His Liao
Abstract:
Some evidence show that public art accelerates local economic growth. Even local governments award the collaboration of public-private partnership to sustain the creation of public art for urban economic development. Through the public-private partnership of public art establishment it is obvious that public construction projects have been led by the governmental policy yet the private developers have played crucial roles to drive the innovative business models such as tourism investment, real estate value up and community participation. This study shows that the types of collaboration have been driven by Taichung city governmental policy from the regulation of public art establishment in the past three years. Through some cases empirical analyzes the authors discover the trends concerning the public art development to support local economic growth in Taiwan.Keywords: public art, public art establishment regulation, construction management, urban governance
Procedia PDF Downloads 346085 WEMax: Virtual Manned Assembly Line Generation
Authors: Won Kyung Ham, Kang Hoon Cho, Sang C. Park
Abstract:
Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.Keywords: performance forecasting, simulation, virtual manned assembly line, WEMax
Procedia PDF Downloads 3286084 Parametric Models of Facade Designs of High-Rise Residential Buildings
Authors: Yuchen Sharon Sung, Yingjui Tseng
Abstract:
High-rise residential buildings have become the most mainstream housing pattern in the world’s metropolises under the current trend of urbanization. The facades of high-rise buildings are essential elements of the urban landscape. The skins of these facades are important media between the interior and exterior of high- rise buildings. It not only connects between users and environments, but also plays an important functional and aesthetic role. This research involves a study of skins of high-rise residential buildings using the methodology of shape grammar to find out the rules which determine the combinations of the facade patterns and analyze the patterns’ parameters using software Grasshopper. We chose a number of facades of high-rise residential buildings as source to discover the underlying rules and concepts of the generation of facade skins. This research also provides the rules that influence the composition of facade skins. The items of the facade skins, such as windows, balconies, walls, sun visors and metal grilles are treated as elements in the system of facade skins. The compositions of these elements will be categorized and described by logical rules; and the types of high-rise building facade skins will be modelled by Grasshopper. Then a variety of analyzed patterns can also be applied on other facade skins through this parametric mechanism. Using these patterns established in the models, researchers can analyze each single item to do more detail tests and architects can apply each of these items to construct their facades for other buildings through various combinations and permutations. The goal of these models is to develop a mechanism to generate prototypes in order to facilitate generation of various facade skins.Keywords: facade skin, grasshopper, high-rise residential building, shape grammar
Procedia PDF Downloads 5106083 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood
Procedia PDF Downloads 4006082 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 2646081 A Principal’s Role in Creating and Sustaining an Inclusive Environment
Authors: Yazmin Pineda Zapata
Abstract:
Leading a complete school and culture transformation can be a daunting task for any administrator. This is especially true when change agents are advocating for inclusive reform in their schools. As leaders embark on this journey, they must ascertain that an inclusive environment is not a place, a classroom, or a resource setting; it is a place of acceptance nurtured by supportive and meaningful learning opportunities where all students can thrive. A qualitative approach, phenomenology, was used to investigate principals’ actions and behaviors that supported inclusive schooling for students with disabilities. Specifically, this study sought to answer the following research question: How do leaders develop and maintain inclusive education? Fourteen K-12 principals purposefully selected from various sources (e.g., School Wide Integrated Framework for Transformation (SWIFT), The Maryland Coalition for Inclusive Education (MCIE), The Arc of Texas Inclusion Works organization, The Association for Persons with Severe Handicaps (TASH), the CAL State Summer Institute in San Marcos, and the PEAK Parent Center and/or other recognitions were interviewed individually using a semi-structured protocol. Upon completion of data collection, all interviews were transcribed and marked using A priori coding to analyze the responses and establish a correlation among Villa and Thousand’s five organizational supports to achieve inclusive educational reform: Vision, Skills, Incentives, Resources, and Action Plan. The findings of this study reveal the insights of principals who met specific criteria and whose schools had been highlighted as exemplary inclusive schools. Results show that by implementing the five organizational supports, principals were able to develop and sustain successful inclusive environments where both teachers and students were motivated, made capable, and supported through the redefinition and restructuring of systems within the school. Various key details of the five variables for change depict essential components within these systems, which include quality professional development, coaching and modeling of co-teaching strategies, collaborative co-planning, teacher leadership, and continuous stakeholder (e.g., teachers, students, support staff, and parents) involvement. The administrators in this study proved the valuable benefits of inclusive education for students with disabilities and their typically developing peers. Together, along with their teaching and school community, school leaders became capable stakeholders that promoted the vision of inclusion, planned a structured approach, and took action to make it a reality.Keywords: Inclusive education, leaders, principals, shared-decision making, shared leadership, special education, sustainable change
Procedia PDF Downloads 756080 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques
Authors: Zakaria Baka, Halima Alem
Abstract:
Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques
Procedia PDF Downloads 1966079 The Case for Strategic Participation: How Facilitated Engagement Can Be Shown to Reduce Resistance and Improve Outcomes Through the Use of Strategic Models
Authors: Tony Mann
Abstract:
This paper sets out the case for involving and engaging employees/workers/stakeholders/staff in any significant change that is being considered by the senior executives of the organization. It establishes the rationale, the approach, the methodology of engagement and the benefits of a participative approach. It challenges the new norm of imposing change for fear of resistance and instead suggests that involving people has better outcomes and a longer-lasting impact. Various strategic models are introduced and illustrated to explain how the process can be most effective. The paper highlights one model in particular (the Process Iceberg® Organizational Change model) that has proven to be instrumental in developing effective change. Its use is demonstrated in its various forms and explains why so much change fails to address the key elements and how we can be more productive in managing change. ‘Participation’ in change is too often seen as negative, expensive and unwieldy. The paper aims to show that another model: UIA=O+E, can offset the difficulties and, in fact, produce much more positive and effective change.Keywords: facilitation, stakeholders, buy-in, digital workshops
Procedia PDF Downloads 1126078 Maintaining the Tension between the Classic Seduction Theory and the Role of Unconscious Fantasies
Authors: Galit Harel
Abstract:
This article describes the long-term psychoanalytic psychotherapy of a young woman who had experienced trauma during her childhood. The details of the trauma were unknown, as all memory of the trauma had been repressed. Past trauma is analyzable through a prism of transference, dreaming and dreams, mental states, and thinking processes that offer an opportunity to explore and analyze the influence of both reality and fantasy on the patient. The presented case describes a therapeutic process that strives to discover hidden meanings through the unconscious system and illustrates the movement from unconscious to conscious during exploration of the patient’s personal trauma in treatment. The author discusses the importance of classical and contemporary psychoanalytic models of childhood sexual trauma through the discovery of manifest and latent content, unconscious fantasies, and actual events of trauma. It is suggested that the complexity of trauma is clarified by the tension between these models and by the inclusion of aspects of both of them for a complete understanding.Keywords: dreams, psychoanalytic psychotherapy, thinking processes, transference, trauma
Procedia PDF Downloads 926077 Quality of the Ruin Probabilities Approximation Using the Regenerative Processes Approach regarding to Large Claims
Authors: Safia Hocine, Djamil Aïssani
Abstract:
Risk models, recently studied in the literature, are becoming increasingly complex. It is rare to find explicit analytical relations to calculate the ruin probability. Indeed, the stability issue occurs naturally in ruin theory, when parameters in risk cannot be estimated than with uncertainty. However, in most cases, there are no explicit formulas for the ruin probability. Hence, the interest to obtain explicit stability bounds for these probabilities in different risk models. In this paper, we interest to the stability bounds of the univariate classical risk model established using the regenerative processes approach. By adopting an algorithmic approach, we implement this approximation and determine numerically the bounds of ruin probability in the case of large claims (heavy-tailed distribution).Keywords: heavy-tailed distribution, large claims, regenerative process, risk model, ruin probability, stability
Procedia PDF Downloads 3656076 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments
Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán
Abstract:
Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models
Procedia PDF Downloads 1496075 Daily Stress, Family Functioning, and Mental Health among Palestinian Couples in Israel During COVID-19: A Moderated Mediation Model
Authors: Niveen M. Hassan-Abbas
Abstract:
The COVID-19 pandemic created a range of stressors, among them difficulties related to work conditions, financial changes, lack of childcare, and confinement or isolation due to social distancing. Among families and married individuals, these stressors were often expressed in additional daily hassles, with an influence on mental health. This study examined two moderated mediation models based on Bodenmann’s systemic-transactional stress model. Specifically, the models tested the hypothesis that intra-dyadic stress mediates the association between extra-dyadic stress and mental health, while two measures of family functioning, cohesion, and flexibility, moderate the relationship between extra and intra-dyadic stress. Participants were 480 heterosexual married Palestinians from Israel who completed self-report questionnaires. The results showed partial mediation patterns supporting both models, indicating that family cohesion and flexibility weakened the mediating effect of intra-dyadic stress on the relationship between extra-dyadic stress and mental health. These findings increase our understanding of the variables that affected mental health during the pandemic and suggested that when faced with extra-dyadic stress, married individuals with good family environments are less likely to experience high levels of intra-dyadic stress, which is in turn associated with preserved mental health. Limitations and implications for planning interventions for couples and families during the pandemic are discussed.Keywords: Palestinian families in Israel, COVID-19 pandemic, family cohesion and flexibility, extra-dyadic stress, intra-dyadic stress, mental health
Procedia PDF Downloads 966074 Modeling the Cyclic Behavior of High Damping Rubber Bearings
Authors: Donatello Cardone
Abstract:
Bilinear hysteresis models are usually used to describe the cyclic behavior of high damping rubber bearings. However, they neglect a number of phenomena (such as the interaction between axial load and shear force, buckling and post-buckling behavior, cavitation, scragging effects, etc.) that can significantly influence the dynamic behavior of such isolation devices. In this work, an advanced hysteresis model is examined and properly calibrated using consolidated procedures. Results of preliminary numerical analyses, performed in OpenSees, are shown and compared with the results of experimental tests on high damping rubber bearings and simulation analyses using alternative nonlinear models. The findings of this study can provide an useful tool for the accurate evaluation of the seismic response of structures with rubber-based isolation systems.Keywords: seismic isolation, high damping rubber bearings, numerical modeling, axial-shear force interaction
Procedia PDF Downloads 1246073 A Decision Support Framework for Introducing Business Intelligence to Midlands Based SMEs
Authors: Amritpal Slaich, Mark Elshaw
Abstract:
This paper explores the development of a decision support framework for the introduction of business intelligence (BI) through operational research techniques for application by SMEs. Aligned with the goals of the new Midlands Enterprise Initiative of improving the skill levels of the Midlands workforce and addressing high levels of regional unemployment, we have developed a framework to increase the level of business intelligence used by SMEs to improve business decision-making. Many SMEs in the Midlands fail due to the lack of high quality decision making. Our framework outlines how universities can: engage with SMEs in the use of BI through operational research techniques; develop appropriate and easy to use Excel spreadsheet models; and make use of a process to allow SMEs to feedback their findings of the models. Future work will determine how well the framework performs in getting SMEs to apply BI to improve their decision-making performance.Keywords: SMEs, decision support framework, business intelligence, operational research techniques
Procedia PDF Downloads 4746072 Planning a Supply Chain with Risk and Environmental Objectives
Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali
Abstract:
The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.Keywords: environmental indicators, optimization, risk, supply chain
Procedia PDF Downloads 3516071 Multidimensional Sports Spectators Segmentation and Social Media Marketing
Authors: B. Schmid, C. Kexel, E. Djafarova
Abstract:
Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research.Keywords: multidimensional segmentation, social media, sports marketing, sports spectators segmentation
Procedia PDF Downloads 3076070 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.Keywords: biological pathway, gene identification, object detection, Siamese network
Procedia PDF Downloads 2946069 Top Skills That Build Cultures at Organizations
Authors: Priyanka Botny Srinath, Alessandro Suglia, Mel McKendrick
Abstract:
Background: Organizational cultural studies integrate sociology and anthropology, portraying man as a creator of symbols, languages, beliefs, and ideologies -essentially, a creator and manager of meaning. In our research, we leverage analytical measures to discern whether an organization embodies a singular culture or a myriad of subcultures. Fast-forward to 2023, our research thesis focuses on digitally measuring culture, coining it as the "Work Culture Quotient." This entails conceptually mapping common experiential patterns to provide executives insights into the digital organization journey, aiding in understanding their current position and identifying future steps. Objectives: Finding the new age skills that help in defining the culture; understand the implications of post-COVID effects; derive a digital framework for measuring skillsets. Method: We conducted two comprehensive Delphi studies to distill essential insights. Delphi 1: Through a thematic analysis of interviews with 20 high-level leaders representing companies across diverse regions -India, Japan, the US, Canada, Morocco, and Uganda- we identified 20 key skills critical for cultivating a robust organizational culture. The skills are -influence, self-confidence, optimism, empathy, leadership, collaboration and cooperation, developing others, commitment, innovativeness, leveraging diversity, change management, team capabilities, self-control, digital communication, emotional awareness, team bonding, communication, problem solving, adaptability, and trustworthiness. Delphi 2: Subject matter experts were asked to complete a questionnaire derived from the thematic analysis in stage 1 to formalise themes and draw consensus amongst experts on the most important workplace skills. Results: The thematic analysis resulted in 20 workplace employee skills being identified. These skills were all included in the Delphi round 2 questionnaire. From the outputs, we analysed the data using R Studio for arriving at agreement and consensus, we also used sum of squares method to compare various agreements to extract various themes with a threshold of 80% agreements. This yielded three themes at over 80% agreement (leadership, collaboration and cooperation, communication) and three further themes at over 60% agreement (commitment, empathy, trustworthiness). From this, we selected five questionnaires to be included in the primary data collection phase, and these will be paired with the digital footprints to provide a workplace culture quotient. Implications: The findings from these studies bear profound implications for decision-makers, revolutionizing their comprehension of organizational culture. Tackling the challenge of mapping the digital organization journey involves innovative methodologies that probe not only external landscapes but also internal cultural dynamics. This holistic approach furnishes decision-makers with a nuanced understanding of their organizational culture and visualizes pivotal skills for employee growth. This clarity enables informed choices resonating with the organization's unique cultural fabric. Anticipated outcomes transcend mere individual cultural measurements, aligning with organizational goals to unveil a comprehensive view of culture, exposing artifacts and depth. Armed with this profound understanding, decision-makers gain tangible evidence for informed decision-making, strategically leveraging cultural strengths to cultivate an environment conducive to growth, innovation, and enduring success, ultimately leading to measurable outcomes.Keywords: leadership, cooperation, collaboration, teamwork, work culture
Procedia PDF Downloads 486068 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective
Authors: R. Pravin Kumar, L. Roopa
Abstract:
Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase
Procedia PDF Downloads 1376067 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils
Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul
Abstract:
In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils
Procedia PDF Downloads 3066066 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 5966065 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 3936064 Building a Blockchain-based Internet of Things
Authors: Rob van den Dam
Abstract:
Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.Keywords: IoT, internet, wired, wireless
Procedia PDF Downloads 3376063 The Anti-Globalization Movement, Brexit, Outsourcing and the Current State of Globalization
Authors: Alexis Naranjo
Abstract:
In the current global stage, a new sense and mix feelings against the globalization has started to take shape thanks to events such as Brexit and the 2016 US election. The perceptions towards the globalization have started to focus in a resistance movement called the 'anti-globalization movement'. This paper examines the current global stage vs. leadership decisions in a time when market integrations are not longer seeing as an opportunity for an economic growth buster. The biggest economy in the world the United States of America has started to face a new beginning of something called 'anti-globalization', in the current global stage starting with the United Kingdom to the United States a new strategy to help local economies has started to emerge. A new nationalist movement has started to focus on their local economies which now represents a direct threat to the globalization, trade agreements, wages and free markets. Business leaders of multinationals now in our days face a new dilemma, how to address the feeling that globalization and outsourcing destroy and take away jobs from local economies. The initial perception of the literature and data rebels that companies in Western countries like the US sees many risks associate with outsourcing, however, saving cost associated with outsourcing is greater than the firm’s local reputation. Starting with India as a good example of a supplier of IT developers, analysts and call centers we can start saying that India is an industrialized nation which has not yet secured its spot and title. India has emerged as a powerhouse in the outsource industry, which makes India hold the number one spot in the world to outsource IT services. Thanks to the globalization of economies and markets around the globe that new ideas to increase productivity at a lower cost has been existing for years and has started to offer new ideas and options to businesses in different industries. The economic growth of the information technology (IT) industry in India is an example of the power of the globalization which in the case of India has been tremendous and significant especially in the economic arena. This research paper concentrates in understand the behavior of business leaders: First, how multinational’s leaders will face the new challenges and what actions help them to lead in turbulent times. Second, if outsourcing or withdraw from a market is an option what are the consequences and how you communicate and negotiate from the business leader perspective. Finally, is the perception of leaders focusing on financial results or they have a different goal? To answer these questions, this study focuses on the most recent data available to outline and present the findings of the reason why outsourcing is and option and second, how and why those decisions are made. This research also explores the perception of the phenomenon of outsourcing in many ways and explores how the globalization has contributed to its own questioning.Keywords: anti-globalization, globalization, leadership, outsourcing
Procedia PDF Downloads 1946062 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?
Authors: Gu Pang, Bartosz Gebka
Abstract:
We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput
Procedia PDF Downloads 5046061 Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton
Authors: Alison Power
Abstract:
Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork
Procedia PDF Downloads 1266060 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 2566059 Variability Management of Contextual Feature Model in Multi-Software Product Line
Authors: Muhammad Fezan Afzal, Asad Abbas, Imran Khan, Salma Imtiaz
Abstract:
Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL.Keywords: software product line, feature model, variability management, multi-SPLs
Procedia PDF Downloads 70