Search results for: ethanolic extract of propolis
543 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial
Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew
Abstract:
Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration
Procedia PDF Downloads 272542 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 43541 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams
Procedia PDF Downloads 418540 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 116539 Qualitative Phytochemical Screening and Antibacterial Evaluation of Sohphlang: Flemingia Vestita
Authors: J. K. D. M. P. Madara, R. B. L. Dharmawickreme, Linu John, Ivee Boiss
Abstract:
Flemingia vestita, commonly known as ‘Sohphlang’ is an important medicinal plant found in the North-Eastern region of India, which is traditionally recognized for its anthelmintic properties. This study was aimed to evaluate the phytochemical constituents and antibacterial activity of the tuber skin extracts of the plant species. Methanol, acetone, and water were used to obtain the solvent extractions of the skin peel extracts. Concentrated extracts of skin peel were tested using previously established qualitative phytochemical assays. The antibacterial efficacy of methanol tuber skin extract was tested against Gram-negative and positive microorganisms, namely, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Mycobacterium tuberculosis strains. Agar well diffusion method was employed to determine the zone of inhibition of the plant extracts. Obtained data were statistically analyzed. Methanol extracts of Flemingia vestita were found to be effective against Bacillus subtilis and Mycobacterium tuberculosis at concentrations of 0.5 mg/ml. The reported zone of inhibition for the two strains was 13.3mm ± 0.57 and 16.3mm ± 4.9, respectively. However Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli were resistant to the plant extracts with no zone of inhibition. Alkaloids, glycosides, and phenols were found to be present in aqueous, methanol, and acetone extracts of the plant in qualitative phytochemical analysis.Keywords: flemingia vestita, antibacterial activity, phytochemical screening, well diffusion method
Procedia PDF Downloads 109538 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 329537 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 155536 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 348535 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty
Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih
Abstract:
In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization
Procedia PDF Downloads 125534 Nanoparticle Based Green Inhibitor for Corrosion Protection of Zinc in Acidic Medium
Authors: Neha Parekh, Divya Ladha, Poonam Wadhwani, Nisha Shah
Abstract:
Nano scaled materials have attracted tremendous interest as corrosion inhibitor due to their high surface area on the metal surfaces. It is well known that the zinc oxide nanoparticles have higher reactivity towards aqueous acidic solution. This work presents a new method to incorporate zinc oxide nanoparticles with white sesame seeds extract (nano-green inhibitor) for corrosion protection of zinc in acidic medium. The morphology of the zinc oxide nanoparticles was investigated by TEM and DLS. The corrosion inhibition efficiency of the green inhibitor and nano-green inhibitor was determined by Gravimetric and electrochemical impedance spectroscopy (EIS) methods. Gravimetric measurements suggested that nano-green inhibitor is more effective than green inhibitor. Furthermore, with the increasing temperature, inhibition efficiency increases for both the inhibitors. In addition, it was established the Temkin adsorption isotherm fits well with the experimental data for both the inhibitors. The effect of temperature and Temkin adsorption isotherm revealed Chemisorption mechanism occurring in the system. The activation energy (Ea) and other thermodynamic parameters for inhibition process were calculated. The data of EIS showed that the charge transfer controls the corrosion process. The surface morphology of zinc metal (specimen) in absence and presence of green inhibitor and nano-green inhibitor were performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. The outcomes indicated a formation of a protective layer over zinc metal (specimen).Keywords: corrosion, green inhibitor, nanoparticles, zinc
Procedia PDF Downloads 454533 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 155532 Herbal Medicinal Materials for Health/Functional Foods in Korea
Authors: Chang-Hwan Oh, Young-Jong Lee
Abstract:
In April, 2015, the Ministry of Food and Drug Safety’s announcement that only 10 of the 207 products that list Cynanchum Wilfordii Radix among their ingredients were confirmed to actually contain “iyeobupiso” the counterfeit version of the “baeksuo” raised a fog to consumers who purchased health/functional foods supposedly containing the herbal medicinal material, “baeksuo” in Korean. Baeksuo is the main ingredient of the product “EstroG-100” that contain Phlomis umbrosa and Angelica gigas too (NaturalEndoTech, S.Korea). The hot water extract of the herbal medicinal materials (HMM) was approved as a product specific Health/Functional Food (HFF) having a helpful function to women reaching menopause by Korea Food & Drug Administration (Ministry of Food & Drug Safety at present). The origin of “baeksuo” is the root of Cynanchum wilfordii Hemsley in Korea (But “iyeobupiso, the root of Cynanchum auriculatum Royle ex Wight is considered as the origin of “baeksuo” in China). In Korea, about 116 HMMs are listed as the food materials in Korea Food Code among the total 187 HMMs could be used for food and medicine purpose simultaneously. But there are some chances of the HMMs (shared use for food and medicine purpose) could be misused by the part and HMMs not permitted for HFF such as the “baeksuo” case. In this study, some of HMMs (shared use for food and medicine purpose) are examined to alleviate the misuse chance of HMMs for HFFs in Korea. For the purpose of this study, the origin, shape, edible parts, efficacy and the side effects of the similar HMMs to be misused for HFF are investigated.Keywords: herbal medicinal materials, healthy/functional foods, misuse, shared use
Procedia PDF Downloads 291531 Design of Effective Decoupling Point in Build-To-Order Systems: Focusing on Trade-Off Relation between Order-To-Delivery Lead Time and Work in Progress
Authors: Zhiyong Li, Hiroshi Katayama
Abstract:
Since 1990s, e-commerce and internet business have been grown gradually over the word and customers tend to express their demand attributes in terms of specification requirement on parts, component, product structure etc. This paper deals with designing effective decoupling points for build to order systems under e-commerce environment, which can be realized through tradeoff relation analysis between two major criteria, customer order lead time and value of work in progress. These KPIs are critical for successful BTO business, namely time-based service effectiveness on coping with customer requirements for the first issue and cost effective ness with risk aversive operations for the second issue. Approach of this paper consists of investigation of successful business standing for BTO scheme, manufacturing model development of this scheme, quantitative evaluation of proposed models by calculation of two KPI values under various decoupling point distributions and discussion of the results brought by pattern of decoupling point distribution, where some cases provide the pareto optimum performances. To extract the relevant trade-off relation between considered KPIs among 2-dimensional resultant performance, useful logic developed by former research work, i.e. Katayama and Fonseca, is applied. Obtained characteristics are evaluated as effective information for managing BTO manufacturing businesses.Keywords: build-to-order (BTO), decoupling point, e-commerce, order-to-delivery lead time (ODLT), work in progress (WIP)
Procedia PDF Downloads 325530 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building
Authors: Yazan Al-Kofahi, Jamal Alqawasmi.
Abstract:
In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.Keywords: machine learning, deep learning, artificial intelligence, sustainable building
Procedia PDF Downloads 67529 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method
Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey
Abstract:
Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear
Procedia PDF Downloads 130528 Medical Nutritional Therapy in Human Immunodeficiency Virus Infection with Tuberculosis and Severe Malnutrition: A Case Report
Authors: Lista Andriyati, Nurpudji A Taslim
Abstract:
The human immunodeficiency virus (HIV) patients have potential nutritional and metabolic problems. HIV is a virus that attacks cells T helper and impairs the function of immune cells. Infected individuals gradually become immunodeficient, results in increased susceptibility to a wide range of infections such as tuberculosis (TB). Malnutrition has destructive effects on the immune system and host defense mechanisms. Effective and proper nutritional therapies are important to improve medical outcomes and quality of life, which is associated with functional improvement. A case of 38-years old man admitted to hospital with loss of consciousness and was diagnosed HIV infection and relapse lung TB with severe malnutrition, fever, oral candidiasis, anemia (6.3 g/dL), severe hypoalbuminemia (1.9 g/dL), severe hypokalemia (2.2 mmol/L), immune depletion (1085 /µL) and elevated liver enzyme (ALT 1198/AST 375 U/L). Nutritional intervention by giving 2300 kcal of energy, protein 2 g/IBW/day, carbohydrate 350 g, fat 104 g through enteral and parenteral nutrition. Supplementations administered are zinc, vitamin A, vitamin B1, vitamin B6, vitamin B12, vitamin C, vitamin D, and snakehead fish extract high content of protein albumin (Pujimin®). After 46 days, there are clinical and metabolic improvement in Hb (6.3 to 11.2 g/dL), potassium (2.2 to 3.4 mmol/L), albumin (1.9 to 2.3 g/dL), ALT 1198 to 47/AST 375 to 68 U/L) and improved awareness. In conclusion, nutritional therapy in HIV infection with adequate macronutrients and micronutrients fulfillment and immunonutrition is very important to avoid cachexia and to improve nutritional status and immune disfunction.Keywords: HIV, hypoalbuminemia, malnutrition, tuberculosis
Procedia PDF Downloads 129527 Chemical Analysis, Antioxidant Activity and Antimicrobial Activity of Isolated Compounds and Essential Oil from Callistemon citrinus Leaf
Authors: Manal M. Hamed, Mosad A. Ghareeb, Abdel-Aleem H. Abdel-Aleem, Amal M. Saad, Mohamed S. Abdel-Aziz, Asmaa H. Hadad
Abstract:
Natural products derived from medicinal plants provide unlimited opportunities for a new medication leads because of the unmatched accessibility of chemical variation. Six compounds were isolated from the n-butanol extract of Callistemon citrinus (Family Myrtaceae), they were identified as; nepetolide (1), callislignan A (2), 6,8-dimethoxy-4,5-dimethyl-3-methyleneisochroman-1-one (3), 3-methyl-7-O-benzoyl-β-D-glucopyranoside (4), 5, 7, 3', 5'-tetrahydroxy-6, 8-di-C-methyl flavanone (5), and (2R,3R,4S,5S)-2,4-bis(4-hydroxyphenyl)-3,5-dihydroxy-tetrahydropyran (6). The isolated compounds were evaluated as antioxidant and antimicrobial agents. The antioxidant activities of the compounds were determined using DPPH-radical scavenging and total antioxidant capacity (TAC) assays. The results indicated that compound (5) was most active in its capacity to scavenge free radicals in the DPPH assay [SC50 value, 4.65 ± 0.74μg/mL] compared to the standard ascorbic acid and exhibited the highest activity in the TAC assay (610.45 ± 1.67mg AAE/g compound). The pure isolates were tested for their antimicrobial activity against four pathogenic microbial strains including Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans. Also, the GC/MS analysis of its leaves essential oil presented nine identified compounds representing 91% of the total oil constituents. The outcomes got from this study give a reasonable justification for the medicinal uses of Callistemon citrinus plant.Keywords: Callistemon citrinus, flavanone, antioxidant activity, antimicrobial activity, essential oil, Myrtaceae
Procedia PDF Downloads 295526 Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing
Authors: Amadou Fall Dia, Maurras Ulbricht Togbe, Aliou Boly, Zakia Kazi Aoul, Elisabeth Metais
Abstract:
Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones.Keywords: centrality measures, RDF graphs summary, RDF graphs stream, SPARQL query
Procedia PDF Downloads 203525 Effect of Clerodendrum Species on Oxidative Stress with Possible Implication in Alleviating Carcinogenesis
Authors: Somit Dutta, Pallab Kar, Arnab Kumar Chakraborty, Arnab Sen, Tapas Kumar Chaudhuri
Abstract:
In the present study three species of Clerodendrum; Clerodendrum indicum, Volkameria inermis and Clerodendrum colebrookianum were used to investigate the possible activity against oxidative stress. A detailed in-vivo and in-vitro antioxidant profiling, directly associated with inflammation-related carcinogenesis, has been executed with a motive to evaluate the free radical scavenging activity of Clerodendrum extract. Measurement of cell viability and ROS generation in HEK-293 (Human Embryonic Kidney Cell Line) cells was also estimated. The immune cell proliferative properties (MTT) and in-vitro assay for evaluation of their antioxidant activities including hydroxyl radical, nitric oxide, singlet oxygen, peroxinitrate and hydrogen peroxide, etc. were investigated. GC-MS and FTIR analyses have been performed to identify the active biological compounds. These active biological compounds were further studied to assess their potential medicinal properties, aided by molecular docking and interaction analysis between the active compounds and different proteins related to oxidative stress leading to progression of carcinogenesis. The research article clearly demonstrates the role of ROS in various phases of carcinogenesis. Therefore, the antioxidant and free radical scavenging capacity of all the Clerodendrum species might prove beneficial for the immune system. It might be concluded that this plant species offers great promise for cancer prevention and therapy due to the presence of several bioactive compounds and potent antioxidant capacity of C. colebrookianum.Keywords: antioxidant, cancer, oxidative stress, reactive oxygen species (ROS)
Procedia PDF Downloads 278524 Phytochemistry and Biological Activity of Extracts of the Red Raspberry Rubus rosifolius
Authors: Theresa Campbell, Camille Bowen-Forbes, William Aalbersberg
Abstract:
Differences in the sensory properties of two subtly distinct varieties of Rubus rosifolius lead to the examination of their anthocyanin, essential oil and polyphenol profiles. In both cases, notable differences were identified. Pelargonidin-3-rhutinoside (17.2 mg/100 g FW) and Cyanidin-3-glucoside (66.2 mg/100g FW) proved to be the dominant anthocyanins in the red and wine red varieties respectively. Linalool and terpineol were the major constituents of the essential oil from the red variety; however, those of the wine red variety are unidentified. In regard to phenolic compounds, caffeic acid and quercetin were in a higher concentration in the red variety (1.85 and 0.73 mg/100g FW respectively, compared to 1.22 and 0.34 mg/100g FW respectively in the wine red fruits); while ellagic acid and ferulic acid were of a higher concentration in the wine red variety (0.92 and 0.84mg/100g FW respectively, compared to 0.15 and 0.48 mg/100g FW respectively in the red variety). The methanol extract of both fruit varieties showed great antioxidant activity. Analysis of the antimicrobial activity of the fruit extracts against the growth of drug resistant pathogens revealed that they are active against methicillin resistant S. aureus (MRSA), rifampicin resistant S. aureus (RRSA), wild-type S. aureus (WTSA) and vancomycin-resistant Enterococcus faecium (VREF). Activity was also reported against several food-borne pathogens including two strains of E. coli, L. monocytogenes and Enterobacter aerogenes. The cytotoxicity of the various extracts was assessed and the essential oil extracts exhibited superior activity. The phenolic composition and biological activity of the fruits indicate that their consumption is beneficial to health and also that their incorporation into functional foods and nutraceuticals should be considered.Keywords: phytochemicals, antimicrobial, cytotoxic, Rubus rosifolius
Procedia PDF Downloads 396523 Comparative Evaluation of EBT3 Film Dosimetry Using Flat Bad Scanner, Densitometer and Spectrophotometer Methods and Its Applications in Radiotherapy
Authors: K. Khaerunnisa, D. Ryangga, S. A. Pawiro
Abstract:
Over the past few decades, film dosimetry has become a tool which is used in various radiotherapy modalities, either for clinical quality assurance (QA) or dose verification. The response of the film to irradiation is usually expressed in optical density (OD) or net optical density (netOD). While the film's response to radiation is not linear, then the use of film as a dosimeter must go through a calibration process. This study aimed to compare the function of the calibration curve of various measurement methods with various densitometer, using a flat bad scanner, point densitometer and spectrophotometer. For every response function, a radichromic film calibration curve is generated from each method by performing accuracy, precision and sensitivity analysis. netOD is obtained by measuring changes in the optical density (OD) of the film before irradiation and after irradiation when using a film scanner if it uses ImageJ to extract the pixel value of the film on the red channel of three channels (RGB), calculate the change in OD before and after irradiation when using a point densitometer, and calculate changes in absorbance before and after irradiation when using a spectrophotometer. the results showed that the three calibration methods gave readings with a netOD precision of doses below 3% for the uncertainty value of 1σ (one sigma). while the sensitivity of all three methods has the same trend in responding to film readings against radiation, it has a different magnitude of sensitivity. while the accuracy of the three methods provides readings below 3% for doses above 100 cGy and 200 cGy, but for doses below 100 cGy found above 3% when using point densitometers and spectrophotometers. when all three methods are used for clinical implementation, the results of the study show accuracy and precision below 2% for the use of scanners and spectrophotometers and above 3% for precision and accuracy when using point densitometers.Keywords: Callibration Methods, Film Dosimetry EBT3, Flat Bad Scanner, Densitomete, Spectrophotometer
Procedia PDF Downloads 135522 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images
Procedia PDF Downloads 425521 Effect of Many Levels of Undegradable Protein on Performance, Blood Parameters, Colostrum Composition and Lamb Birth Weight in Pregnant Ewes
Authors: Maria Magdy Danial Riad
Abstract:
The objective of this study was to investigate the effect of different protein sources with different degradability ratios during late gestation of ewes on colostrum composition and its IgG concentration, body weight change of dams, and birth weight of their lambs. Objectives: 35 multiparous native crossbred ewes (BW= 59±2.5kg) were randomly allocated to five dietary treatments (7 ewes / treatment) for 2 months prior to lambing. Methods: Experimental diets were isonitrogenous (12.27% CP) and isocaloric (2.22 Mcal ME/kg DM). In diet I (the control), solvent extract soybeans (SESM 33% RUP of CP), II feed grade urea (FGU 31% RUP), III slow release urea (SRU 31% RUP). As sources of undegradable protein, extruded expeller SBM-EESM 40 (37% RUP) and extruded expeller SBM-EESM 60 (41% RUP) were used in groups IV and V, respectively. Results showed no significant effect on feed intake, crude protein (CP), metabolizable energy (ME), and body condition score (BCS). Ewes fed the 37% RUP diet gained more (p<0.05) weight compared with ewes fed the 31% RUP diet (5.62 vs. 2.5kg). Ewes in EESM 60 had the highest levels of fat, protein, total solid, solid not fat, and immunoglobulin and the lowest in urea N content (P< 0.05) in colostrum during the first 24hrs after lambing. Conclusions: Protein source and RUP levels in ewes’ diets had no significant effect (P< 0.05) on lambs’ birth weight and ewes' blood biochemical parameters. Increasing the RUP content of diet during late gestation resulted in an increase in colostrum constituents and its IgG level but had no effect on ewes’ performance and their lambs’ outcome.Keywords: colostrum, ewes, lambs output, pregnancy, undegradable protein
Procedia PDF Downloads 50520 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen
Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar
Abstract:
Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation
Procedia PDF Downloads 111519 Effect of Omeprazole on the Renal Cortex of Adult Male Albino Rats and the Possible Protective Role of Ginger: Histological and Immunohistochemical study
Authors: Nashwa A. Mohamed
Abstract:
Introduction: Omeprazole is a proton pump inhibitor used commonly in the treatment of acid-peptic disorders. Although omeprazole is generally well tolerated, serious adverse effects such as renal failure have been reported. Ginger is an antioxidant that could play a protective role in models of experimentally induced nephropathies. Aim of the work: The aim of this work was to study the possible histological changes induced by omeprazole on renal cortex and evaluate the possible protective effect of ginger on omeprazole-induced renal damage in adult male albino rats. Materials and methods: Twenty-four adult male albino rats divided into four groups (six rats each) were used in this study. Group I served as the control group. Rats of group II received only an aqueous extract of ginger daily for 3 months through a gastric tube. Rats of group III were received omeprazole orally through a gastric tube for 3 months. Rats of group IV were given both ginger and omeprazole at the same doses and through the same routes as the previous two groups. At the end of the experiment, the rats were sacrificed. Renal tissue samples were processed for light, immunohistochemical and electron microscopic examination. The obtained results were analysed morphometrically and statistically. Results: Omeprazole caused several histological changes in the form of loss of normal appearance of renal cortex with degenerative changes in the renal corpuscle and tubules. Cellular infilteration was also observed. The filteration barrier was markedly affected. Ginger ameliorated the omeprazole-induced histological changes. Conclusion: Omeprazole induced injurious effects on renal cortex. Coadministration of ginger can ameliorate the histological changes induced by omeprazole.Keywords: ginger, kidney, omeprazole, rat
Procedia PDF Downloads 252518 Study of Growth Patterns of the Built-Up Area in Tourism Destinations in Relation to Sustainable Development
Authors: Tagore Sai Priya Nunna, Ankhi Banerjee
Abstract:
The rapid growth of the tourism industry in India in the last few years after the economic crisis in 2009 has been one of the significant causes that led to the Land Use Land Cover change (LULC) of most tourism destinations. The tourist regions are subjected to significant increase in built-up due to increased construction activities for developing accommodation facilities further boosting tourism demand. This research attempts to analyse the changing LULC and the growth pattern of the built-up area within tourist destinations. Four popular tourist destinations, which promises various types of tourism activity and which are significantly dependent on tourism for economic growth, are selected for the study. The study uses remotely sensed data for analysis of land use change through supervised segmentation into five broad classes. Further, the landuse map is reclassified into binary classes to extract the built-up area. The growth patterns of the built-up are analysed in terms of size, shape, direction and form of growth, through a set of spatial metrics. Additionally, a detailed analysis of the existing development pattern corresponding to planned development zones was performed to identify unplanned growth spots in the study regions. The findings of the study provide insights into how tourism has contributed to significant changes in LULC around tourist sites. Also, the study highlights the growth pattern of built-up areas with respect to the type of tourism activity and geographical characteristics. The research attempts to address the need of integrating spatial metrics for the development of sustainable tourism plans as part of the goals of sustainable development.Keywords: built-up, growth, patterns, tourism, sustainable
Procedia PDF Downloads 115517 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar
Authors: Shaolin Allen Liao, Hual-Te Chien
Abstract:
Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar
Procedia PDF Downloads 344516 Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules
Authors: Mohsen Maraoui
Abstract:
In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.Keywords: concept extraction, conceptual network formalism, fuzzy association rules, multilingual thesaurus, semantic indexing
Procedia PDF Downloads 141515 Liver and Liver Lesion Segmentation From Abdominal CT Scans
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithmKeywords: anisotropic diffusion filter, CT images, hepatic lesion segmentation, Liver segmentation, morphological filter, the watershed algorithm
Procedia PDF Downloads 451514 Hepatoprotective Evaluation of Potent Antioxidant Fraction from Urtica dioica L.: In vitro and In vivo Studies
Authors: Bhuwan C. Joshi, Atish Prakash, Ajudhia N. Kalia
Abstract:
Ethnopharmacological relevance: The plant Urtica dioica L. (Urticaceae) is used in various diseases including hepatic ailments. Traditionally, the leaves and roots of the plant are used in jaundice. Objective: The aim of the present work was to evaluate hepatoprotective potential of potent antioxidant from Urtica dioica L. against CCl4 induced hepatotoxicity in-vitro and in-vivo model. Materials and methods: Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n-butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH radicals scavenging assay. Fractions were subjected to in-vitro cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo study. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Results and conclusion: The ethyl acetate fraction (EAF) of Urtica. dioica L. possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 µg/ml). The in-vitro cell line study showed EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and tissue. Column chromatography of most potent antioxidant fraction (EAF) leads to the isolation of 4-hydroxy-3-methoxy cinnamic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo.Keywords: Urtica dioica L., antioxidant, HepG2 cell line, hepatoprotective
Procedia PDF Downloads 424