Search results for: content-based features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3843

Search results for: content-based features

2253 Professional Working Conditions, Mental Health And Mobility In The Hungarian Social Sector Preliminary Findings From A Multi-method Study

Authors: Ágnes Győri, Éva Perpék, Zsófia Bauer, Zsuzsanna Elek

Abstract:

The aim of the research (funded by Hungarian national grant, NFKI- FK 138315) is to examine the professional mobility, mental health and work environment of social workers with a complex approach. Previous international and Hungarian research has pointed out that those working in the helping professions are strongly exposed to the risk of emotional-mental-physical exhaustion due to stress. Mental and physical strain, as well as lack of coping (can) cause health problems, but its role in career change and high labor turnover has also been proven. Even though satisfaction with working conditions of those employed in the human service sector in the context of the stress burden has been researched extensively, there is a lack of large-sample international and Hungarian domestic studies exploring the effects of profession-specific conditions. Nor has it been examined how the specific features of the social profession and mental health affect the career mobility of the professionals concerned. In our research, these factors and their correlations are analyzed by means of mixed methodology, utilizing the benefits of netnographic big data analysis and a sector-specific quantitative survey. The netnographic analysis of open web content generated inside and outside the social profession offers a holistic overview of the influencing factors related to mental health and the work environment of social workers. On the one hand, the topics and topoi emerging in the external discourse concerning the sector are examined, and on the other hand, focus on mentions and streams of comments regarding the profession, burnout, stress, coping, as well as labor turnover and career changes among social professionals. The analysis focuses on new trends and changes in discourse that have emerged during and after the pandemic. In addition to the online conversation analysis, a survey of social professionals with a specific focus has been conducted. The questionnaire is based on input from the first two research phases. The applied approach underlines that the mobility paths of social professionals can only be understood if, apart from the general working conditions, the specific features of social work and the effects of certain aspects of mental health (emotional-mental-physical strain, resilience) are taken into account as well. In this paper, the preliminary results from this innovative methodological mix are presented, with the aim of highlighting new opportunities and dimensions in the research on social work. A gap in existing research is aimed to be filled both on a methodological and empirical level, and the Hungarian domestic findings can create a feasible and relevant framework for a further international investigation and cross-cultural comparative analysis. Said results can contribute to the foundation of organizational and policy-level interventions, targeted programs whereby the risk of burnout and the rate of career abandonment can be reduced. Exploring different aspects of resilience and mapping personality strengths can be a starting point for stress-management, motivation-building, and personality-development training for social professionals.

Keywords: burnout, mixed methods, netnography, professional mobility, social work

Procedia PDF Downloads 140
2252 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 273
2251 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 460
2250 Alternative Dispute Resolution Procedures for International Conflicts about Industrial Design

Authors: Moreno Liso Lourdes

Abstract:

The industrial design protects the appearance of part or all of a product resulting from the features of, in particular, the lines, contours, colors, shape, texture or materials of the product itself or its ornamentation. The industrial property offers a different answer depending on the characteristics of the shape object of protection possible, including the trademark and industrial design. There are certain cases where the trademark right invalidate the exclusive right of the industrial design. This can occur in the following situations: 1st) collected as a sign design and trademarked; and 2nd) you want to trademark and protected as a form design (either registered or unregistered). You can either get a trade mark or design right in the same sign or form, provided it meets the legal definition of brand and design and meets the requirements imposed for the protection of each of them, even able to produce an overlap of protection. However, this double protection does not have many advantages. It is, therefore, necessary to choose the best form of legal protection according to the most adequate ratios. The diversity of rights that can use the creator of an industrial design to protect your job requires you to make a proper selection to prevent others, especially their competitors, taking advantage of the exclusivity that guarantees the law. It is necessary to choose between defending the interests of the parties through a judicial or extrajudicial procedure when the conflict arises. In this paper, we opted for the defense through mediation.

Keywords: industrial design, ADR, Law, EUIPO

Procedia PDF Downloads 239
2249 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 350
2248 SA-SPKC: Secure and Efficient Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography

Authors: Merad Boudia Omar Rafik, Feham Mohammed

Abstract:

Data aggregation in wireless sensor networks (WSNs) provides a great reduction of energy consumption. The limited resources of sensor nodes make the choice of an encryption algorithm very important for providing security for data aggregation. Asymmetric cryptography involves large ciphertexts and heavy computations but solves, on the other hand, the problem of key distribution of symmetric one. The latter provides smaller ciphertexts and speed computations. Also, the recent researches have shown that achieving the end-to-end confidentiality and the end-to-end integrity at the same is a challenging task. In this paper, we propose (SA-SPKC), a novel security protocol which addresses both security services for WSNs, and where only the base station can verify the individual data and identify the malicious node. Our scheme is based on stateful public key encryption (StPKE). The latter combines the best features of both kinds of encryption along with state in order to reduce the computation overhead. Our analysis

Keywords: secure data aggregation, wireless sensor networks, elliptic curve cryptography, homomorphic encryption

Procedia PDF Downloads 296
2247 Integrated Models of Reading Comprehension: Understanding to Impact Teaching—The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aid teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role

Procedia PDF Downloads 96
2246 Post-Exercise Recovery Tracking Based on Electrocardiography-Derived Features

Authors: Pavel Bulai, Taras Pitlik, Tatsiana Kulahava, Timofei Lipski

Abstract:

The method of Electrocardiography (ECG) interpretation for post-exercise recovery tracking was developed. Metabolic indices (aerobic and anaerobic) were designed using ECG-derived features. This study reports the associations between aerobic and anaerobic indices and classical parameters of the person’s physiological state, including blood biochemistry, glycogen concentration and VO2max changes. During the study 9 participants, healthy, physically active medium trained men and women, which trained 2-4 times per week for at least 9 weeks, fulfilled (i) ECG monitoring using Apple Watch Series 4 (AWS4); (ii) blood biochemical analysis; (iii) maximal oxygen consumption (VO2max) test, (iv) bioimpedance analysis (BIA). ECG signals from a single-lead wrist-wearable device were processed with detection of QRS-complex. Aerobic index (AI) was derived as the normalized slope of QR segment. Anaerobic index (ANI) was derived as the normalized slope of SJ segment. Biochemical parameters, glycogen content and VO2max were evaluated eight times within 3-60 hours after training. ECGs were recorded 5 times per day, plus before and after training, cycloergometry and BIA. The negative correlation between AI and blood markers of the muscles functional status including creatine phosphokinase (r=-0.238, p < 0.008), aspartate aminotransferase (r=-0.249, p < 0.004) and uric acid (r = -0.293, p<0.004) were observed. ANI was also correlated with creatine phosphokinase (r= -0.265, p < 0.003), aspartate aminotransferase (r = -0.292, p < 0.001), lactate dehydrogenase (LDH) (r = -0.190, p < 0.050). So, when the level of muscular enzymes increases during post-exercise fatigue, AI and ANI decrease. During recovery, the level of metabolites is restored, and metabolic indices rising is registered. It can be concluded that AI and ANI adequately reflect the physiology of the muscles during recovery. One of the markers of an athlete’s physiological state is the ratio between testosterone and cortisol (TCR). TCR provides a relative indication of anabolic-catabolic balance and is considered to be more sensitive to training stress than measuring testosterone and cortisol separately. AI shows a strong negative correlation with TCR (r=-0.437, p < 0.001) and correctly represents post-exercise physiology. In order to reveal the relation between the ECG-derived metabolic indices and the state of the cardiorespiratory system, direct measurements of VO2max were carried out at various time points after training sessions. The negative correlation between AI and VO2max (r = -0.342, p < 0.001) was obtained. These data testifying VO2max rising during fatigue are controversial. However, some studies have revealed increased stroke volume after training, that agrees with findings. It is important to note that post-exercise increase in VO2max does not mean an athlete’s readiness for the next training session, because the recovery of the cardiovascular system occurs over a substantially longer period. Negative correlations registered for ANI with glycogen (r = -0.303, p < 0.001), albumin (r = -0.205, p < 0.021) and creatinine (r = -0.268, p < 0.002) reflect the dehydration status of participants after training. Correlations between designed metabolic indices and physiological parameters revealed in this study can be considered as the sufficient evidence to use these indices for assessing the state of person’s aerobic and anaerobic metabolic systems after training during fatigue, recovery and supercompensation.

Keywords: aerobic index, anaerobic index, electrocardiography, supercompensation

Procedia PDF Downloads 114
2245 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks

Authors: Anusha M., V. Srikanth

Abstract:

Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.

Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios

Procedia PDF Downloads 560
2244 The Review for Repair of Masonry Structures Using the Crack Stitching Technique

Authors: Sandile Daniel Ngidi

Abstract:

Masonry structures often crack due to different factors, which include differential movement of structures, thermal expansion, and seismic waves. Retrofitting is introduced to ensure that these cracks do not expand to a point of making the wall fail. Crack stitching is one of many repairing methods used to repair cracked masonry walls. It is done by stitching helical stainless steel reinforcement bars to reconnect and stabilize the wall. The basic element of this reinforcing system is the mechanical interlink between the helical stainless-steel bar and the grout, which makes it such a flexible and well-known masonry repair system. The objective of this review was to use previous experimental work done by different authors to check the efficiency and effectiveness of using the crack stitching technique to repair and stabilize masonry walls. The technique was found to be effective to rejuvenate the strength of a masonry structure to be stronger than initial strength. Different factors were investigated, which include economic features, sustainability, buildability, and suitability of this technique for application in developing communities.

Keywords: brickforce, crack-stitching, masonry concrete, reinforcement, wall panels

Procedia PDF Downloads 175
2243 Adapting Strategies of Subaltern Counterpublics under Coronavirus-Related Restrictions

Authors: Alisa Sheppental

Abstract:

The focus of this paper is the impact of coronavirus-related restrictions on the legitimacy and efficacy of subaltern counter publics and political resistance. Both difficulties and alterations of strategies needed to be considered by modern political movements within the counter-public sphere will be illustrated based on recent examples of protests in Hong Kong, Thailand, Belarus, Poland, and France. The dynamics of the modern globalized world have previously required a high level of adaptability, which resulted in a number of new features of modern political resistance in contrast with previous decades, including digitalization of protests and higher involvement of previously fewer active citizens (women, elderly, people with disabilities, etc.) However, a global pandemic situation, along with massive restrictions of daily lives, provide new input for both theoretical and empirical analysis. The following paper represents an attempt to summarize coping and adapting strategies of subaltern counter publics and activist groups under coronavirus-related restrictions.

Keywords: citizenship, political activism, subaltern counterpublics, discourse ethics

Procedia PDF Downloads 130
2242 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant

Procedia PDF Downloads 261
2241 Adjuvant Effect and Mineral Addition in Aggressive Environments on the Sustainability of Using Local Materials Concretes

Authors: M. Belouadah, S. Rahmouni, N. Teballe

Abstract:

The durability of concrete is not one of its features, but its response to service loads and environmental conditions. Thus, the durability of concrete depends on a variety of material characteristics, but also the aggressiveness of the environment. Much durability problems encountered in tropical regions (region M'sila) due to the presence of chlorides and sulfates (in the ground or in the aggregate) with the additional aggravation of the effect of hot weather and arid. This lack of sustainability has a direct influence on the structure of the building and can lead to the complete deterioration of many buildings. The characteristics of the nature of fillers are evaluated based on the degree of aggressiveness of the environment considering as a means of characterization: mechanical strength, porosity. Specimens will be exposed to different storage media chemically aggressive drinking water, salts and sulfates (sodium chloride, MgSO4), solutions are not renewed or PH control solutions. The parameters taken into account are: age, the nature and degree of aggressiveness of the environment conservation, the incorporation of adjuvant type superplasticizer dosage and mineral additives.

Keywords: ordinary concretes, marble powder fillers, adjuvant, strength

Procedia PDF Downloads 272
2240 Multi-Spectral Medical Images Enhancement Using a Weber’s law

Authors: Muna F. Al-Sammaraie

Abstract:

The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.

Keywords: image enhancement, multi-spectral, RGB, histogram

Procedia PDF Downloads 326
2239 Identification of CLV for Online Shoppers Using RFM Matrix: A Case Based on Features of B2C Architecture

Authors: Riktesh Srivastava

Abstract:

Online Shopping have established an astonishing evolution in the last few years. And it is now apparent that B2C architecture is becoming progressively imperative channel for even traditional brick and mortar type traders as well. In this completion knowing customers and predicting behavior are extremely important. More important, when any customer logs onto the B2C architecture, the traces of their buying patterns can be stored and used for future predictions. Such a prediction is called Customer Lifetime Value (CLV). Earlier, we used Net Present Value to do so, however, it ignores two important aspects of B2C architecture, “market risks” and “big amount of customer data”. Now, we use RFM- Recency, Frequency and Monetary Value to estimate the CLV, and as the term exemplifies, market risks, is well sheltered. Big Data Analysis is also roofed in RFM, which gives real exploration of the Big Data and lead to a better estimation for future cash flow from customers. In the present paper, 6 factors (collected from varied sources) are used to determine as to what attracts the customers to the B2C architecture. For these 6 factors, RFM is computed for 3 years (2013, 2014 and 2015) respectively. CLV and Revenue are the two parameters defined using RFM analysis, which gives the clear picture of the future predictions.

Keywords: CLV, RFM, revenue, recency, frequency, monetary value

Procedia PDF Downloads 219
2238 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 139
2237 New Quinazoline Derivative Induce Cytotoxic Effect against Mcf-7 Human Breast Cancer Cell

Authors: Maryam Zahedi Fard, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

New quinazoline schiff base 3-(5-bromo-2-hydroxy-3-methoxybenzylideneamino)-2-(5-bromo-2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one was investigated for anticancer activity against MCF-7 human breast cancer cell line with involved mechanism of apoptosis. The compound demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41 ± 0.34, after 72 hours of treatment. Morphological apoptotic features in treated MCF-7 cells were observed by AO/PI staining. Furthermore, treated MCF-7 cells subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity test demonstrated the nontoxic nature of the compound in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potent candidate for further in vivo and clinical breast cancer studies.

Keywords: antiproliferative effect, MCF-7 human breast cancer cell line, apoptosis, caspases

Procedia PDF Downloads 530
2236 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 92
2235 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution

Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim

Abstract:

Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.

Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion

Procedia PDF Downloads 656
2234 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures

Authors: José Luis Carrillo-Medina, Roberto Latorre

Abstract:

Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.

Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network

Procedia PDF Downloads 491
2233 Comparative Analysis of Automation Testing Tools

Authors: Amit Bhanushali

Abstract:

In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.

Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository

Procedia PDF Downloads 96
2232 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 397
2231 Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction.

Keywords: porous pipe, reactive viscous fluid, transient natural-convective flow, analytical solution

Procedia PDF Downloads 295
2230 Library on the Cloud: Universalizing Libraries Based on Virtual Space

Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan

Abstract:

Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.

Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access

Procedia PDF Downloads 658
2229 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 335
2228 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia PDF Downloads 178
2227 Developing Logistics Indices for Turkey as an an Indicator of Economic Activity

Authors: Gizem İntepe, Eti Mizrahi

Abstract:

Investment and financing decisions are influenced by various economic features. Detailed analysis should be conducted in order to make decisions not only by companies but also by governments. Such analysis can be conducted either at the company level or on a sectoral basis to reduce risks and to maximize profits. Sectoral disaggregation caused by seasonality effects, subventions, data advantages or disadvantages may appear in sectors behaving parallel to BIST (Borsa Istanbul stock exchange) Index. Proposed logistic indices could serve market needs as a decision parameter in sectoral basis and also helps forecasting activities in import export volume changes. Also it is an indicator of logistic activity, which is also a sign of economic mobility at the national level. Publicly available data from “Ministry of Transport, Maritime Affairs and Communications” and “Turkish Statistical Institute” is utilized to obtain five logistics indices namely as; exLogistic, imLogistic, fLogistic, dLogistic and cLogistic index. Then, efficiency and reliability of these indices are tested.

Keywords: economic activity, export trade data, import trade data, logistics indices

Procedia PDF Downloads 335
2226 Rethinking News Aggregation to Achieve Depolarization

Authors: Kushagra Khandelwal, Chinmay Anand, Sharmistha Banerjee

Abstract:

This paper presents an approach to news aggregation that is aimed at solving the issues centered on depolarization and manipulation of news information and stories. Largest democracies across the globe face numerous issues related to news democratization. With the advancements in technology and increasing outreach, web has become an important information source which is inclusive of news. Research was focused on the current millennial population consisting of modern day internet users. The study involved literature review, an online survey, an expert interview with a journalist and a focus group discussion with the user groups. The study was aimed at investigating problems associated with the current news system from both the consumer as well as distributor point of view. The research findings helped in producing five key potential opportunity areas which were explored for design intervention. Upon ideation, we identified five design features which include opinion aggregation. Categorized opinions, news tracking, online discussion and ability to take actions that support news democratization.

Keywords: citizen journalism, democratization, depolarized news, napsterization, news aggregation, opinions

Procedia PDF Downloads 216
2225 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition

Authors: L. Hamsaveni, Navya Prakash, Suresha

Abstract:

Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.

Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format

Procedia PDF Downloads 375
2224 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect

Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk

Abstract:

This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.

Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect

Procedia PDF Downloads 294