Search results for: λ-levelwise statistical convergence
2973 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions
Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini
Abstract:
This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing
Procedia PDF Downloads 1462972 The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704
Authors: Elham Bagherzadeh, Mohammad Fadaee, Rouhollah Keykhosravi
Abstract:
In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield.Keywords: corn, nitrogen, comparison, biological yield
Procedia PDF Downloads 3582971 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting
Authors: A. Karimzad Ghavidel, M. Zadshakouyan
Abstract:
Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.Keywords: dimensional accuracy, PMMA, CNTs, laser cutting
Procedia PDF Downloads 3072970 Factors Affecting the Critical Understanding of the Strategies Which Children Use to Motivate Parents in the Family Buying Process: Case of British Bangladeshi Children in the UK
Authors: Salma Akter, Mohammad M. Haque, Lawrence Akwetey
Abstract:
An empirical research design will analyze different factors/predictors children use to influence their parents in the family buying decision process in the unexplored area of British Bangladeshi children in the United Kingdom. The proposed conceptual model of factors- buying decision making process will be tested by the Structure Equation Model. A structured Questionnaire and secondary sources will employ to collect data and analyse and measure the validity by Statistical tools (SPSS) and Microsoft Excel. The Contemporary research aims to use the deductive approach developing the research questions and testing the hypothesis to identify the impact of different strategies British Bangladeshi children used to influence their parents in the family buying decision which was overlooked in the previous research.Keywords: British Bangladeshi children, buying decision process, children influence, influential factors
Procedia PDF Downloads 2692969 Marketing and Pharmaceutical Analysis of Medical Cosmetics in Bulgaria and Japan
Authors: V. Petkova, V. Valchanova, D. Grekova, K. Andreevska, S. T. Geurguiev, V. Madgarov, D. Grekov
Abstract:
Introduction: Production, distribution and sale of cosmetics is a global industry, which played a key role in the European Union (EU), the US and Japan. A major participant EU whose market cosmetics is greater than in the US and 2 times greater than that in Japan. The output value of the cosmetics industry in the EU is estimated at about € 35 billion in 2001. Nearly 5 billion cosmetic products (number of packages) are sold annually in the EU, and the main markets are France, Germany, Italy, Spain and the UK. The aim of the study is legal and marketing analysis of cosmetic products dispensed in a pharmacy. Materials and methodology: Historical legislative analysis - the method is applied in the analysis of changes in the legislative regulation of the activities of cosmetic products in Japan and Bulgaria Comparative legislative analysis - the method is applied when comparing the legislative requirements for cosmetic products in the already mentioned countries. Both methods are applied to the following regulations: 1) Japanese Pharmaceuticals Affairs Law, Tokyo, Japan, Ministry of Health, Labour and Welfare; 2) Law on Medicinal Products for Human Use; effective from 3.01.2014. Results: The legislative framework for cosmetic products in Bulgaria and Japan is close and generally includes general guidelines: Definition of a medicinal product; Categorization of drugs (with differences in sub-categories); Pre-registration and marketing approval of the competent authorities; Compulsory compliance with gmp (unlike cosmetics); Regulatory focus on product quality, efficacy and safety; Obligations for labeling of such products; Created systems Pharmacovigilance and commitment of all parties - industry and health professionals; The main similarities in the regulation of products classified as cosmetics are in the following segments: Full producer responsibility for product safety; Surveillance of market regulatory authorities; No need for pre-registration or pre-marketing approval (a basic requirement for notification); Without restrictions on sales channels; GMP manuals for cosmetics; Regulatory focus on product safety (than over efficiency); General requirements in labeling: The main differences in the regulation of products classified as cosmetics are in the following segments: Details in the regulation of cosmetic products; Future convergence of regulatory frameworks can contribute to the removal of barriers to trade, to encourage innovation, while simultaneously ensuring a high level of protection of consumer safety.Keywords: cosmetics, legislation, comparative analysis, Bulgaria, Japan
Procedia PDF Downloads 5922968 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 482967 Adsorption of Xylene Cyanol FF onto Activated Carbon from Brachystegia Eurycoma Seed Hulls: Determination of the Optimal Conditions by Statistical Design of Experiments
Authors: F. G Okibe, C. E Gimba, V. O Ajibola, I. G Ndukwe, E. D. Paul
Abstract:
A full factorial experimental design technique at two levels and four factors (24) was used to optimize the adsorption at 615 nm of Xylene Cyanol ff in aqueous solutions onto activated carbon prepared from brachystegia eurycoma seed hulls by chemical carbonization method. The effect of pH (3 and 5), initial dye concentration (20 and 60 mg/l), adsorbent dosage (0.01 and 0.05 g), and contact time (30 and 60 min) on removal efficiency of the adsorbent for the dye were investigated at 298K. From the analysis of variance, response surface and cube plot, adsorbent dosage was observed to be the most significant factor affecting the adsorption process. However, from the interaction between the variables studied, the optimum removal efficiency was 96.80 % achieved with adsorbent dosage of 0.05 g, contact time 45 minutes, pH 3, and initial dye concentration 60 mg/l.Keywords: factorial experimental design, adsorption, optimization, brachystegia eurycoma, xylene cyanol ff
Procedia PDF Downloads 4002966 Maintaining Biodiversity Through Environmental Conservation Awareness Program in Nigeria School Sectors
Authors: Oluwasegun A. Oke, Mayowa A. Abolaji, Oluwaseun A. Adefila
Abstract:
Environmental problems have become a priority on the world political agenda for the last two decades and this is inevitably linked with the general degradation of our environment which calls for ultimate attention. Therefore, this study searched for better and more involving methods of imparting environmental knowledge to average learner with the view of creating awareness, increasing knowledge as well as changing their attitude positively towards conservation of the environment. The study also investigated the effectiveness of conservation club in creating awareness (among students) about environmental conservation. About 240 Students were randomly selected for data collection using validated instruments (questionnaires). T-test statistics, chi-square and simple percentage were the major statistical tools employed in data analysis. This study revealed that environmental conservation club plays a vital role in creating awareness as well as promoting students understanding of environmental issues to promote positive attitude towards natural environment.Keywords: environmental conservation, biodiversity, awareness program, environmental disasters
Procedia PDF Downloads 2882965 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 872964 Influence of Transformation Leadership Style on Employee Engagement among Generation Y
Authors: Z. D. Mansor, C. P. Mun, B. S. Nurul Farhana, Wan Aisyah Nasuha Wan Mohamed Tarmizi
Abstract:
The aim of this research is to determine the influence of transformation leadership style on employee engagement among Generation Y. The growing of Generation Y employees in Malaysia has raised concerns about how to engage and motivate this cohort. Transformation Leadership style is one of the key factors to increase employee engagement levels in the organization. This study has proven to be important for the researchers and the organization to properly understand the concept of employee engagement, transformation leadership style and their relationship. The samples in this study included 221 respondents of Generation Y who are currently working in Selangor and Klang Valley area in Malaysia. The data were collected using questionnaires and analyzed by using Statistical Package for Social Science (SPSS). The results show that there is a significant relationship between the dimension of intellectual stimulation, inspiration motivation and individual consideration on employee engagement. In contrast, the results have revealed that there is no significant relationship between idealized influences of a leader on employee engagement among Generation Y.Keywords: employee engagement, transformational leadership styles, gen Y, survey
Procedia PDF Downloads 3442963 Dynamical Heterogeneity and Aging in Turbulence with a Nambu-Goldstone Mode
Authors: Fahrudin Nugroho, Halim Hamadi, Yusril Yusuf, Pekik Nurwantoro, Ari Setiawan, Yoshiki Hidaka
Abstract:
We investigate the Nikolaevskiy equation numerically using exponential time differencing method and pseudo-spectral method. This equation develops a long-wavelength modulation that behaves as a Nambu–Goldstone mode, and short-wavelength instability and exhibit turbulence. Using the autocorrelation analysis, the statistical properties of the turbulence governed by the equation are investigated. The autocorrelation then has been fitted with The Kohlrausch– Williams–Watts (KWW) expression. By varying the control parameter, we show a transition from compressed to stretched exponential for the auto-correlation function of Nikolaevskiy turbulence. The compressed exponential is an indicator of the existence of dynamical heterogeneity while the stretched indicates aging process. Thereby, we revealed the existence of dynamical heterogeneity and aging in the turbulence governed by Nikolaevskiy equation.Keywords: compressed exponential, dynamical heterogeneity, Nikolaevskiy equation, stretched exponential, turbulence
Procedia PDF Downloads 4362962 Evaluation of Broiler Parent Breeds under Libyan Conditions
Authors: Salem A. Abdalla Bozrayda, Abulgasem M. Hubara
Abstract:
The use of commercial poultry breeds in Libya may result in large economic losses because genotypes selected in temperate climates may respond differently to other climate conditions and management. Therefore three commercial breeds (Hypeco, Avian, and Shaver) were evaluated in two regions. The data were obtained from weekly records of three parental flocks for each breed at Ghout El-sultan and Tawargha region. Feed Hen Housed (FHH), Hen Housed Egg Production (HHEP) Mortility % were the studied traits. Statistical model include location, year, month, age and breed. Hypeco produced more HHEP 68.6 with Less FHH 22.9 kg but with higher mortility 8.5 % than Avian and shaver breeds. The breeds exhibited different responses to the different months in Libya. In conclusion, the differences, which exhibited between the breeds in traits studied, indicate that genotype x environment must be considered when select breed to perform under Libyan conditions.Keywords: hypeco avian shaver, feed hen housed, hen housed egg production, mortility, Libya
Procedia PDF Downloads 2892961 Developing University EFL Students’ Communicative Competence by Using Communicative Approach
Authors: Mutwakel Abdalla Ali Garalzain
Abstract:
The aim of this study is to develop university EFL students’ communicative competence. The descriptive, analytical method was used in this study. To collect the data, the researcher designed two questionnaires, one for university EFL students and the other for English language teachers. The respondents of the study were eighty-eight; 76 university EFL students, and 12 English language teachers. The data obtained were analyzed by using statistical package for social science (SPSS). The findings of the study have revealed that most of the university EFL students are unable to express their ideas properly, although they have an abundance of vocabulary. The findings of the study have also shown that most of the university EFL students have positive attitudes towards communicative competence. The results of the study also identified the best strategies that can be used to enhance university EFL students’ communicative competence in English language teaching. The study recommends that English language textbooks should be compatible with the requirements of the student-centered approach. It also recommends that English language teachers should adopt the communicative approach’s strategies in the EFL classroom.Keywords: applied linguistics, communicative competence , English language teaching, university EFL students
Procedia PDF Downloads 1982960 The Perspective of Using Maiden Name: A Sample of Konya-Turkey
Authors: Manar Aslan, Ayfer Karaaslan
Abstract:
Purpose: The aim of this study was to determine the attitude towards the use of the maiden name of the Turkish people. Methods: For the study group who lives in the center of Konya/Turkey and people aged 16-65 years, as the sample identified 1,000 people with simple random between the months of February to May 2013. The survey created by the researchers, for investigating the perception of using the maiden name of the people of Konya consists of 25 questions with demographic characteristics. For statistical analysis of the obtained data made using SPSS 20, chi-square test and one-way analysis of variance methods of frequency, average, were evaluated as percentage distribution. Results: The traditional view of Konya increasing age increases, decreases the desire to use her maiden name. So look favorably than younger generations to use maiden name. In parallel with the level of educational levels are increasing utilization rates maiden name. Thus, individuals with higher levels of education are more positive look at the use of her maiden name. Looking at the marital status; compared to individuals with a single against the use of her maiden name of individuals who are married are more negative attitude.Keywords: Maiden name, public viewpoint, utilization, women
Procedia PDF Downloads 2962959 Solar Power Forecasting for the Bidding Zones of the Italian Electricity Market with an Analog Ensemble Approach
Authors: Elena Collino, Dario A. Ronzio, Goffredo Decimi, Maurizio Riva
Abstract:
The rapid increase of renewable energy in Italy is led by wind and solar installations. The 2017 Italian energy strategy foresees a further development of these sustainable technologies, especially solar. This fact has resulted in new opportunities, challenges, and different problems to deal with. The growth of renewables allows to meet the European requirements regarding energy and environmental policy, but these types of sources are difficult to manage because they are intermittent and non-programmable. Operationally, these characteristics can lead to instability on the voltage profile and increasing uncertainty on energy reserve scheduling. The increasing renewable production must be considered with more and more attention especially by the Transmission System Operator (TSO). The TSO, in fact, every day provides orders on energy dispatch, once the market outcome has been determined, on extended areas, defined mainly on the basis of power transmission limitations. In Italy, six market zone are defined: Northern-Italy, Central-Northern Italy, Central-Southern Italy, Southern Italy, Sardinia, and Sicily. An accurate hourly renewable power forecasting for the day-ahead on these extended areas brings an improvement both in terms of dispatching and reserve management. In this study, an operational forecasting tool of the hourly solar output for the six Italian market zones is presented, and the performance is analysed. The implementation is carried out by means of a numerical weather prediction model, coupled with a statistical post-processing in order to derive the power forecast on the basis of the meteorological projection. The weather forecast is obtained from the limited area model RAMS on the Italian territory, initialized with IFS-ECMWF boundary conditions. The post-processing calculates the solar power production with the Analog Ensemble technique (AN). This statistical approach forecasts the production using a probability distribution of the measured production registered in the past when the weather scenario looked very similar to the forecasted one. The similarity is evaluated for the components of the solar radiation: global (GHI), diffuse (DIF) and direct normal (DNI) irradiation, together with the corresponding azimuth and zenith solar angles. These are, in fact, the main factors that affect the solar production. Considering that the AN performance is strictly related to the length and quality of the historical data a training period of more than one year has been used. The training set is made by historical Numerical Weather Prediction (NWP) forecasts at 12 UTC for the GHI, DIF and DNI variables over the Italian territory together with corresponding hourly measured production for each of the six zones. The AN technique makes it possible to estimate the aggregate solar production in the area, without information about the technologic characteristics of the all solar parks present in each area. Besides, this information is often only partially available. Every day, the hourly solar power forecast for the six Italian market zones is made publicly available through a website.Keywords: analog ensemble, electricity market, PV forecast, solar energy
Procedia PDF Downloads 1582958 Earthquakes' Magnitude and Density Controls by Mechanical Stratigraphy in the Zagros, Iran
Authors: Asaad Pireh
Abstract:
The Zagros fold and thrust belt is one of the most active seismic zones of Iran where hosts many people and considerable oil and gas resources. The Zagros fold and thrust belt, based on its stratigraphy has been divided into three provinces. Mechanical stratigraphy of these provinces is different together. Statistical analyses all of earthquakes which has happened in the Zagros fold and thrust belt from 1964 up to December 2014, shows that strong earthquakes have occurred within the southeastern part of these subdivisions which has a smaller ratio of incompetent to competent thickness and in the northwestern part of these subdivisions which has a greater ratio of incompetent to competent thickness has occurred the weakest earthquakes. The southeastern part of the Zagros has a higher seismic risk and northwestern part of these fold belt have a lower seismic risk.Keywords: earthquake, mechanical stratigraphy, seismic risk, Zagros
Procedia PDF Downloads 1452957 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application
Authors: Jeff Moussodji, Dominique Drouin
Abstract:
The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling
Procedia PDF Downloads 2092956 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator
Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj
Abstract:
This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field
Procedia PDF Downloads 4312955 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework
Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles
Procedia PDF Downloads 152954 The Relation Between Social Capital and Trust with Social Network Analysis (SNA)
Authors: Safak Baykal
Abstract:
The purpose of this study is analyzing the relationship between self leadership and social capital of people with using Social Network Analysis. In this study, two aspects of social capital will be focused: bonding, homophilous social capital (BoSC) which implies better, strong, dense or closed network ties, and bridging, heterophilous social capital (BrSC) which implies weak ties, bridging the structural holes. The other concept of the study is Trust (Tr), namely interpersonal trust, willingness to ascribe good intentions to and have confidence in the words and actions of other people. In this study, the sample group, 61 people, was selected from a private firm from the defense industry. The relation between BoSC/BrSC and Tr is shown by using Social Network Analysis (SNA) and statistical analysis with Likert type-questionnaire. The results of the analysis show the Cronbach’s alpha value is 0.73 and social capital values (BoSC/BrSC) is highly correlated with Tr values of the people.Keywords: bonding social capital, bridging social capital, trust, social network analysis (SNA)
Procedia PDF Downloads 5292953 A Simulation Model to Analyze the Impact of Virtual Responsiveness in an E-Commerce Supply Chain
Authors: T. Godwin
Abstract:
The design of a supply chain always entails the trade-off between responsiveness and efficiency. The launch of e-commerce has not only changed the way of shopping but also altered the supply chain design while trading off efficiency with responsiveness. A concept called ‘virtual responsiveness’ is introduced in the context of e-commerce supply chain. A simulation model is developed to compare actual responsiveness and virtual responsiveness to the customer in an e-commerce supply chain. The simulation is restricted to the movement of goods from the e-tailer to the customer. Customer demand follows a statistical distribution and is generated using inverse transformation technique. The two responsiveness schemes of the supply chain are compared in terms of the minimum number of inventory required at the e-tailer to fulfill the orders. Computational results show the savings achieved through virtual responsiveness. The insights gained from this study could be used to redesign e-commerce supply chain by incorporating virtual responsiveness. A part of the achieved cost savings could be passed back to the customer, thereby making the supply chain both effective and competitive.Keywords: e-commerce, simulation modeling, supply chain, virtual responsiveness
Procedia PDF Downloads 3442952 LEDs Based Indoor Positioning by Distances Derivation from Lambertian Illumination Model
Authors: Yan-Ren Chen, Jenn-Kaie Lain
Abstract:
This paper proposes a novel indoor positioning algorithm based on visible light communications, implemented by light-emitting diode fixtures. In the proposed positioning algorithm, distances between light-emitting diode fixtures and mobile terminal are derived from the assumption of ideal Lambertian optic radiation model, and Trilateration positioning method is proceeded immediately to get the coordinates of mobile terminal. The proposed positioning algorithm directly obtains distance information from the optical signal modeling, and therefore, statistical distribution of received signal strength at different positions in interior space has no need to be pre-established. Numerically, simulation results have shown that the proposed indoor positioning algorithm can provide accurate location coordinates estimation.Keywords: indoor positioning, received signal strength, trilateration, visible light communications
Procedia PDF Downloads 4112951 A Comparative Assessment Method For Map Alignment Techniques
Authors: Rema Daher, Theodor Chakhachiro, Daniel Asmar
Abstract:
In the era of autonomous robot mapping, assessing the goodness of the generated maps is important, and is usually performed by aligning them to ground truth. Map alignment is difficult for two reasons: first, the query maps can be significantly distorted from ground truth, and second, establishing what constitutes ground truth for different settings is challenging. Most map alignment techniques to this date have addressed the first problem, while paying too little importance to the second. In this paper, we propose a benchmark dataset, which consists of synthetically transformed maps with their corresponding displacement fields. Furthermore, we propose a new system for comparison, where the displacement field of any map alignment technique can be computed and compared to the ground truth using statistical measures. The local information in displacement fields renders the evaluation system applicable to any alignment technique, whether it is linear or not. In our experiments, the proposed method was applied to different alignment methods from the literature, allowing for a comparative assessment between them all.Keywords: assessment methods, benchmark, image deformation, map alignment, robot mapping, robot motion
Procedia PDF Downloads 1172950 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle
Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito
Abstract:
Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks
Procedia PDF Downloads 672949 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique
Procedia PDF Downloads 722948 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 1362947 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 782946 Autism Awareness Among School Students and the Violent Reaction of the Autist Toward Society in Egypt
Authors: Naglaa Baskhroun Thabet Wasef
Abstract:
Specific education services for students with Autism remains in its early developmental stages in Egypt. In spite of many more children with autism are attending schools since The Egyptian government introduced the Education Provision for Students with Disabilities Act in 2010, the services students with autism and their families receive are generally not enough. This pointed study used Attitude and Reaction to Teach Students with Autism Scale to investigate 50 primary school teachers’ attitude and reaction to teach students with autism in the general education classroom. Statistical analysis of the data found that student behavior was the most noticeable factor in building teachers’ wrong attitudes students with autism. The minority of teachers also indicated that their service education did not prepare them to meet the learning needs of children with autism in special, those who are non-vocal. The study is descriptive and provides direction for increasing teacher awareness for inclusivity in Egypt.Keywords: attitude, autism, teachers, sports activates, movement skills, motor skills, autism attitude
Procedia PDF Downloads 642945 Thai Primary School Teachers’ Attitude and Preparedness to Teach Students with Autism in the General Education Classroom
Authors: Sunanta Klibthong
Abstract:
Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behaviour was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.Keywords: attitude, autism, teachers, Thailand
Procedia PDF Downloads 2762944 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong
Authors: Afia Naheed, Manmohan Singh, David Lucy
Abstract:
This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method
Procedia PDF Downloads 361