Search results for: uplink throughput prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2584

Search results for: uplink throughput prediction

1024 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection

Authors: Leah Ning

Abstract:

This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.

Keywords: breast cancer detection, AI, machine learning, algorithm

Procedia PDF Downloads 89
1023 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 362
1022 The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis

Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior

Abstract:

Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyse several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.

Keywords: drying, models, jackfruit, biotechnology

Procedia PDF Downloads 378
1021 Analysis of Patient No-Shows According to Health Conditions

Authors: Sangbok Lee

Abstract:

There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.

Keywords: healthcare system, no show analysis, process improvment, statistical data analysis

Procedia PDF Downloads 232
1020 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool

Procedia PDF Downloads 263
1019 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis

Authors: Yazid Alkraimeen

Abstract:

Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.

Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses

Procedia PDF Downloads 136
1018 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
1017 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 427
1016 A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates

Authors: Charles Mota Possatti Júnior, André Schwanz de Lima, Maurício Vicente Donadon, Alfredo Rocha de Faria

Abstract:

An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes.

Keywords: delamination, global-local superposition theory, single beam element, zig-zag, interlaminar damage model

Procedia PDF Downloads 116
1015 CFD Prediction of the Round Elbow Fitting Loss Coefficient

Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli

Abstract:

Pressure loss in ductworks is an important factor to be considered in design of engineering systems such as power-plants, refineries, HVAC systems to reduce energy costs. Ductwork can be composed by straight ducts and different types of fittings (elbows, transitions, converging and diverging tees and wyes). Duct fittings are significant sources of pressure loss in fluid distribution systems. Fitting losses can be even more significant than equipment components such as coils, filters, and dampers. At the present work, a conventional 90o round elbow under turbulent incompressible airflow is studied. Mass, momentum, and k-e turbulence model equations are solved employing the finite volume method. The SIMPLE algorithm is used for the pressure-velocity coupling. In order to validate the numerical tool, the elbow pressure loss coefficient is determined using the same conditions to compare with ASHRAE database. Furthermore, the effect of Reynolds number variation on the elbow pressure loss coefficient is investigated. These results can be useful to perform better preliminary design of air distribution ductworks in air conditioning systems.

Keywords: duct fitting, pressure loss, elbow, thermodynamics

Procedia PDF Downloads 387
1014 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution

Authors: P. Zarfam, M. Mansouri Baghbaderani

Abstract:

In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.

Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution

Procedia PDF Downloads 244
1013 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 518
1012 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis

Authors: Hamd Rezaeifar, Hamid Reza Sahriari

Abstract:

Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.

Keywords: accident, data mining, neural network, GIS

Procedia PDF Downloads 45
1011 Experimentally Validated Analytical Model for Thermal Analysis of Multi-Stage Depressed Collector

Authors: Vishant Gahlaut, A Mercy Latha, Sanjay Kumar Ghosh

Abstract:

Multi-stage depressed collectors (MDC) are used as an efficiency enhancement technique in traveling wave tubes the high-energy electron beam, after its interaction with the RF signal, gets velocity sorted and collected at various depressed electrodes of the MDC. The ultimate goal is to identify an optimum thermal management scheme (cooling mechanism) that could extract the heat efficiently from the electrodes. Careful thermal analysis, incorporating the cooling mechanism is required to ensure that the maximum temperature does not exceed the safe limits. A simple analytical model for quick prediction of the thermal has been developed. The model has been developed for the worst-case un-modulated DC condition, where all the thermal power is dissipated in the last electrode (typically, fourth electrode in the case of the four-stage depressed collector). It considers the thermal contact resistances at various braze joints accounting for the practical non-uniformities. Analytical results obtained from the model have been validated with simulated and experimental results.

Keywords: multi-stage depressed collector, TWTs, thermal contact resistance, thermal management

Procedia PDF Downloads 221
1010 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 424
1009 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 435
1008 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology

Authors: I. F. Ejim, F. L. Kamen

Abstract:

Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.

Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction

Procedia PDF Downloads 334
1007 Prediction and Analysis of Human Transmembrane Transporter Proteins Based on SCM

Authors: Hui-Ling Huang, Tamara Vasylenko, Phasit Charoenkwan, Shih-Hsiang Chiu, Shinn-Ying Ho

Abstract:

The knowledge of the human transporters is still limited due to technically demanding procedure of crystallization for the structural characterization of transporters by spectroscopic methods. It is desirable to develop bioinformatics tools for effective analysis of available sequences in order to identify human transmembrane transporter proteins (HMTPs). This study proposes a scoring card method (SCM) based method for predicting HMTPs. We estimated a set of propensity scores of dipeptides to be HMTPs using SCM from the training dataset (HTS732) consisting of 366 HMTPs and 366 non-HMTPs. SCM using the estimated propensity scores of 20 amino acids and 400 dipeptides -as HMTPs, has a training accuracy of 87.63% and a test accuracy of 66.46%. The five top-ranked dipeptides include LD, NV, LI, KY, and MN with scores 996, 992, 989, 987, and 985, respectively. Five amino acids with the highest propensity scores are Ile, Phe, Met, Gly, and Leu, that hydrophobic residues are mostly highly-scored. Furthermore, obtained propensity scores were used to analyze physicochemical properties of human transporters.

Keywords: dipeptide composition, physicochemical property, human transmembrane transporter proteins, human transmembrane transporters binding propensity, scoring card method

Procedia PDF Downloads 367
1006 River Bank Erosion Studies: A Review on Investigation Approaches and Governing Factors

Authors: Azlinda Saadon

Abstract:

This paper provides detail review on river bank erosion studies with respect to their processes, methods of measurements and factors governing river bank erosion. Bank erosion processes are commonly associated with river changes initiation and development, through width adjustment and planform evolution. It consists of two main types of erosion processes; basal erosion due to fluvial hydraulic force and bank failure under the influence of gravity. Most studies had only focused on one factor rather than integrating both factors. Evidences of previous works have shown integration between both processes of fluvial hydraulic force and bank failure. Bank failure is often treated as probabilistic phenomenon without having physical characteristics and the geotechnical aspects of the bank. This review summarizes the findings of previous investigators with respect to measurement techniques and prediction rates of river bank erosion through field investigation, physical model and numerical model approaches. Factors governing river bank erosion considering physical characteristics of fluvial erosion are defined.

Keywords: river bank erosion, bank erosion, dimensional analysis, geotechnical aspects

Procedia PDF Downloads 432
1005 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 37
1004 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 230
1003 De Novo Assembly and Characterization of the Transcriptome from the Fluoroacetate Producing Plant, Dichapetalum Cymosum

Authors: Selisha A. Sooklal, Phelelani Mpangase, Shaun Aron, Karl Rumbold

Abstract:

Organically bound fluorine (C-F bond) is extremely rare in nature. Despite this, the first fluorinated secondary metabolite, fluoroacetate, was isolated from the plant Dichapetalum cymosum (commonly known as Gifblaar). However, the enzyme responsible for fluorination (fluorinase) in Gifblaar was never isolated and very little progress has been achieved in understanding this process in higher plants. Fluorinated compounds have vast applications in the pharmaceutical, agrochemical and fine chemicals industries. Consequently, an enzyme capable of catalysing a C-F bond has great potential as a biocatalyst in the industry considering that the field of fluorination is virtually synthetic. As with any biocatalyst, a range of these enzymes are required. Therefore, it is imperative to expand the exploration for novel fluorinases. This study aimed to gain molecular insights into secondary metabolite biosynthesis in Gifblaar using a high-throughput sequencing-based approach. Mechanical wounding studies were performed using Gifblaar leaf tissue in order to induce expression of the fluorinase. The transcriptome of the wounded and unwounded plant was then sequenced on the Illumina HiSeq platform. A total of 26.4 million short sequence reads were assembled into 77 845 transcripts using Trinity. Overall, 68.6 % of transcripts were annotated with gene identities using public databases (SwissProt, TrEMBL, GO, COG, Pfam, EC) with an E-value threshold of 1E-05. Sequences exhibited the greatest homology to the model plant, Arabidopsis thaliana (27 %). A total of 244 annotated transcripts were found to be differentially expressed between the wounded and unwounded plant. In addition, secondary metabolic pathways present in Gifblaar were successfully reconstructed using Pathway tools. Due to lack of genetic information for plant fluorinases, a transcript failed to be annotated as a fluorinating enzyme. Thus, a local database containing the 5 existing bacterial fluorinases was created. Fifteen transcripts having homology to partial regions of existing fluorinases were found. In efforts to obtain the full coding sequence of the Gifblaar fluorinase, primers were designed targeting the regions of homology and genome walking will be performed to amplify the unknown regions. This is the first genetic data available for Gifblaar. It has provided novel insights into the mechanisms of metabolite biosynthesis and will allow for the discovery of the first eukaryotic fluorinase.

Keywords: biocatalyst, fluorinase, gifblaar, transcriptome

Procedia PDF Downloads 273
1002 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 409
1001 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes

Procedia PDF Downloads 374
1000 Genome-Wide Mining of Potential Guide RNAs for Streptococcus pyogenes and Neisseria meningitides CRISPR-Cas Systems for Genome Engineering

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system can facilitate targeted genome editing in organisms. Dual or single guide RNA (gRNA) can program the Cas9 nuclease to cut target DNA in particular areas; thus, introducing concise mutations either via error-prone non-homologous end-joining repairing or via incorporating foreign DNAs by homologous recombination between donor DNA and target area. In spite of high demand of such promising technology, developing a well-organized procedure in order for reliable mining of potential target sites for gRNAs in large genomic data is still challenging. Hence, we aimed to perform high-throughput detection of target sites by specific PAMs for not only common Streptococcus pyogenes (SpCas9) but also for Neisseria meningitides (NmCas9) CRISPR-Cas systems. Previous research confirmed the successful application of such RNA-guided Cas9 orthologs for effective gene targeting and subsequently genome manipulation. However, Cas9 orthologs need their particular PAM sequence for DNA cleavage activity. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of the target site for the two orthogonals of Cas9 protein, we created a reliable procedure to explore possible gRNA sequences. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. Finally, a complete list of all potential gRNAs along with their locations, strands, and PAMs sequence orientation can be provided for both SpCas9 as well as another potential Cas9 ortholog (NmCas9). The artificial design of potential gRNAs in a genome of interest can accelerate functional genomic studies. Consequently, the application of such novel genome editing tool (CRISPR/Cas technology) will enhance by presenting increased versatility and efficiency.

Keywords: CRISPR/Cas9 genome editing, gRNA mining, SpCas9, NmCas9

Procedia PDF Downloads 257
999 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters

Authors: Eyhab El-Kharashi, Maher El-Dessouki

Abstract:

The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.

Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion

Procedia PDF Downloads 555
998 In vitro Estimation of Genotoxic Lesions in Peripheral Blood Lymphocytes of Rat Exposed to Organophosphate Pesticides

Authors: A. Ojha, Y. K. Gupta

Abstract:

Organophosphate (OP) pesticides are among the most widely used synthetic chemicals for controlling a wide variety of pests throughout the world. Chlorpyrifos (CPF), methyl parathion (MPT), and malathion (MLT) are among the most extensively used OP pesticides in India. DNA strand breaks and DNA-protein crosslinks (DPC) are toxic lesions associated with the mechanisms of toxicity of genotoxic compounds. In the present study, we have examined the potential of CPF, MPT, and MLT individually and in combination, to cause DNA strand breakage and DPC formation. Peripheral blood lymphocytes of rat were exposed to 1/4 and 1/10 LC50 dose of CPF, MPT, and MLT for 2, 4, 8, and 12h. The DNA strand break was measured by the comet assay and expressed as DNA damage index while DPC estimation was done by fluorescence emission. There was significantly marked increase in DNA damage and DNA-protein crosslink formation in time and dose dependent manner. It was also observed that MPT caused the highest level of DNA damage as compared to other studied OP compounds. Thus, from present study, we can conclude that studied pesticides have genotoxic potential. The pesticides mixture does not potentiate the toxicity of each other. Nonetheless, additional in vivo data are required before a definitive conclusion can be drawn regarding hazard prediction to humans.

Keywords: organophosphate, pesticides, DNA damage, DNA protein crosslink, genotoxic

Procedia PDF Downloads 355
997 The Role of Vocabulary in Reading Comprehension

Authors: Engku Haliza Engku Ibrahim, Isarji Sarudin, Ainon Jariah Muhamad

Abstract:

It is generally agreed that many factors contribute to one’s reading comprehension and there is consensus that vocabulary size one of the main factors. This study explores the relationship between second language learners’ vocabulary size and their reading comprehension scores. 130 Malay pre-university students of a public university participated in this study. They were students of an intensive English language programme doing preparatory English courses to pursue bachelors degree in English. A quantitative research method was employed based on the Vocabulary Levels Test by Nation (1990) and the reading comprehension score of the in-house English Proficiency Test. A review of the literature indicates that a somewhat positive correlation is to be expected though findings of this study can only be explicated once the final analysis has been carried out. This is an ongoing study and it is anticipated that results of this research will be finalized in the near future. The findings will help provide beneficial implications for the prediction of reading comprehension performance. It also has implications for the teaching of vocabulary in the ESL context. A better understanding of the relationship between vocabulary size and reading comprehension scores will enhance teachers’ and students’ awareness of the importance of vocabulary acquisition in the L2 classroom.

Keywords: vocabulary size, vocabulary learning, reading comprehension, ESL

Procedia PDF Downloads 448
996 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 499
995 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 179