Search results for: thin Films
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1668

Search results for: thin Films

108 A Minimally Invasive Approach Using Bio-Miniatures Implant System for Full Arch Rehabilitation

Authors: Omid Allan

Abstract:

The advent of ultra-narrow diameter implants initially offered an alternative to wider conventional implants. However, their design limitations have restricted their applicability primarily to overdentures and cement-retained fixed prostheses, often with unpredictable long-term outcomes. The introduction of the new Miniature Implants has revolutionized the field of implant dentistry, leading to a more streamlined approach. The utilization of Miniature Implants has emerged as a promising alternative to the traditional approach that entails the traumatic sequential bone drilling procedures and the use of conventional implants for full and partial arch restorations. The innovative "BioMiniatures Implant System serves as a groundbreaking bridge connecting mini implants with standard implant systems. This system allows practitioners to harness the advantages of ultra-small implants, enabling minimally invasive insertion and facilitating the application of fixed screw-retained prostheses, which were only available to conventional wider implant systems. This approach streamlines full and partial arch rehabilitation with minimal or even no bone drilling, significantly reducing surgical risks and complications for clinicians while minimizing patient morbidity. The ultra-narrow diameter and self-advancing features of these implants eliminate the need for invasive and technically complex procedures such as bone augmentation and guided bone regeneration (GBR), particularly in cases involving thin alveolar ridges. Furthermore, the absence of a microcap between the implant and abutment eliminates the potential for micro-leakage and micro-pumping effects, effectively mitigating the risk of marginal bone loss and future peri-implantitis. The cumulative experience of restoring over 50 full and partial arch edentulous cases with this system has yielded an outstanding success rate exceeding 97%. The long-term success with a stable marginal bone level in the study firmly establishes these implants as a dependable alternative to conventional implants, especially for full arch rehabilitation cases. Full arch rehabilitation with these implants holds the promise of providing a simplified solution for edentulous patients who typically present with atrophic narrow alveolar ridges, eliminating the need for extensive GBR and bone augmentation to restore their dentition with fixed prostheses.

Keywords: mini-implant, biominiatures, miniature implants, minimally invasive dentistry, full arch rehabilitation

Procedia PDF Downloads 74
107 The Subtle Influence of Hindu Doctrines on Film Industry: A Case Study of Movie Avatar

Authors: Cemil Kutlutürk

Abstract:

Hindu culture and religious doctrines such as caste, reincarnation, yoga, nirvana have always proved a popular theme for the film industry. The analyzing of these motifs in the movies with a scientific approach enables to individuals either to comprehend the messages and deep meanings of films or to understand others’ religious beliefs systems and daily lives in a properly way. The primary aim of this study is to handle the subtle influence of Hindu doctrines on cinema industry by focusing on James Cameron’s film, Avatar and its relationship with Hindu concept of avatara by referring to original Hindu sacred texts where this doctrine is basically clarified. The Sanskrit word avatara means to come down or to descend. Although an avatara is commonly considered as an appearance of any deity on earth, the term refers the Vishnu’s descending on earth. When the movie avatar and avatara doctrine are compared, various similarities have noteworthy revealed. Firstly in the movie, Jake is chosen by Eywa to protect Pandora from evils. Similarly in the movie, avatar is born when there is a rise of jealousy and unrighteousness. The same concept is found in avatara doctrine. According to this belief whenever righteousness (dharma) wanes and unrighteousness (adharma) increases God incarnates himself as an avatara. In Hindu tradition, the ten avataras of Vishnu are the most popular. This standard list of ten avataras includes the Fish, the Tortoise, the Boar, the Man-Lion (Narasimha), the Dwarf, Parasurama, Rama, Krishna, the Buddha and Kalki. In the movie the avatar has tail, eyes, nose, ear which is similar to Narasimha (half man-half lion) avatara. On the other hand use of bow and arrow by Navis in the film, evokes us Rama avatara whose basic gun is same. Navis fly on a dragon like bird called Ikra and ride a horse-like quadruped animal. The vehicle for transformation of the avatar in the movie is also resemblance with the idea of Garuda, the great mythical bird, which is used by Vishnu in Hindu mythology. In addition, the last avatara, Kalki, will be seen on a white horse according to Puranas. The basic difference is that for Hinduism avatara means descent of a God, yet in the movie, a human being named Jake Sully, is manifested as humanoid of another planet, this is called as avatar. While in the movie the avatar manifests himself in another planet, Pandora, in Hinduism avataras descent on this world. On the other hand, in Hindu scriptures, there are many avataras and they are categorized according to their functions and attributes. These sides of avatara doctrine cannot be also seen clearly in the film. Even though there are some differences between each other, the main hypothesis of this study is that the general character of the movie is similar to avatara doctrine. In the movie instead of emphasizing on a specific avatara, qualities of different Vishnu avataras have been properly used.

Keywords: film industry, Hinduism, incarnation, James Cameron, movie avatar

Procedia PDF Downloads 401
106 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 264
105 Preparation of hydrophobic silica membranes supported on alumina hollow fibers for pervaporation applications

Authors: Ami Okabe, Daisuke Gondo, Akira Ogawa, Yasuhisa Hasegawa, Koichi Sato, Sadao Araki, Hideki Yamamoto

Abstract:

Membrane separation draws attention as the energy-saving technology. Pervaporation (PV) uses hydrophobic ceramic membranes to separate organic compounds from industrial wastewaters. PV makes it possible to separate organic compounds from azeotropic mixtures and from aqueous solutions. For the PV separation of low concentrations of organics from aqueous solutions, hydrophobic ceramic membranes are expected to have high separation performance compared with that of conventional hydrophilic membranes. Membrane separation performance is evaluated based on the pervaporation separation index (PSI), which depends on both the separation factor and the permeate flux. Ingenuity is required to increase the PSI such that the permeate flux increases without reducing the separation factor or to increase the separation factor without reducing the flux. A thin separation layer without defects and pinholes is required. In addition, it is known that the flux can be increased without reducing the separation factor by reducing the diffusion resistance of the membrane support. In a previous study, we prepared hydrophobic silica membranes by a molecular templating sol−gel method using cetyltrimethylammonium bromide (CTAB) to form pores suitable for permitting the passage of organic compounds through the membrane. We separated low-concentration organics from aqueous solutions by PV using these membranes. In the present study, hydrophobic silica membranes were prepared on a porous alumina hollow fiber support that is thinner than the previously used alumina support. Ethyl acetate (EA) is used in large industrial quantities, so it was selected as the organic substance to be separated. Hydrophobic silica membranes were prepared by dip-coating porous alumina supports with a -alumina interlayer into a silica sol containing CTAB and vinyltrimethoxysilane (VTMS) as the silica precursor. Membrane thickness increases with the lifting speed of the sol in the dip-coating process. Different thicknesses of the γ-alumina layer were prepared by dip-coating the support into a boehmite sol at different lifting speeds (0.5, 1, 3, and 5 mm s-1). Silica layers were subsequently formed by dip-coating using an immersion time of 60 s and lifting speed of 1 mm s-1. PV measurements of the EA (5 wt.%)/water system were carried out using VTMS hydrophobic silica membranes prepared on -alumina layers of different thicknesses. Water and EA flux showed substantially constant value despite of the change of the lifting speed to form the γ-alumina interlayer. All prepared hydrophobic silica membranes showed the higher PSI compared with the hydrophobic membranes using the previous alumina support of hollow fiber.

Keywords: membrane separation, pervaporation, hydrophobic, silica

Procedia PDF Downloads 404
104 Ethnobotanical Study, Phytochemical Screening, and Biological Activity of Culinary Spices Commonly Used in Ommdurman, Sudan

Authors: Randa M. T. Mohamed

Abstract:

Spices have long been used as traditional ingredients in the kitchen for seasoning, coloring, aromatic and food preservative properties. Besides, spices are equally used for therapeutic purposes. The objective of this study was to survey and document the medicinal properties of spices commonly used in the Sudanese kitchen for different food preparations. Also, extracts from reported spices were screened for the presence of secondary metabolites as well as their antioxidant and beta-lactamase inhibitory properties. This study was conducted in the Rekabbya Quartier in Omdurman, Khartoum State, Sudan. Information was collected by carrying out semi-structured interviews. All informants (30) in the present study were women. Spices were purchased from Attareen shop in Omdurman. Essential oils from spices were extracted by hydrodistillation, and ethanolic extracts by maceration. Phytochemical screening was performed by thin-layer chromatography (TLC). The antioxidant capacity of essential oils and ethanolic extracts was investigated through TLC bioautography. Beta lactamase inhibitory activity was performed by the acidimetric test. Ethnobotany study showed that a total of 16 spices were found to treat 36 ailments belonging to 10 categories. The most frequently claimed medicinal uses were for the digestive system diseases treated by 14 spices and respiratory system diseases treated by 8 spices. Gynecological problems were treated with 4 spices. Dermatological diseases were cured by 5 spices, while infections caused by tapeworms and other microbes causing dysentery were treated by 3 spices. 4 spices were used to treat bad breath, bleeding gum and toothache. Headache, eyes infection, cardiac stimulation and epilepsy were treated with one spice each. Other health problems like fatigue and loss of appetite, and low breast milk production were treated by 1, 3 and 2 spices, respectively. The majority (69%, 11/16) of spices were exported from different countries like India, China, Indonesia, Ethiopia, Egypt and Nigeria, while 31% (5/16) was cultivated in Sudan. Essential oils of all spices were rich in terpenes, while ethanolic extracts contained variable classes of secondary metabolites. Both essential oils and ethanolic extracts of all spices exerted considerable antioxidant activity. Only one extract, Syzygium aromaticum, possessed beta-lactamase inhibitory activity. In conclusion, this study could contribute to conserving information on traditional medicinal uses of spices in Sudan. Also, the results demonstrated the potential of some of these spices to exert beneficial antimicrobial and antioxidant effects. Detailed phytochemical and biological assays of these spices are recommended.

Keywords: spices, enthnobotany, antioxidant, betalactamase inhibition

Procedia PDF Downloads 30
103 Ethnobotanical Study, Phytochemical Screening and Biological Activity of Culinary Spices Commonly Used in Ommdurman, Sudan

Authors: Randa M. T. Mohamed

Abstract:

Spices have long been used as traditional ingredients in the kitchen for seasoning, coloring, aromatic and food preservative properties. Besides, spices are equally used for therapeutic purposes. The objective of this study was to survey and document the medicinal properties of spices commonly used in the Sudanese kitchen for different food preparations. Also, extracts from reported spices were screened for the presence of secondary metabolites as well as their antioxidant and beta-lactamase inhibitory properties. This study was conducted in the Rekabbya Quartier in Omdurman, Khartoum State, Sudan. Information was collected by carrying out semi-structured interviews. All informants (30) in the present study were women. Spices were purchased from Attareen shop in Omdurman. Essential oils from spices were extracted by hydrodistillation and ethanolic extracts by maceration. Phytochemical screening was performed by thin layer chromatography (TLC). The antioxidant capacity of essential oils and ethanolic extracts was investigated through TLC bioautography. Beta lactamase inhibitory activity was performed by the acidimetric test. Ethnobotany study showed that a total of 16 spices were found to treat 36 ailments belonging to 10 categories. The most frequently claimed medicinal uses were for the digestive system diseases treated by 14 spices and respiratory system diseases treated by 8 spices. Gynaecological problems were treated by 4 spices. Dermatological diseases were cured by 5 spices while infections caused by tapeworms and other microbes causing dysentery were treated by 3 spices. 4 spices were used to treat bad breath, bleeding gum and toothache. Headache, eyes infection, cardiac stimulation and epilepsy were treated by one spice each. Other health problem like fatigue and loss of appetite and low breast milk production were treated by 1, 3 and 2 spices respectively. The majority (69%, 11/16) of spices were exported from different countries like India, China, Indonesia, Ethiopia, Egypt and Nigeria while 31% (5/16) was cultivated in Sudan. Essential oils of all spices were rich in terpenes while ethanolic extracts contained variable classes of secondary metabolites. Both essential oils and ethanolic extracts of all spices exerted considerable antioxidant activity. Only one extract, Syzygium aromaticum, possessed beta lactamase inhibitory activity. In conclusion, this study could contribute in conserving information on traditional medicinal uses of spices in Sudan. Also, the results demonstrated the potential of some of these spices to exert beneficial antimicrobial and antioxidant effect. Detailed phytochemical and biological assays of these spices are recommended.

Keywords: spices, ethnobotany, phytoconstituents, antioxidant, beta lactamase inhibition

Procedia PDF Downloads 79
102 Meso-Scopic Structural Analysis of Chaura Thrust, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT) coeval of Sarahan Thrust (ST) was later considered to be part of Chaura Thrust (CT). The Main Central Thrust (MCT) delimits the southern extreme of Higher Himalaya, whereas the northern boundary defines by South Tibetan Detachment System (STDS). STDS is parallel set of north dipping extensional faults. The activation timing of MCT and STDS. MCT activated in two parts (MCT-L during 15- 0.7 Ma, and MCT-U during 25-14 Ma). Similarly, STDS triggered in two parts (STDS-L during 24-12 Ma, and STDS-U during 19-14 Ma). The activation ages for MBT and MFT. Besides, the MBT occurred during 11-9 Ma, and MFT followed as <2.5 Ma. There are two mylonitised zones (zone of S-C fabric) found under the microscope. Dynamic and bulging recrystallization and sub-grain formation was documented under the optical microscope from samples collected from these zones. The varieties of crenulated schistosity are shown in photomicrographs. In a rare and uncommon case, crenulation cleavage and sigmoid Muscovite were found together side-by-side. Recrystallized quartzo-feldspathic grains exist in between crenulation cleavages. These thin-section studies allow three possible hypotheses for such variations in crenulation cleavages. S/SE verging meso- and micro-scale box folds around Chaura might be a manifestation of some structural upliftment. Near Chaura, kink folds are visible. Prominent asymmetric shear sense indicators in augen mylonite are missing in meso-scale but dominantly present under the microscope. The main foliation became steepest (range of dip ~ 65 – 80 º) at this place. The aim of this section is to characterize the box fold and its signature in the regional geology of Himachal Himalaya. Grain Boundary Migration (GBM) associated temperature range (400–750 ºC) from microstructural studies in grain scale along Jhakri-Wangtu transect documented. Oriented samples were collected from the Jhakri-Chaura transect at a regular interval of ~ 1km for strain analysis. The Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh is documented a decade ago. The OOST in other parts of the Himalayas is represented as a line in between MCTL and MCTU. But In Himachal Pradesh area, OOST activated the MCTL as well as in between a zone located south of MCTU. The expectations for strain variation near the OOST are very obvious. But multiple sets of OOSTs may produce a zigzag pattern of strain accumulation for this area and figure out the overprinting structures for multiple sets of OOSTs.

Keywords: Chaura Thrust, out-of-sequence thrust, Main Central Thrust, Sarahan Thrust

Procedia PDF Downloads 78
101 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri, Hana Ali Alafi

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: fine migration, formation damage, kaolinite, soled bulging.

Procedia PDF Downloads 73
100 A Review of Brain Implant Device: Current Developments and Applications

Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A

Abstract:

The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.

Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson

Procedia PDF Downloads 155
99 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: pore throat, fine migration, formation damage, solids plugging, porosity loss

Procedia PDF Downloads 153
98 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation

Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu

Abstract:

Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.

Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing

Procedia PDF Downloads 161
97 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma

Authors: Rajat Dhawan, Hitendra K. Malik

Abstract:

Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.

Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness

Procedia PDF Downloads 131
96 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 256
95 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization

Authors: Cheng-Jui Li, Chien-Chou Tseng

Abstract:

This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.

Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray

Procedia PDF Downloads 284
94 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 161
93 Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India

Authors: Priyanka Mazumdar, Ananya Mukhopadhyay

Abstract:

A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds.

Keywords: turbidites, prodelta, proterozoic, Simla Basin, Bouma sequence

Procedia PDF Downloads 269
92 Bioefficacy of Ocimum sanctum on Reproductive Performance of Red Cotton Bug, Dysdercus koenigii (Heteroptera: Pyrrhocoriedae)

Authors: Kamal Kumar Gupta, Sunil Kayesth

Abstract:

Dysdercus koenigii is serious pest of cotton and other malvaceous crop. Present research work aimed at ecofriendly approach for management of pest by plant extracts. The impact of Ocimum sanctum was studied on reproductive performance of Dysdercus koenigii. The hexane extract of Ocimum leaves was prepared by ‘cold extraction method’. The newly emerged fifth instar nymphs were exposed to the extract of concentrations ranging from 0.1% to 0.00625% by ‘thin film residual method’ for a period of 24h. Reproductive fitness of the adults emerged from the treated nymphs was evaluated by assessing their courtship behaviour, oviposition behaviour, and fertility. The studies indicated that treatment of Dysdercus with the hexane extract of Ocimum altered their courtship behaviour. Consequently, the treated males exhibited less sexual activity, performed fewer mounting attempts, increased time to mate and showed decreased percent successful mating. The females often rejected courting treated male by shaking the abdomen. Similarly, the treated females in many cases remained non-receptive to the courting male. Premature termination of mating in the mating pairs prior to insemination further decreased the mating success of the treated adults. Maximum abbreviation of courtship behaviour was observed in the experimental set up where both the males and the females were treated. Only females which mate successfully were observed for study of oviposition behaviour. The treated females laid lesser number of egg batches and eggs in their life span. The eggs laid by these females were fertile indicating insemination of the female. However, percent hatchability was lesser than control. The effects of hexane extract were dose dependent. Treatment with 0.1% and 0.05% extract altered courtship behaviour. Doses of concentrations less than 0.05% did not affect courtship behaviour but altered the oviposition behaviour and fertility. Significant reduction in the fecundity and fertility was observed in the treatments at concentration as low as 0.00625%. The GCMS analysis of the extract revealed a plethora of phytochemicals including juvenile hormone mimics, and the intermediates of juvenile hormone biosynthesis. Therefore, some of these compounds individually or synergistically impair reproductive behaviour of Dysdercus. Alteration of courtship behaviour and suppression of fecundity and fertility with the help of plant extracts has wide potentials in suppression of pest population and ‘integrated pest management’.

Keywords: courtship behaviour, Dysdercus koenigii, Ocimum sanctum, oviposition behaviour

Procedia PDF Downloads 266
91 Quantification of Lawsone and Adulterants in Commercial Henna Products

Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen

Abstract:

The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.

Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone

Procedia PDF Downloads 459
90 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures

Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov

Abstract:

At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.

Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells

Procedia PDF Downloads 212
89 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 112
88 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime

Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda

Abstract:

Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.

Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels

Procedia PDF Downloads 122
87 Food Insecurity Among Afghan Women Refugees in Pakistan

Authors: Farhana Nosheen, Maleeha Fatima

Abstract:

This study on Afghan refugee women living in Punjab, Pakistan, shows a strong relationship between poor socio-economic status and lower nutritional health status. Pakistan is one of the significant countries accepting refugees from the Afghan war. Universally, refugees are vulnerable to food security and basic life necessities. The in-hand study aimed to investigate food insecurity among afghan refugees who recently migrated to Pakistan. Purposive sampling technique was employed to collect the data from afghan women refugees settled in refugee camp settled in Capital city Islamabad, Pakistan. Data was collected through an interview tool. It revealed from data that the majority of women were underweight, about 74.7% in their reproductive years, which is an alarming situation for the forthcoming children and families. It is also shown that There’s a strong impact of their income level, education, dietary habits and food insecurity on their overall health status. It can also be observed in their Body Mass Index and in their physical appearance; they also show extremely poor levels of hemoglobin which is directly indicated anemic condition, especially iron deficiency anemia among the young Afghan refugee women. The illiteracy rate is about 93.33% among the selected participants as well as a majority of this population has 10-12 family size in comparison with their income level of about 10,000-15,000 Pakistani rupees per month, which can hardly meet their daily food expenditure. Adequate food is rarely accessible to young girls and women due to fewer national and international food aids program available in Pakistan. The majority have pale yellowish skin color (due to low iron content) along with clear white eyes (low hemoglobin level), thin hairs (protein deficiency) and spoon-shaped nails (a direct indicator of low iron level). Data showed a significant relation between appetite and BMI as their appetite is very low, which is directly indicated in their underweight body condition. About 56.67% of the participants had Urinary Tract Infections. The main causes included personal unhygienic conditions and lack of washrooms as well as drinking water facilities in their refugee camps. It is suggested that National and international food aid programs should cater to the nutritional demands of women refugees in the world to protect them from food insecurities as well as future researchers should find out better ways of analysis and treatment plans for such kind of communities who are highly prone to nutritional deficiencies and lack of basic supplies.

Keywords: food insecurity, refugees, women, vulnerable

Procedia PDF Downloads 101
86 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening

Authors: Jaroslaw Gawryluk, Andrzej Teter

Abstract:

Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: angle column, compression, experiment, FEM

Procedia PDF Downloads 206
85 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 259
84 Cinema Reception in a Digital World: A Study of Cinema Audiences in India

Authors: Sanjay Ranade

Abstract:

Traditional film theory assumes the cinema audience in a darkened room where cinema is projected on to a white screen, and the audience suspends their sense of reality. Shifts in audiences due to changes in cultural tastes or trends have been studied for decades. In the past two decades, however, the audience, especially the youth, has shifted to digital media for the consumption of cinema. As a result, not only are audiences watching cinema on different devices, they are also consuming cinema in places and ways never imagined before. Public transport often crowded to the brim with a lot of ambient content, and a variety of workplaces have become sites for cinema viewing. Cinema is watched piecemeal and at different times of the day. Audiences use devices such as mobile phones and tablets to watch cinema. The cinema viewing experience is getting redesigned by the user. The emerging design allows the spectator to not only consume images and narratives but also produce, reproduce, and manipulate existing images and narratives, thereby participating in the process and influencing it. Spectatorship studies stress on the importance of subjectivity when dealing with the structure of the film text and the cultural and psychological implications in the engagement between the spectator and the film text. Indian cinema has been booming and contributing to global movie production significantly. In 2005 film production was 1000 films a year and doubled to 2000 by 2016. Digital technology helped push this growth in 2012. Film studies in India have had a decided Euro-American bias. The studies have chiefly analysed the content for ideological leanings or myth or as reflections of society, societal changes, or articulation of identity or presented retrospectives of directors, actors, music directors, etc. The one factor relegated to the background has been the spectator. If they have been addressed, they are treated as a collective of class or gender. India has a performative tradition going back several centuries. How Indians receive cinema is an important aspect to study with respect to film studies. This exploratory and descriptive study looked at 162 young media students studying cinema at the undergraduate and postgraduate levels. The students, speaking as many as 20 languages amongst them, were drawn from across the country’s media schools. The study looked at nine film societies registered with the Federation of Film Societies of India. A structured questionnaire was made and distributed online through media teachers for the students. The film societies were approached through the regional office of the FFSI in Mumbai. Lastly, group discussions were held in Mumbai with students and teachers of media. A group consisted of between five and twelve student participants, along with one or two teachers. All the respondents looked at themselves as spectators and shared their experiences of spectators of cinema, providing a very rich insight into Indian conditions of viewing cinema and challenges for cinema ahead.

Keywords: audience, digital, film studies, reception, reception spectatorship

Procedia PDF Downloads 130
83 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 227
82 Enhancing Institutional Roles and Managerial Instruments for Irrigation Modernization in Sudan: The Case of Gezira Scheme

Authors: Mohamed Ahmed Abdelmawla

Abstract:

Calling to achieve Millennium Development Goals (MDGs) engaged with agriculture, i.e. poverty alleviation targets, human resources involved in agricultural sectors with special emphasis on irrigation must receive wealth of practical experience and training. Increased food production, including staple food, is needed to overcome the present and future threats to food security. This should happen within a framework of sustainable management of natural resources, elimination of unsustainable methods of production and poverty reduction (i.e. axes of modernization). A didactic tool to confirm the task of wise and maximum utility is the best management and accurate measurement, as major requisites for modernization process. The key component to modernization as a warranted goal is adhering great attention to management and measurement issues via capacity building. As such, this paper stressed the issues of discharge management and measurement by Field Outlet Pipes (FOP) for selected ones within the Gezira Scheme, where randomly nine FOPs were selected as representative locations. These FOPs extended along the Gezira Main Canal at Kilo 57 areas in the South up to Kilo 194 in the North. The following steps were followed during the field data collection and measurements: For each selected FOP, a 90 v- notch thin plate weir was placed in such away that the water was directed to pass only through the notch. An optical survey level was used to measure the water head of the notch and FOP. Both calculated discharge rates as measured by the v – notch, denoted as [Qc], and the adopted discharges given by (MOIWR), denoted as [Qa], are tackled for the average of three replicated readings undertaken at each location. The study revealed that the FOP overestimates and sometimes underestimates the discharges. This is attributed to the fact that the original design specifications were not fulfilled or met at present conditions where water is allowed to flow day and night with high head fluctuation, knowing that the FOP is non modular structure, i.e. the flow depends on both levels upstream and downstream and confirmed by the results of this study. It is convenient and formative to quantify the discharge in FOP with weirs or Parshall flumes. Cropping calendar should be clearly determined and agreed upon before the beginning of the season in accordance and consistency with the Sudan Gezira Board (SGB) and Ministry of Irrigation and Water Resources. As such, the water indenting should be based on actual Crop Water Requirements (CWRs), not on rules of thumb (420 m3/feddan, irrespective of crop or time of season).

Keywords: management, measurement, MDGs, modernization

Procedia PDF Downloads 251
81 Exploring Neural Responses to Urban Spaces in Older People Using Mobile EEG

Authors: Chris Neale, Jenny Roe, Peter Aspinall, Sara Tilley, Steve Cinderby, Panos Mavros, Richard Coyne, Neil Thin, Catharine Ward Thompson

Abstract:

This research directly assesses older people’s neural activation in response to walking through a changing urban environment, as measured by electroencephalography (EEG). As the global urban population is predicted to grow, there is a need to understand the role that the urban environment may play on the health of its older inhabitants. There is a large body of evidence suggesting green space has a beneficial restorative effect, but this effect remains largely understudied in both older people and by using a neuroimaging assessment. For this study, participants aged 65 years and over were required to walk between a busy urban built environment and a green urban environment, in a counterbalanced design, wearing an Emotiv EEG headset to record real-time neural responses to place. Here we report on the outputs for these responses derived from both the proprietary Affectiv Suite software, which creates emotional parameters with a real time value assigned to them, as well as the raw EEG output focusing on alpha and beta changes, associated with changes in relaxation and attention respectively. Each walk lasted around fifteen minutes and was undertaken at the natural walking pace of the participant. The two walking environments were compared using a form of high dimensional correlated component regression (CCR) on difference data between the urban busy and urban green spaces. For the Emotiv parameters, results showed that levels of ‘engagement’ increased in the urban green space (with a subsequent decrease in the urban busy built space) whereas levels of ‘excitement’ increased in the urban busy environment (with a subsequent decrease in the urban green space). In the raw data, low beta (13 – 19 Hz) increased in the urban busy space with a subsequent decrease shown in the green space, similar to the pattern shown with the ‘excitement’ result. Alpha activity (9 – 13 Hz) shows a correlation with low beta, but not with dependent change in the regression model. This suggests that alpha is acting as a suppressor variable. These results suggest that there are neural signatures associated with the experience of urban spaces which may reflect the age of the cohort or the spatiality of the settings themselves. These are shown both in the outputs of the proprietary software as well as the raw EEG output. Built busy urban spaces appear to induce neural activity associated with vigilance and low level stress, while this effect is ameliorated in the urban green space, potentially suggesting a beneficial effect on attentional capacity in urban green space in this participant group. The interaction between low beta and alpha requires further investigation, in particular the role of alpha in this relationship.

Keywords: ageing, EEG, green space, urban space

Procedia PDF Downloads 224
80 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts

Authors: Ewelina Grabowska, Martyna Marchelek

Abstract:

Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.

Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation

Procedia PDF Downloads 222
79 Micro-Analytical Data of Au Mineralization at Atud Gold Deposit, Eastern Desert, Egypt

Authors: A. Abdelnasser, M. Kumral, B. Zoheir, P. Weihed, M. Budakoglu, L. Gumus

Abstract:

Atud gold deposits located at the central part of the Egyptian Eastern Desert of Egypt. It represents the vein-type gold mineralization at the Arabian-Nubian Shield in North Africa. Furthermore, this Au mineralization was closely associated with intense hydrothermal alteration haloes along the NW-SE brittle-ductile shear zone at the mined area. This study reports new data about the mineral chemistry of the hydrothermal and metamorphic minerals as well as the geothermobarometry of the metamorphism and determines the paragenetic interrelationship between Au-bearing sulfides and gangue minerals in Atud gold mine by using the electron microprobe analyses (EMPA). These analyses revealed that the ore minerals associated with gold mineralization are arsenopyrite, pyrite, chalcopyrite, sphalerite, pyrrhotite, tetrahedrite and gersdorffite-cobaltite. Also, the gold is highly associated with arsenopyrite and As-bearing pyrite as well as sphalerite with an average ~70 wt.% Au (+26 wt.% Ag) whereas it occurred either as disseminated grains or along microfractures of arsenopyrite and pyrite in altered wallrocks and mineralized quartz veins. Arsenopyrite occurs as individual rhombic or prismatic zoned grains disseminated in the quartz veins and wallrock and is intergrown with euhedral arsenian pyrite (with ~2 atom % As). Pyrite is As-bearing pyrite that occurs as disseminated subhedral or anhedral zoned grains replacing by chalcopyrite in some samples. Inclusions of sphalerite and pyrrhotite are common in the large pyrite grains. Secondary minerals such as sericite, calcite, chlorite and albite are disseminated either in altered wallrocks or in quartz veins. Sericite is the main secondary and alteration mineral associated with Au-bearing sulfides and calcite. Electron microprobe data of the sericite show that its muscovite component is high in all analyzed flakes (XMs= an average 0.89) and the phengite content (Mg+Fe a.p.f.u.) varies from 0.10 to 0.55 and from 0.13 to 0.29 in wallrocks and mineralized veins respectively. Carbonate occurs either as thin veinlets or disseminated grains in the mineralized quartz vein and/or the wallrocks. It has higher amount of calcite (CaCO3) and low amount of MgCO3 as well as FeCO3 in the wallrocks relative to the quartz veins. Chlorite flakes are associated with arsenopyrite and their electron probe data revealed that they are generally Fe-rich composition (FeOt 20.64–20.10 wt.%) and their composition is clinochlore either pycnochlorite or ripidolite with Al (iv) = 2.30-2.36 pfu and 2.41-2.51 pfu and with narrow range of estimated formation temperatures are (289–295°C) and (301-312°C) for pycnochlorite and ripidolite respectively. Albite is accompanied with chlorite with an Ab content is high in all analyzed samples (Ab= 95.08-99.20).

Keywords: micro-analytical data, mineral chemistry, EMPA, Atud gold deposit, Egypt

Procedia PDF Downloads 326