Search results for: statistical data analysis
41149 Capability Prediction of Machining Processes Based on Uncertainty Analysis
Authors: Hamed Afrasiab, Saeed Khodaygan
Abstract:
Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.Keywords: process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis
Procedia PDF Downloads 30641148 Implications on the Training Program for Clinical Psychologists in South Korea
Authors: Chorom Baek, Sungwon Choi
Abstract:
The purpose of this study is to analyze the supervision system, and the training and continuing education of mental health professionals in USA, UK, Australia (New Zealand), Japan, and so on, and to deduce the implications of Korean mental health service system. In order to accomplish the purpose of this study, following methodologies were adopted: review on the related literatures, statistical data, the related manuals, online materials, and previous studies concerning issues in those countries for the past five years. The training program in Korea was compared with the others’ through this literature analysis. The induced matters were divided with some parts such as training program, continuing education, educational procedure, and curriculum. Based on the analysis, discussion and implications, the conclusion and further suggestion of this study are as follows: First, Korean Clinical Psychology of Association (KCPA) should become more powerful health main training agency for quality control. Second, actual authority of health main training agency should be a grant to training centers. Third, quality control of mental health professionals should be through standardization and systemization of promotion and qualification management. Fourth, education and training about work of supervisors and unification of criteria for supervision should be held. Fifth, the training program for mental health license should be offered by graduate schools. Sixth, legitimated system to protect the right of mental health trainees is needed. Seventh, regularly continuing education after licensed should be compulsory to keep the certification. Eighth, the training program in training centers should meet KCPA requirement. If not, KCPA can cancel the certification of the centers.Keywords: clinical psychology, Korea, mental health system, training program
Procedia PDF Downloads 22541147 Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India
Authors: N. C. Ghosh, Niladri Das, Prolay Mondal, Ranajit Ghosh
Abstract:
Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks.Keywords: correlation, factor analysis, hydrological facies, hydrochemistry
Procedia PDF Downloads 21141146 Teachers’ Conception of and Perception towards the New Curriculum of Ethiopian Higher Education: A Case of Debre Birhan University
Authors: Kassahun Tilahun Dessie
Abstract:
The purpose of this study was to explore the awareness of teachers and the attitude they have to the curriculum they implement as well as to assess the actual and desired magnitude of teachers' participation in curriculum development process. It also aimed at investigating the factors that affect teachers' level of conception and perception towards the new higher education curriculum. The study was carried out in Debre Birhan University. Teachers, course coordinators, team leaders and presidents were included in the study as research subjects. Teachers were proportionally selected from each department (of the six faculties) based on available sampling technique. Accordingly, a total of 103 teachers were chosen as a subject of the study. In order to collect first hand data from the teachers, a questionnaire with four parts was developed by the researcher. To this end, scales were designed for measuring the extent of teachers' awareness and attitude. Each of the scales encompasses 11 and 17 items respectively. An open ended questionnaire was also attached for the purpose of obtaining elaborated data on the issue. Information was also obtained from interviews with presidents, team leaders and course coordinators. The data obtained were analyzed qualitatively using descriptive statistical tools. The overall results of the analysis revealed that the awareness of teachers on the curriculum was low. The meager participation of teachers in the process of curriculum development and the deficiency of trainings on the concern were major factors. Teachers' perception towards the existence and implementation of the new curriculum was also inclined to the negative, though difficult to generalize. Lack of awareness, administrators poor approach and lack of facilitating appropriate incentives as well as absence of room for evaluating the curriculum etc plays big role in endangering teachers attitude while the up to datedness of the new curriculum, involvement of teachers in the curriculum development process, the wide ranging quality of the new curriculum etc laid a better ground to boost teachers attitude towards the curriculum. This may have implication to the university in that there is a need to facilitate workshops or awareness creation trainings, to have positive and cooperative administrators, and embracing committed teachers to implement the curriculum efficiently.Keywords: conception, perception, curriculum, higher education, Ethiopia
Procedia PDF Downloads 50541145 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting
Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira
Abstract:
The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.Keywords: water splitting, bubble, electrolysis, hydrogen production
Procedia PDF Downloads 9841144 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 20441143 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product
Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu
Abstract:
The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.Keywords: aesthetics, crease line, cropped straight leg pants, knee width
Procedia PDF Downloads 18541142 Using Open Source Data and GIS Techniques to Overcome Data Deficiency and Accuracy Issues in the Construction and Validation of Transportation Network: Case of Kinshasa City
Authors: Christian Kapuku, Seung-Young Kho
Abstract:
An accurate representation of the transportation system serving the region is one of the important aspects of transportation modeling. Such representation often requires developing an abstract model of the system elements, which also requires important amount of data, surveys and time. However, in some cases such as in developing countries, data deficiencies, time and budget constraints do not always allow such accurate representation, leaving opportunities to assumptions that may negatively affect the quality of the analysis. With the emergence of Internet open source data especially in the mapping technologies as well as the advances in Geography Information System, opportunities to tackle these issues have raised. Therefore, the objective of this paper is to demonstrate such application through a practical case of the development of the transportation network for the city of Kinshasa. The GIS geo-referencing was used to construct the digitized map of Transportation Analysis Zones using available scanned images. Centroids were then dynamically placed at the center of activities using an activities density map. Next, the road network with its characteristics was built using OpenStreet data and other official road inventory data by intersecting their layers and cleaning up unnecessary links such as residential streets. The accuracy of the final network was then checked, comparing it with satellite images from Google and Bing. For the validation, the final network was exported into Emme3 to check for potential network coding issues. Results show a high accuracy between the built network and satellite images, which can mostly be attributed to the use of open source data.Keywords: geographic information system (GIS), network construction, transportation database, open source data
Procedia PDF Downloads 16641141 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 37041140 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 29041139 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques
Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari
Abstract:
Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.Keywords: data mining, counter terrorism, machine learning, SVM
Procedia PDF Downloads 40541138 Transportation Mode Choice Analysis for Accessibility of the Mehrabad International Airport by Statistical Models
Authors: Navid Mirzaei Varzeghani, Mahmoud Saffarzadeh, Ali Naderan, Amirhossein Taheri
Abstract:
Countries are progressing, and the world's busiest airports see year-on-year increases in travel demand. Passenger acceptability of an airport depends on the airport's appeals, which may include one of these routes between the city and the airport, as well as the facilities to reach them. One of the critical roles of transportation planners is to predict future transportation demand so that an integrated, multi-purpose system can be provided and diverse modes of transportation (rail, air, and land) can be delivered to a destination like an airport. In this study, 356 questionnaires were filled out in person over six days. First, the attraction of business and non-business trips was studied using data and a linear regression model. Lower travel costs, a range of ages more significant than 55, and other factors are essential for business trips. Non-business travelers, on the other hand, have prioritized using personal vehicles to get to the airport and ensuring convenient access to the airport. Business travelers are also less price-sensitive than non-business travelers regarding airport travel. Furthermore, carrying additional luggage (for example, more than one suitcase per person) undoubtedly decreases the attractiveness of public transit. Afterward, based on the manner and purpose of the trip, the locations with the highest trip generation to the airport were identified. The most famous district in Tehran was District 2, with 23 visits, while the most popular mode of transportation was an online taxi, with 12 trips from that location. Then, significant variables in separation and behavior of travel methods to access the airport were investigated for all systems. In this scenario, the most crucial factor is the time it takes to get to the airport, followed by the method's user-friendliness as a component of passenger preference. It has also been demonstrated that enhancing public transportation trip times reduces private transportation's market share, including taxicabs. Based on the responses of personal and semi-public vehicles, the desire of passengers to approach the airport via public transportation systems was explored to enhance present techniques and develop new strategies for providing the most efficient modes of transportation. Using the binary model, it was clear that business travelers and people who had already driven to the airport were the least likely to change.Keywords: multimodal transportation, demand modeling, travel behavior, statistical models
Procedia PDF Downloads 17341137 A Comparison Study and Analysis on Corporate Social Responsibility among Liner Shipping Companies
Authors: Yu-Sheng Lin, Sheng-Teng Huang
Abstract:
In recent years, the issue of corporate social responsibility has become an enthusiastic discussion and hottest issue around the world. To make the enterprises be sustainable management and sustainable development, more and more enterprises realize that fulfill its corporate social responsibility is the good choice. It is an essential, important issue that the leader needs know how to lead the staff in balance benefit, also emphasize on economic, social and environmental aspects to impact the company, then enhance the consensus. The leader needs to improve cohesion of personnel, and implement the corporate social responsibility in staff behavior, in order to show a performance in the effort of corporate social responsibility of enterprises. The previous literature mostly is committed to comparison of corporate social responsibility in the industry and service industry, regarding to literature of shipping companies were relatively rare. This paper aims to take the domestic and foreign shipping companies of corporate social responsibility reports as the data analysis, and refer to the international convention (GRI) such as association and organization of CSR standard values. Overall comparison with shipping companies of CSR reports, annual reports and other public information, and taking Taiwan shipping companies as the target, respectively, with the international conventions and the world's top ten leading shipping companies to do the comparison and analysis. Shipping companies in Taiwan are bound to the standard that set by the international convention for the first goal diligently and following step is contend with the world's top ten leading shipping companies. There are 3 ~ 5 experts to be involved in interview after the result is completed. They will indicate the superiority and inferiority then provide the opinion, recommendation in the needed action. Through this study, we can explore the importance of corporate social responsibility report for shipping companies, and also provide the clear orientation to external providers to improve corporate social responsibility. In addition, it can provide the academic research and business experts as a reference; finally, serving shipping companies to complete another contribution.Keywords: Corporate social responsibility (CSR), CSR reports, statistical methods, expert interview method
Procedia PDF Downloads 29241136 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation
Procedia PDF Downloads 12941135 Legal Regulation of Personal Information Data Transmission Risk Assessment: A Case Study of the EU’s DPIA
Authors: Cai Qianyi
Abstract:
In the midst of global digital revolution, the flow of data poses security threats that call China's existing legislative framework for protecting personal information into question. As a preliminary procedure for risk analysis and prevention, the risk assessment of personal data transmission lacks detailed guidelines for support. Existing provisions reveal unclear responsibilities for network operators and weakened rights for data subjects. Furthermore, the regulatory system's weak operability and a lack of industry self-regulation heighten data transmission hazards. This paper aims to compare the regulatory pathways for data information transmission risks between China and Europe from a legal framework and content perspective. It draws on the “Data Protection Impact Assessment Guidelines” to empower multiple stakeholders, including data processors, controllers, and subjects, while also defining obligations. In conclusion, this paper intends to solve China's digital security shortcomings by developing a more mature regulatory framework and industry self-regulation mechanisms, resulting in a win-win situation for personal data protection and the development of the digital economy.Keywords: personal information data transmission, risk assessment, DPIA, internet service provider, personal information data transimission, risk assessment
Procedia PDF Downloads 5841134 The Anti-Obesity Effects of the Aqueous and Ethanolic Leaf Extracts of Blumea balsamifera on Diet-Induced Obese Sprague-Dawley Rats
Authors: Mae Genevieve G. Cheung, Michael G. Cuevas, Lovely Fe L. Cuison, Elijin P. Dai, Katrina Marie S. Duron, Azalea Damaris E. Encarnacion, May T. Magtoto, Gina C. Castro
Abstract:
The present study aims to evaluate the effectiveness of aqueous and ethanolic leaf extracts of Blumea balsamifera in reducing obesity on diet-induced obese Sprague-Dawley rats. Aqueous and ethanolic leaf extracts were obtained by maceration and percolation, respectively, of air-dried, grinded leaves. The test animals were given a high fat diet (HFD) for 21 days, except for one negative control group fed with a standard diet (SD). The Blumea balsamifera extracts were given at doses of 300 mg/Kg and 600 mg/Kg for BBAE and BBEE groups, and the positive control group, Orlistat, was given at 21.6 mg/Kg dose. After 24 days of treatment, the statistical difference of parameters such as Lee’s index and lipid profile of each group before and after the treatment period were determined separately using Tukey’s test of two-way Analysis of Variance (ANOVA). The statistical results showed that the600mg/kg dose of BBAE and BBEE had greatly lowered the Lee’s index among the other doses while the 300 mg/Kg dose BBEE, 600 mg/Kg BBAE, and 300 mg/kg BBAE lowered the total cholesterol level, LDL level, and VLDL and total triglyceride level respectively. The extracts, however, lowered the HDL level which was also exhibited by the standard drug, Orlistat.Keywords: adipocytes, adipogenesis, Blumea balsamifera, Lee’s index, obesity, Sambong
Procedia PDF Downloads 37641133 A Systematic Review and Meta-Analysis of Diabetes Ketoacidosis in Ethiopia
Authors: Addisu Tadesse Sahile, Mussie Wubshet Teka, Solomon Muluken Ayehu
Abstract:
Background: Diabetes is one of the common public health problems of the century that was estimated to affect one in a tenth of the world population by the year 2030, where diabetes ketoacidosis is one of its common acute complications. Objectives: The aim of this review was to assess the magnitude of diabetes ketoacidosis among patients with type 1 diabetes in Ethiopia. Methods: A systematic data search was done across Google Scholar, PubMed, Web of Science, and African Online Journals. Two reviewers carried out the selection, reviewing, screening, and extraction of the data independently by using a Microsoft Excel Spreadsheet. The Joanna Briggs Institute's prevalence critical appraisal tool was used to assess the quality of evidence. All studies conducted in Ethiopia that reported diabetes ketoacidosis rates among type 1 diabetes were included. The extracted data was imported into the comprehensive meta-analysis version 3.0 for further analysis. Heterogeneity was checked by Higgins’s method, whereas the publication bias was checked by using Beggs and Eggers’s tests. A random-effects meta-analysis model with a 95% confidence interval was computed to estimate the pooled prevalence. Furthermore, subgroup analysis based on the study area (Region) and the sample size was carried out. Result and Conclusion: After review made across a total of 51 articles, of which 12 articles fulfilled the inclusion criteria and were included in the meta-analysis. The pooled prevalence of diabetes ketoacidosis among type 1 diabetes in Ethiopia was 53.2% (95%CI: 43.1%-63.1%). The highest prevalence of DKA was reported in the Tigray region of Ethiopia, whereas the lowest was reported in the Southern region of Ethiopia. Concerned bodies were suggested to work on the escalated burden of diabetes ketoacidosis in Ethiopia.Keywords: DKA, Type 1 diabetes, Ethiopia, systematic review, meta-analysis
Procedia PDF Downloads 5741132 Practicing Inclusion for Hard of Hearing and Deaf Students in Regular Schools in Ethiopia
Authors: Mesfin Abebe Molla
Abstract:
This research aims to examine the practices of inclusion of the hard of hearing and deaf students in regular schools. It also focuses on exploring strategies for optimal benefits of students with Hard of Hearing and Deaf (HH-D) from inclusion. Concurrent mixed methods research design was used to collect quantitative and qualitative data. The instruments used to gather data for this study were questionnaire, semi- structured interview, and observations. A total of 102 HH-D students and 42 primary and High School teachers were selected using simple random sampling technique and used as participants to collect quantitative data. Non-probability sampling technique was also employed to select 14 participants (4-school principals, 6-teachers and 4-parents of HH-D students) and they were interviewed to collect qualitative data. Descriptive and inferential statistical techniques (independent sample t-test, one way ANOVA and Multiple regressions) were employed to analyze quantitative data. Qualitative data were also analyzed qualitatively by theme analysis. The findings reported that there were individual principals’, teachers’ and parents’ strong commitment and efforts for practicing inclusion of HH-D students effectively; however, most of the core values of inclusion were missing in both schools. Most of the teachers (78.6 %) and HH-D students (75.5%) had negative attitude and considerable reservations about the feasibility of inclusion of HH-D students in both schools. Furthermore, there was a statistically significant difference of attitude toward to inclusion between the two school’s teachers and the teachers’ who had taken and had not taken additional training on IE and sign language. The study also indicated that there was a statistically significant difference of attitude toward to inclusion between hard of hearing and deaf students. However, the overall contribution of the demographic variables of teachers and HH-D students on their attitude toward inclusion is not statistically significant. The finding also showed that HH-D students did not have access to modified curriculum which would maximize their abilities and help them to learn together with their hearing peers. In addition, there is no clear and adequate direction for the medium of instruction. Poor school organization and management, lack of commitment, financial resources, collaboration and teachers’ inadequate training on Inclusive Education (IE) and sign language, large class size, inappropriate assessment procedure, lack of trained deaf adult personnel who can serve as role model for HH-D students and lack of parents and community members’ involvement were some of the major factors that affect the practicing inclusion of students HH-D. Finally, recommendations are made to improve the practices of inclusion of HH-D students and to make inclusion of HH-D students an integrated part of Ethiopian education based on the findings of the study.Keywords: deaf, hard of hearing, inclusion, regular schools
Procedia PDF Downloads 34141131 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security
Authors: Dawd Ahmed, Venkatesh Uddameri
Abstract:
Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis
Procedia PDF Downloads 14041130 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland
Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood
Abstract:
The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health
Procedia PDF Downloads 14241129 Modification Encryption Time and Permutation in Advanced Encryption Standard Algorithm
Authors: Dalal N. Hammod, Ekhlas K. Gbashi
Abstract:
Today, cryptography is used in many applications to achieve high security in data transmission and in real-time communications. AES has long gained global acceptance and is used for securing sensitive data in various industries but has suffered from slow processing and take a large time to transfer data. This paper suggests a method to enhance Advance Encryption Standard (AES) Algorithm based on time and permutation. The suggested method (MAES) is based on modifying the SubByte and ShiftRrows in the encryption part and modification the InvSubByte and InvShiftRows in the decryption part. After the implementation of the proposal and testing the results, the Modified AES achieved good results in accomplishing the communication with high performance criteria in terms of randomness, encryption time, storage space, and avalanche effects. The proposed method has good randomness to ciphertext because this method passed NIST statistical tests against attacks; also, (MAES) reduced the encryption time by (10 %) than the time of the original AES; therefore, the modified AES is faster than the original AES. Also, the proposed method showed good results in memory utilization where the value is (54.36) for the MAES, but the value for the original AES is (66.23). Also, the avalanche effects used for calculating diffusion property are (52.08%) for the modified AES and (51.82%) percentage for the original AES.Keywords: modified AES, randomness test, encryption time, avalanche effects
Procedia PDF Downloads 24541128 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 63641127 A Critical Analysis of Environmental Investment in India
Authors: K. Y. Chen, H. Chua, C. W. Kan
Abstract:
Environmental investment is an important issue in many countries. In this study, we will first review the environmental issues related to India and their effect on the economical development. Secondly, economic data would be collected from government yearly statistics. The statistics would also include the environmental investment information of India. Finally, we would co-relate the data in order to find out the relationship between environmental investment and sustainable development in India. Therefore, in the paper, we aim to analyse the effect of an environmental investment on the sustainable development in India. Based on the economic data collected, India is in development status with fast population and GDP growth speed. India is facing the environment problems due to its high-speed development. However, the environment investment could give a positive impact on the sustainable development in India. The environmental investment is keeping in the same growth rate with GDP. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: India, environmental investment, sustainable development, analysis
Procedia PDF Downloads 31241126 Examination of Porcine Gastric Biomechanics in the Antrum Region
Authors: Sif J. Friis, Mette Poulsen, Torben Strom Hansen, Peter Herskind, Jens V. Nygaard
Abstract:
Gastric biomechanics governs a large range of scientific and engineering fields, from gastric health issues to interaction mechanisms between external devices and the tissue. Determination of mechanical properties of the stomach is, thus, crucial, both for understanding gastric pathologies as well as for the development of medical concepts and device designs. Although the field of gastric biomechanics is emerging, advances within medical devices interacting with the gastric tissue could greatly benefit from an increased understanding of tissue anisotropy and heterogeneity. Thus, in this study, uniaxial tensile tests of gastric tissue were executed in order to study biomechanical properties within the same individual as well as across individuals. With biomechanical tests in the strain domain, tissue from the antrum region of six porcine stomachs was tested using eight samples from each stomach (n = 48). The samples were cut so that they followed dominant fiber orientations. Accordingly, from each stomach, four samples were longitudinally oriented, and four samples were circumferentially oriented. A step-wise stress relaxation test with five incremental steps up to 25 % strain with 200 s rest periods for each step was performed, followed by a 25 % strain ramp test with three different strain rates. Theoretical analysis of the data provided stress-strain/time curves as well as 20 material parameters (e.g., stiffness coefficients, dissipative energy densities, and relaxation time coefficients) used for statistical comparisons between samples from the same stomach as well as in between stomachs. Results showed that, for the 20 material parameters, heterogeneity across individuals, when extracting samples from the same area, was in the same order of variation as the samples within the same stomach. For samples from the same stomach, the mean deviation percentage for all 20 parameters was 21 % and 18 % for longitudinal and circumferential orientations, compared to 25 % and 19 %, respectively, for samples across individuals. This observation was also supported by a nonparametric one-way ANOVA analysis, where results showed that the 20 material parameters from each of the six stomachs came from the same distribution with a level of statistical significance of P > 0.05. Direction-dependency was also examined, and it was found that the maximum stress for longitudinal samples was significantly higher than for circumferential samples. However, there were no significant differences in the 20 material parameters, with the exception of the equilibrium stiffness coefficient (P = 0.0039) and two other stiffness coefficients found from the relaxation tests (P = 0.0065, 0.0374). Nor did the stomach tissue show any significant differences between the three strain-rates used in the ramp test. Heterogeneity within the same region has not been examined earlier, yet, the importance of the sampling area has been demonstrated in this study. All material parameters found are essential to understand the passive mechanics of the stomach and may be used for mathematical and computational modeling. Additionally, an extension of the protocol used may be relevant for compiling a comparative study between the human stomach and the pig stomach.Keywords: antrum region, gastric biomechanics, loading-unloading, stress relaxation, uniaxial tensile testing
Procedia PDF Downloads 42841125 Research and Application of Multi-Scale Three Dimensional Plant Modeling
Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao
Abstract:
Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition
Procedia PDF Downloads 27641124 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 48241123 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 24041122 Gendered Labelling and Its Effects on Vhavenda Women
Authors: Matodzi Rapalalani
Abstract:
In context with Spencer's (2018) classic labelling theory, labels influence the perceptions of both the individual and other members of society. That is, once labelled, the individual act in ways that confirm the stereotypes attached to the label. This study, therefore, investigates the understanding of gendered labelling and its effects on Vhavenda women. Gender socialization and patriarchy have been viewed as the core causes of the problem. The literature presented the development of gendered labelling, forms of it, and other aspects. A qualitative method of data collection was used in this study, and semi-structural interviews were conducted. A total of 6 participants were used as it is easy to deal with a small sample. Thematic analysis was used as the data was interpreted and analyzed. Ethical issues such as confidentiality, informed consent, and voluntary participation were considered. Through the analysis and data interpretation, causes such as lack of Christian values, insecurities, and lust were mentioned as well as some of the effects such as frustrations, increased divorce, and low self-esteem.Keywords: gender, naming, Venda, women, African culture
Procedia PDF Downloads 9041121 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security
Authors: Lynndee Kemmet
Abstract:
The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.Keywords: food security, food system model, political stability, US Military
Procedia PDF Downloads 19341120 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers
Authors: Cansu Bozer, Saadet İrem Turgut
Abstract:
Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.Keywords: education, child development, artificial intelligence, preschool teachers
Procedia PDF Downloads 18