Search results for: speed hump detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6102

Search results for: speed hump detection

4542 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications

Authors: Morsy Ahmed Morsy Ismail

Abstract:

In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.

Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia

Procedia PDF Downloads 160
4541 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 57
4540 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: lidar, segmentation, clustering, tracking

Procedia PDF Downloads 402
4539 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.

Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX

Procedia PDF Downloads 491
4538 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline

Authors: Kenan Morani, Esra Kaya Ayana

Abstract:

This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.

Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation

Procedia PDF Downloads 119
4537 Safety Effect of Smart Right-Turn Design at Intersections

Authors: Upal Barua

Abstract:

The risk of severe crashes at high-speed right-turns at intersections is a major safety concern these days. The application of a smart right-turn at an intersection is increasing day by day to address is an issue. The design, ‘Smart Right-turn’ consists of a narrow-angle of channelization at approximately 70°. This design increases the cone of vision of the right-tuning drivers towards the crossing pedestrians as well as traffic on the cross-road. As part of the Safety Improvement Program in Austin Transportation Department, several smart right-turns were constructed at high crash intersections where high-speed right-turns were found to be a contributing factor. This paper features the state of the art techniques applied in planning, engineering, designing and construction of this smart right-turn, key factors driving the success, and lessons learned in the process. This paper also presents the significant crash reductions achieved from the application of this smart right-turn design using Empirical Bayes method. The result showed that smart right-turns can reduce overall right-turn crashes by 43% and severe right-turn crashes by 70%.

Keywords: smart right-turn, intersection, cone of vision, empirical Bayes method

Procedia PDF Downloads 256
4536 Investigating the Urban Heat Island Phenomenon in A Desert City Aiming at Sustainable Buildings

Authors: Afifa Mohammed, Gloria Pignatta, Mattheos Santamouris, Evangelia Topriska

Abstract:

Climate change is one of the global challenges that is exacerbated by the rapid growth of urbanizations. Urban Heat Island (UHI) phenomenon can be considered as an effect of the urbanization and it is responsible together with the Climate change of the overheating of urban cities and downtowns. The purpose of this paper is to quantify and perform analysis of UHI Intensity in Dubai, United Arab Emirates (UAE), through checking the relationship between the UHI and different meteorological parameters (e.g., temperature, winds speed, winds direction). Climate data were collected from three meteorological stations in Dubai (e.g., Dubai Airport - Station 1, Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3) for a period of five years (e.g., 2014 – 2018) based upon hourly rates, and following clustering technique as one of the methodology tools of measurements. The collected data of each station were divided into six clusters upon the winds directions, either from the seaside or from the desert side, or from the coastal side which is in between both aforementioned winds sources, to investigate the relationship between temperature degrees and winds speed values through UHI measurements for Dubai Airport - Station 1 compared with the same of Al-Maktoum Airport - Station 2. In this case, the UHI value is determined by the temperature difference of both stations, where Station 1 is considered as located in an urban area and Station 2 is considered as located in a suburban area. The same UHI calculations has been applied for Al-Maktoum Airport - Station 2 and Saih Salem - Station 3 where Station 2 is considered as located in an urban area and Station 3 is considered as located in a suburban area. The performed analysis aims to investigate the relation between the two environmental parameters (e.g., Temperature and Winds Speed) and the Urban Heat Island (UHI) intensity when the wind comes from the seaside, from the desert, and the remaining directions. The analysis shows that the correlation between the temperatures with both UHI intensity (e.g., temperature difference between Dubai Airport - Station 1 and Saih Al-Salem - Station 3 and between Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3 (through station 1 & 2) is strong and has a negative relationship when the wind is coming from the seaside comparing between the two stations 1 and 2, while the relationship is almost zero (no relation) when the wind is coming from the desert side. The relation is independent between the two parameters, e.g., temperature and UHI, on Station 2, during the same procedures, the correlation between the urban heat island UHI phenomenon and wind speed is weak for both stations when wind direction is coming from the seaside comparing the station 1 and 2, while it was found that there’s no relationship between urban heat island phenomenon and wind speed when wind direction is coming from desert side. The conclusion could be summarized saying that the wind coming from the seaside or from the desert side have a different effect on UHI, which is strongly affected by meteorological parameters. The output of this study will enable more determination of UHI phenomenon under desert climate, which will help to inform about the UHI phenomenon and intensity and extract recommendations in two main categories such as planning of new cities and designing of buildings.

Keywords: meteorological data, subtropical desert climate, urban climate, urban heat island (UHI)

Procedia PDF Downloads 128
4535 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting

Procedia PDF Downloads 279
4534 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail

Authors: Arunkumar Balamurugan, G. Soundharya Lakshmi, V. Thenmozhi, M. Jegannath, V. R. Sanal Kumar

Abstract:

Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings.

Keywords: aerodynamics of insects, MAV, swallowtail butterfly, twin tail MAV design

Procedia PDF Downloads 385
4533 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 326
4532 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 98
4531 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location

Procedia PDF Downloads 282
4530 Semi-Automated Tracking of Vibrissal Movements in Free-Moving Rodents Captured by High-Speed Videos

Authors: Hyun June Kim, Tailong Shi, Seden Akdagli, Sam Most, Yuling Yan

Abstract:

Quantitative analysis of mouse whisker movement can be used to study functional recovery and regeneration of facial nerve after an injury. However, it is challenging to accurately track mouse whisker movements, and most whisker tracking methods require manual intervention, e.g. fixing the head of the mouse during a study. Here we describe a semi-automated image processing method that is applied to high-speed video recordings of free-moving mice to track whisker movements. We first track the head movement of a mouse by delineating the lower head contour frame-by-frame to locate and determine the orientation of its head. Then, a region of interest is identified for each frame, with subsequent application of the Hough transform to track individual whisker movements on each side of the head. Our approach is used to examine the functional recovery of damaged facial nerves in mice over a course of 21 days.

Keywords: mystacial macrovibrissae, whisker tracking, head tracking, facial nerve recovery

Procedia PDF Downloads 584
4529 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring

Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan

Abstract:

The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.

Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test

Procedia PDF Downloads 348
4528 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population

Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya

Abstract:

Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.

Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa

Procedia PDF Downloads 95
4527 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker

Abstract:

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data

Procedia PDF Downloads 320
4526 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 156
4525 Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion

Authors: Hasika Mith, Hassany Ly, Hengsim Phoung, Rathana Sovann, Pichmony Ek, Sokuntheary Theng

Abstract:

Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate.

Keywords: cooking loss, cooking quality, cooking yield, extruded rice vermicelli, twin-screw extruder, water absorption index

Procedia PDF Downloads 74
4524 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine

Procedia PDF Downloads 283
4523 Flow Visualization around a Rotationally Oscillating Cylinder

Authors: Cemre Polat, Mustafa Soyler, Bulent Yaniktepe, Coskun Ozalp

Abstract:

In this study, it was aimed to control the flow actively by giving an oscillating rotational motion to a vertically placed cylinder, and flow characteristics were determined. In the study, firstly, the flow structure around the flat cylinder was investigated with dye experiments, and then the cylinders with different oscillation angles (θ = 60°, θ = 120°, and θ = 180°) and different rotation speeds (15 rpm and 30 rpm) the flow structure around it was examined. Thus, the effectiveness of oscillation and rotation speed in flow control has been investigated. In the dye experiments, the dye/water mixture obtained by mixing Rhodamine 6G in powder form with water, which shines under laser light and allows detailed observation of the flow structure, was used. During the experiments, the dye was injected into the flow with the help of a thin needle at a distance that would not affect the flow from the front of the cylinder. In dye experiments, 100 frames per second were taken with a Canon brand EOS M50 (24MP) digital mirrorless camera at a resolution of 1280 * 720 pixels. Then, the images taken were analyzed, and the pictures representing the flow structure for each experiment were obtained. As a result of the study, it was observed that no separation points were formed at 180° swing angle at 15 rpm speed, 120° and 180° swing angle at 30 rpm, and the flow was controlled according to the fixed cylinder.

Keywords: active flow control, cylinder, flow visualization rotationally oscillating

Procedia PDF Downloads 166
4522 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System

Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha

Abstract:

Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.

Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone

Procedia PDF Downloads 681
4521 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)

Authors: Mohamed Hamada Abdelkader Fayed

Abstract:

Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.

Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy

Procedia PDF Downloads 206
4520 Automated Detection of Women Dehumanization in English Text

Authors: Maha Wiss, Wael Khreich

Abstract:

Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.

Keywords: gender bias, machine learning, NLP, women dehumanization

Procedia PDF Downloads 70
4519 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis

Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu

Abstract:

Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.

Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter

Procedia PDF Downloads 150
4518 Flashover Detection Algorithm Based on Mother Function

Authors: John A. Morales, Guillermo Guidi, B. M. Keune

Abstract:

Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines.

Keywords: mother function, outages, lightning, sensitivity analysis

Procedia PDF Downloads 580
4517 Low-Voltage Multiphase Brushless DC Motor for Electric Vehicle Application

Authors: Mengesha Mamo Wogari

Abstract:

In this paper, low voltage multiphase brushless DC motor with square wave air-gap flux distribution for electric vehicle application is proposed. Ten-phase, 5 kW motor, has been designed and simulated by finite element methods demonstrating the desired high torque capability at low speed and flux weakening operation for high-speed operations. The motor torque is proportional to number of phases for a constant phase current and air-gap flux. The concept of vector control and simple space vector modulation technique is used on MATLAB to control the motor demonstrating simple switching pattern for selected number of phases. The low voltage DC and inverter output AC are desired characteristics to avoid any electric shock in the vehicle, accidentally and during abnormal conditions. The switching devices for inverter are of low-voltage rating and cost effective though their number is equal to twice the number of phases.

Keywords: brushless DC motors, electric Vehicle, finite element methods, Low-voltage inverter, multiphase

Procedia PDF Downloads 145
4516 Heterogeneity, Asymmetry and Extreme Risk Perception; Dynamic Evolution Detection From Implied Risk Neutral Density

Authors: Abderrahmen Aloulou, Younes Boujelbene

Abstract:

The current paper displays a new method of extracting information content from options prices by eliminating biases caused by daily variation of contract maturity. Based on Kernel regression tool, this non-parametric technique serves to obtain a spectrum of interpolated options with constant maturity horizons from negotiated optional contracts on the S&P TSX 60 index. This method makes it plausible to compare daily risk neutral densities from which extracting time continuous indicators allows the detection traders attitudes’ evolution, such as, belief homogeneity, asymmetry and extreme Risk Perception. Our findings indicate that the applied method contribute to develop effective trading strategies and to adjust monetary policies through controlling trader’s reactions to economic and monetary news.

Keywords: risk neutral densities, kernel, constant maturity horizons, homogeneity, asymmetry and extreme risk perception

Procedia PDF Downloads 476
4515 A Fast Chemiresistive H₂ Gas Sensor Based on Sputter Grown Nanocrystalline P-TiO₂ Thin Film Decorated with Catalytic Pd-Pt Layer on P-Si Substrate

Authors: Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, Ramesh Chandra

Abstract:

In the present work, we have fabricated and studied a resistive H₂ gas sensor based on Pd-Pt decorated room temperature sputter grown nanocrystalline porous titanium dioxide (p-TiO₂) thin film on porous silicon (p-Si) substrate for fast H₂ detection. The gas sensing performance of Pd-Pt/p-TiO₂/p-Si sensing electrode towards H₂ gas under low (10-500 ppm) detection limit and operating temperature regime (25-200 °C) was discussed. The sensor is highly sensitive even at room temperature, with response (Ra/Rg) reaching ~102 for 500 ppm H₂ in dry air and its capability of sensing H₂ concentrations as low as ~10 ppm was demonstrated. At elevated temperature of 200 ℃, the response reached more than ~103 for 500 ppm H₂. Overall the fabricated resistive gas sensor exhibited high selectivity, good sensing response, and fast response/recovery time with good stability towards H₂.

Keywords: sputtering, porous silicon (p-Si), TiO₂ thin film, hydrogen gas sensor

Procedia PDF Downloads 249
4514 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 147
4513 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 340