Search results for: power electricity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6643

Search results for: power electricity

5083 A New PWM Command for Cascaded H-Bridge Multilevel Increasing the Quality and Reducing Harmonics

Authors: Youssef Babkrani, S. Hiyani, A. Naddami, K. Choukri, M. Hilal

Abstract:

Power Quality has been a problem ever since electrical power was invented and in recent years, it has become the main interest of researchers who are still concerned about finding ways to reduce its negative influence on electrical devices. In this paper we aim to improve the power quality output for H- bridge multilevel inverter used with solar Photovoltaic (PV) panels, we propose a new switching technique that uses a pulse width modulation method (PWM) aiming to reduce the harmonics. This new method introduces a sinusoidal wave compared with modified trapezoidal carriers used to generate the pulses. This new trapezoid carrier waveform is being implemented with different sinusoidal PWM dispositions such as phase disposition (PWM PD), phase opposition disposition (PWM POD), and (PWM APOD) alternative phase opposition disposition and compared with the conventional ones. Using Matlab Simulink R2014a the line voltage and total harmonic distortions (THD) simulated and the quality are increased in spite of variations of DC introduced.

Keywords: carrier waveform, phase disposition (PD), phase opposition disposition (POD), alternative phase opposition disposition (APOD), total harmonics distortion (THD)

Procedia PDF Downloads 274
5082 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine

Authors: N. Zerzouri, N. Benalia, N. Bensiali

Abstract:

This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.

Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling

Procedia PDF Downloads 303
5081 Active-Material Variation Analysis of a Lithium-Ion Battery

Authors: Muhammad Husnat Khalid, Stephan Bihn, Dirk Uwe Sauer, Nisai Fuengwarodsakul

Abstract:

To combat the effects of climate change, lithium-ion batteries are getting a lot of attention for energy storage. However, due to its diverse range of applications extending from small electronics equipment to energy storage systems, its output requirements, as well as limitations, vary significantly. Many efforts are underway to increase the power and energy output of the cells without any significant compromise on their size and weight. In this paper, different active materials are explored for an existing cell Kokam that initially has graphite as anode and NCO as cathode material. The Pareto front optimization tool is then utilized to pick a cell that gives the optimum results in terms of energy, power, or both. The parameter variation of the cells is done in the MATLAB application ISEA Cell and Pack Database (ICPD) created by the Institute of Power Electronics and Electrical Drives (ISEA) RWTH Aachen, University that creates the physical-chemical model of the existing cells.

Keywords: battery storage system, lithium-ion battery, active material variation, cell design optimization

Procedia PDF Downloads 88
5080 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter

Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao

Abstract:

Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.

Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage

Procedia PDF Downloads 296
5079 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 457
5078 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba

Abstract:

This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine

Procedia PDF Downloads 203
5077 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer

Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah

Abstract:

In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.

Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control

Procedia PDF Downloads 345
5076 Performance Improvement of The Nano-Composite Based Proton Exchange Membranes (PEMs)

Authors: Yusuf Yılmaz, Kevser Dincer, Derya Saygılı

Abstract:

In this study, performance of PEMs was experimentally investigated. Coating on the cathode side of the PEMs fuel cells was accomplished with the spray method by using NaCaNiBO. A solution having 0,1 gr NaCaNiBO +10 mL methanol was prepared. This solution was taken out and filled into a spray. Then the cathode side of PEMs fuel cells was cladded with NaCaNiBO by using spray method. After coating, the membrane was left out to dry for 24 hours. The PEM fuel cells were mounted to the system in single, double, triple and fourfold manner in order to spot the best performance. The performance parameter considered was the power to current ratio. The best performance was found to occur at the 300th second with the power/current ratio of 3.55 Watt/Ampere and on the fourfold parallel mounting after the coating; whereas the poorest performance took place at the 210th second, power to current ratio of 0.12 Watt/Ampere and on the twofold parallel connection after the coating.

Keywords: nano-composites, proton exchange membranes, performance improvement, fuel cell

Procedia PDF Downloads 362
5075 A 1.8 GHz to 43 GHz Low Noise Amplifier with 4 dB Noise Figure in 0.1 µm Galium Arsenide Technology

Authors: Mantas Sakalas, Paulius Sakalas

Abstract:

This paper presents an analysis and design of a ultrawideband 1.8GHz to 43GHz Low Noise Amplifier (LNA) in 0.1 μm Galium Arsenide (GaAs) pseudomorphic High Electron Mobility Transistor (pHEMT) technology. The feedback based bandwidth extension techniques is analyzed and based on the outcome, a two stage LNA is designed. The impedance fine tuning is implemented by using Transmission Line (TL) structures. The measured performance shows a good agreement with simulation results and an outstanding wideband noise matching. The measured small signal gain was 12 dB, whereas a 3 dB gain flatness in range from 1.8 - 43 GHz was reached. The noise figure was below 4 dB almost all over the entire frequency band of 1.8GHz to 43GHz, the output power at 1 dB compression point was 6 dBm and the DC power consumption was 95 mW. To the best knowledge of the authors the designed LNA outperforms the State of the Art (SotA) reported LNA designs in terms of combined parameters of noise figure within the addressed ultra-wide 3 dB bandwidth, linearity and DC power consumption.

Keywords: feedback amplifiers, GaAs pHEMT, monolithic microwave integrated circuit, LNA, noise matching

Procedia PDF Downloads 206
5074 Design and Development of Compact 1KW Floating Battery Discharge Regulator

Authors: A. Sreedevi, G. Anantaramu

Abstract:

The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.

Keywords: push pull converter, current doubler, converter, PWM control

Procedia PDF Downloads 95
5073 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling

Procedia PDF Downloads 514
5072 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 64
5071 Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator

Authors: Malory Beaujolais

Abstract:

Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 31
5070 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 289
5069 High Accuracy Analytic Approximations for Modified Bessel Functions I₀(x)

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

A method to obtain analytic approximations for special function of interest in engineering and physics is described here. Each approximate function will be valid for every positive value of the variable and accuracy will be high and increasing with the number of parameters to determine. The general technique will be shown through an application to the modified Bessel function of order zero, I₀(x). The form and the calculation of the parameters are performed with the simultaneous use of the power series and asymptotic expansion. As in Padé method rational functions are used, but now they are combined with other elementary functions as; fractional powers, hyperbolic, trigonometric and exponential functions, and others. The elementary function is determined, considering that the approximate function should be a bridge between the power series and the asymptotic expansion. In the case of the I₀(x) function two analytic approximations have been already determined. The simplest one is (1+x²/4)⁻¹/⁴(1+0.24273x²) cosh(x)/(1+0.43023x²). The parameters of I₀(x) were determined using the leading term of the asymptotic expansion and two coefficients of the power series, and the maximum relative error is 0.05. In a second case, two terms of the asymptotic expansion were used and 4 of the power series and the maximum relative error is 0.001 at x≈9.5. Approximations with much higher accuracy will be also shown. In conclusion a new technique is described to obtain analytic approximations to some functions of interest in sciences, such that they have a high accuracy, they are valid for every positive value of the variable, they can be integrated and differentiated as the usual, functions, and furthermore they can be calculated easily even with a regular pocket calculator.

Keywords: analytic approximations, mathematical-physics applications, quasi-rational functions, special functions

Procedia PDF Downloads 242
5068 Representation of Reality in Nigerian Poetry

Authors: Zainab Abdulkarim

Abstract:

Literature is the study of life, a source of knowledge. It involves the truth about many things in life. Most of these creative artistes most especially the poets are representatives of the voices of the people. These set of artistes have been the critics to all involved in the development of their nation. This paper will examine how Nigerian Poets goes further not just by writing but by showing the different ways the country has been convoluted. This paper intends to show the power and ability literature has in representation. The power is to represent the important values of life. There is no doubt that literature asserts truth. Through the various poems examined in this paper, Nigerian Poets have proved to portray the realities of the nation.

Keywords: literature, poets, reality, representation

Procedia PDF Downloads 299
5067 Violations of Press Freedom

Authors: Khalid Achaat

Abstract:

It is difficult to speak about freedom of the press in Algeria without first talking to fifty-seven journalists killed in the country between 1993 and 1997 and the five missing journalists. No serious investigation was conducted to find the culprits. When a State is not able to guarantee law, there is no justice and violations of the law become "systematic". How to claim the freedom of press in Algeria, when death becomes "banal"? In these circumstances, can we talk of rights of the Algerian press? It is impossible to understand the problems of the press in Algeria, focusing solely legal issues. Take into account technical, financial and political. Their respective roles varies depending on whether one focuses on the collection of information, the regime of the newspaper company or publication and dissemination. Can we say that the Algerian press is "the freest in the Arab world", while the latter reflects only partially the real problems facing the country? While any newspaper company is subject, de facto, to an authorization scheme, permanently subjected to the constant threat of withdrawal of the authorization, suspension, prohibition or closure without it has the right to a remedy? Can it be free when the majority of "media owners", head of the largest daily newspapers are derived from the single party in power since independence? Some of this release does not it serves the interests of the Algerian power?

Keywords: freedom, press, power, closure, suspension

Procedia PDF Downloads 344
5066 Analysis and Experimental Research on the Influence of Lubricating Oil on the Transmission Efficiency of New Energy Vehicle Gearbox

Authors: Chen Yong, Bi Wangyang, Zang Libin, Li Jinkai, Cheng Xiaowei, Liu Jinmin, Yu Miao

Abstract:

New energy vehicle power transmission systems continue to develop in the direction of high torque, high speed, and high efficiency. The cooling and lubrication of the motor and the transmission system are integrated, and new requirements are placed on the lubricants for the transmission system. The effects of traditional lubricants and special lubricants for new energy vehicles on transmission efficiency were studied through experiments and simulation methods. A mathematical model of the transmission efficiency of the lubricating oil in the gearbox was established. The power loss of each part was analyzed according to the working conditions. The relationship between the speed and the characteristics of different lubricating oil products on the power loss of the stirring oil was discussed. The minimum oil film thickness was required for the life of the gearbox. The accuracy of the calculation results was verified by the transmission efficiency test conducted on the two-motor integrated test bench. The results show that the efficiency increases first and then decreases with the increase of the speed and decreases with the increase of the kinematic viscosity of the lubricant. The increase of the kinematic viscosity amplifies the transmission power loss caused by the high speed. New energy vehicle special lubricants have less attenuation of transmission efficiency in the range above mid-speed. The research results provide a theoretical basis and guidance for the evaluation and selection of transmission efficiency of gearbox lubricants for new energy vehicles.

Keywords: new energy vehicles, lubricants, transmission efficiency, kinematic viscosity, test and simulation

Procedia PDF Downloads 124
5065 Effects of Compensation on Distribution System Technical Losses

Authors: B. Kekezoglu, C. Kocatepe, O. Arikan, Y. Hacialiefendioglu, G. Ucar

Abstract:

One of the significant problems of energy systems is to supply economic and efficient energy to consumers. Therefore studies has been continued to reduce technical losses in the network. In this paper, the technical losses analyzed for a portion of European side of Istanbul MV distribution network for different compensation scenarios by considering real system and load data and results are presented. Investigated system is modeled with CYME Power Engineering Software and optimal capacity placement has been proposed to minimize losses.

Keywords: distribution system, optimal capacitor placement, reactive power compensation, technical losses

Procedia PDF Downloads 659
5064 Comparison Conventional with Microwave-Assisted Drying Method on the Physicochemical Characteristics of Rice Bran Noodle

Authors: Chien-Chun Huang, Yi-U Chiou, Chiun-C.R. Wang

Abstract:

For longer shelf life of noodles, air-dried method is the traditional way for the noodle preparation. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted air driers and many agricultural products were dried successfully. There are few researches about the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional and microwave-assisted drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no characteristic of noodle was appeared on the surface of noodles preparing by low power (0.5 KW) microwave facility. The optimum cooking time of noodles was decreased as higher power microwave or higher proportion of rice bran was incorporated into noodles preparation. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased, with the increases of rice bran proportion. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and acceptable quality of cooked noodles as compared to conventional dried noodles.

Keywords: microwave-assisted drying method, physicochemical characteristics, rice bran noodles, sensory evaluation

Procedia PDF Downloads 472
5063 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h₀, pitch amplitude θ₀ and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: numerical simulation, flapping wing, energy extraction, power coefficient, efficiency, RBF, NSGA-II

Procedia PDF Downloads 26
5062 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: cost of energy (COE) tool, sea state, wave energy converter (WEC), WEC-Sim

Procedia PDF Downloads 282
5061 Piaui Solar: State Development Impulsed by Solar Photovoltaic Energy

Authors: Amanda Maria Rodrigues Barroso, Ary Paixao Borges Santana Junior, Caio Araujo Damasceno

Abstract:

In Piauí, the Brazilian state, solar energy has become one of the renewable sources targeted by internal and external investments, with the intention of leveraging the development of society. However, for a residential or business consumer to be able to deploy this source, there is usually a need for a high initial investment due to its high cost. The countless high taxes on equipment and services are one of the factors that contribute to this cost and ultimately fall on the consumer. Through analysis, a way of reducing taxes is sought in order to encourage consumer adhesion to the use of photovoltaic solar energy. Thus, the objective is to implement the Piauí Solar Program in the state of Piauí in order to stimulate the deployment of photovoltaic solar energy, through benefits granted to users, providing state development by boosting the diversification of the state's energy matrix. The research method adopted was based on the analysis of data provided by the Teresina City Hall, by the Brazilian Institute of Geography and Statistics and by a private company in the capital of Piauí. The account was taken of the total amount paid in Property and Urban Territorial Property Tax (IPTU), in electricity and in the service of installing photovoltaic panels in a residence with 6 people. Through Piauí Solar, a discount of 80% would be applied to the taxes present in the budgets regarding the implementation of these photovoltaic plates in homes and businesses, as well as in the IPTU. In addition, another factor also taken into account is the energy savings generated after the implementation of these boards. In the studied residence, the annual payment of IPTU went from R $ 99.83 reais to R $ 19.96, the reduction of taxes present in the budget for the implantation of solar panels, caused the value to increase from R $ 42,744.22 to R $ 37,241.98. The annual savings in electricity bills were estimated at around R $ 6,000. Therefore, there is a reduction of approximately 24% in the total invested. The trend of the Piauí Solar program, then, is to bring benefits to the state, providing an improvement in the living conditions of the population, through the savings generated by this program. In addition, an increase in the diversification of the Piauí energy matrix can be seen with the advancement of the use of this renewable energy.

Keywords: development, economy, energy, taxes

Procedia PDF Downloads 123
5060 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India

Authors: Tirthankar Chakraborty, Indranil Mukherjee

Abstract:

The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.

Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector

Procedia PDF Downloads 377
5059 Sand Dollars: Sex Tourism and Coloniality of Power in the Dominican Republic

Authors: Fernando Valerio-Holguin

Abstract:

Over the recent three decades, the tourism industry in the Dominican Republic has had an enormous impact on the country’s culture. The arrival of tourists from Germany, France, Italy, Russia and the United States has rewritten Dominican cultural identity and created a cultural palimpsest in the areas of language, gastronomy, habits, fashion, values, and gender relations. As a consequence of tourism, a prostitution network has flourished across the country. In the film Sand Dollars (2015) directed by Laura Amelia Guzmán and Israel Cárdenas, Noelí (Janet Mojica), a young mulatto woman, altogether with her boyfriend (Ricardo Ariel Toribio), strips tourists of dollars and euro through prostitution. One of her frequent clients is Anne, a mature French woman (Geraldine Chaplin). While Noeli’s goal is to get all the euros she can, Anne falls in love with her and tries to bring her to France. Both the content of the film and its cinematographic languages are analyzed in light of theory of coloniality. This concept shows how European and American tourism, through the power of money, perpetuates colonial discourse, i. e., how race and ethnocentrism permeate cultural activities in their former colonies. Moreover, in the content analysis of the film the concepts of exchange value and fetishism are crucial to understanding how the colonial body becomes sexual commodity. They facilitate grasping the film’s inequity in terms of power in the relationship between the two women: the white old European woman and the young, poor, third-world mulatta. Even though the film attempts to break away from compulsory heterosexuality, the power relation between the two women persists due to the presence of the axis of race, ethnicity, age and gender. Both the novel Les dollars des sables written by Jean-Noel Pancrazi, and the film Sand Dollars offer an interesting insight into sex tourism and coloniality and shed additional light on the power relations between the former colonizers and its colonies.

Keywords: coloniality, ethnocentrism, exchange value, Europe, fetishism, money, power, prostitution, sex tourism, United States of America

Procedia PDF Downloads 431
5058 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry

Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh

Abstract:

The demand for energy is cumulatively increasing with time.  Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields.  In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector.  The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India.  A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system.  The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C).  Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.

Keywords: organic Rankine cycle, regenerative organic Rankine cycle, waste heat recovery, Indian industry

Procedia PDF Downloads 365
5057 The Salespeople's Reactions to Customer Sexual Harassment: A Case Study of Taiwan's Life Insurance Industry

Authors: Yi-Ling Lin, Lu-Ming Tseng

Abstract:

Customer sexual harassment is recognized as a serious problem in the personal selling industry. At a personal level, customer sexual harassment could have very negative impacts on the salespeople's physical and mental health. At the organizational level, customer sexual harassment is destructive in terms of organizational reputation. Therefore, this research takes Taiwan's life insurance salesperson as the research sample and explores the impacts of customer power and perceived behavioral control on the life insurance salespeople's whistleblowing intentions to report quid pro quo and hostile work environment types of customer sexual harassment. This study then investigates how personal factors (such as gender difference) may relate to the intentions. Questionnaires are often used as a data collection instrument in studies on workplace sexual harassment. This study collects data through questionnaire surveys, and the research sample of this research is the full-time life insurance salespeople in Taiwan. The hypotheses are examined by using PLS regression approach. The main results show that the types of customer sexual harassment, customer power, and gender are related to the whistleblowing intentions. To our best knowledge, this is the first empirical study to test the relationships among customer reward power, customer coercive power, perceived behavioral control, and the salespeople's whistleblowing intentions toward customer sexual harassment. The findings may provide some implications for the researchers and official authorities.

Keywords: customer sexual harassment, life insurance salespeople, perceived behavioral control, PLS regression

Procedia PDF Downloads 121
5056 Method to Calculate the Added Value in Supply Chains of Electric Power Meters

Authors: Andrey Vinajera-Zamora, Norge Coello-Machado, Elke Glistau

Abstract:

The objective of this research is calculate the added value in operations of electric power meters (EPM) supply chains, specifically the EPM of 220v. The tool used is composed by six steps allowing at same time the identification of calibration of EPM as the bottleneck operation according the net added value being at same time the process of higher added value. On the other hand, this methodology allows calculate the amount of money to buy the raw material. The main conclusions are related to the analyze ‘s way and calculating of added value in supply chain integrated by the echelons procurement, production and distribution or any of these.

Keywords: economic value added, supply chain management, value chain, bottleneck detection

Procedia PDF Downloads 289
5055 Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India

Authors: Anil Sharma, Ajay Kumar Mahur, R. G. Sonkawade, A. C. Sharma, R. Prasad

Abstract:

In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors.

Keywords: natural radioactivity, radium equivalent activity, absorbed dose rate, gamma ray spectroscopy

Procedia PDF Downloads 352
5054 Thermodynamic Analysis of Wet Compression Integrated with Air-Film Blade Cooling in Gas Turbine Power Plants

Authors: Hassan Athari, Alireza Ruhi Sales, Amin Pourafshar, Seyyed Mehdi Pestei, Marc. A. Rosen

Abstract:

In order to achieve high efficiency and high specific work with lower emissions, the use of advanced gas turbine cycles for power generation is useful and advantageous. Here, evaporative inlet air cooling is analyzed thermodynamically in the form of air film blade cooling of gas turbines. As the ambient temperature increases during summer months, the performance of gas turbines particularly the output power and energy efficiency are significantly decreased. The utilization of evaporative inlet cooling in gas turbine cycles increases gas turbine performance, which can assist to solve the problem in meeting the increasing demands for electrical power and offsetting shortages during peak load times. In the present research, because of the importance of turbine blade cooling, the turbine is investigated with cold compressed air used for cooling the turbine blades. The investigation of the basic and modified cycles shows that, by adding an evaporative cooler to a simple gas turbine cycle, for a turbine inlet temperature of 1400 °C, an ambient temperature of 45 °C and a relative humidity of 15%, the specific work can reach 331 (kJ/kg air), while the maximum specific work of a simple cycle for the same conditions is 273.7 (kJ/kg air). The exergy results reveal that the highest exergy destruction occurs in the combustion chamber, where the large temperature differences and highly exothermic chemical reactions are the main sources of the irreversibility.

Keywords: energy, exergy, wet compression, air-film cooling blade, gas turbine

Procedia PDF Downloads 136