Search results for: parallel simulations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2962

Search results for: parallel simulations

1402 Control of an SIR Model for Basic Reproduction Number Regulation

Authors: Enrique Barbieri

Abstract:

The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.

Keywords: control of SIR, observer, SEIQRDP, disease spread

Procedia PDF Downloads 90
1401 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns

Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)

Procedia PDF Downloads 54
1400 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 98
1399 Ion Beam Induced 2D Mesophase Patterning of Nanocrystallites in Polymer

Authors: Srutirekha Giri, Manoranjan Sahoo, Anuradha Das, Pravanjan Mallick, Biswajit Mallick

Abstract:

Ion Beam (IB) technique is a very powerful experimental technique for both material synthesis and material modifications. In this work, 3MeV proton beam was generated using the 3MV Tandem machine of the Institute of Physics, Bhubaneswar and extracted into air for the irradiation-induced modification purpose[1]. The polymeric material can be modeled for a three-phase system viz. crystalline(I), amorphous(II) and mesomorphic(III). So far, our knowledge is concerned. There are only few techniques reported for the synthesis of this third-phase(III) of polymer. The IB induced technique is one of them and has been reported very recently [2-4]. It was observed that by irradiating polyethylene terephthalate (PET) fiber at very low proton fluence, 10¹⁰ - 10¹² p/s, possess 2D mesophase structure. This was confirmed using X-ray diffraction technique. A low-intensity broad peak was observed at small angle of about 2θ =6º, when the fiber axis was mounted parallel to the X-ray direction. Such peak vanished in the diffraction spectrum when the fiber axis was mounted perpendicular to the beam direction. The appearance of this extra peak in a particular orientation confirms that the phase is 2-dimensionally oriented (mesophase). It is well known that the mesophase is a 2-dimensionally ordered structure but 3-dimensionally disordered. Again, the crystallite of the mesophase peak particle was measured about 3nm. The MeV proton-induced 2D mesophase patterning of nanocrystallites (3nm) of PET due to irradiation was observed within the above low fluence range and failed in high proton fluence. This is mainly due to the breaking of crystallites, radiation-induced thermal degradation, etc.

Keywords: Ion irradiation, mesophase, nanocrystallites, polymer

Procedia PDF Downloads 181
1398 Evolution of Bioactive Components of Prickly Pear Juice (Opuntia ficus indica) and Cocktails with Orange Juice

Authors: T. Hadj Sadok, R. Hattab Bey, K. Rebiha

Abstract:

The valuation of juice from prickly pear of Opuntia ficus indica inermis as cocktails appears an attractive alternative because of their nutritional intake and functional compound has anti-radical activity (polyphenols, vitamin C, carotenoids, Betalaines, fiber and minerals). The juice from the fruit pulp is characterized by a high pH 5.85 which makes it difficult for its conservation and preservation requires a thermal treatment at high temperatures (over 100 °C) harmful for bioactive constituents compared to juice orange more acidic and processed at temperatures < 100 °C. The valuation as fig cocktails-orange is particularly interesting thanks to the contribution of polyph2nols, fiber, vitamin C, reducing sugar (sweetener) and betalaine, minerals while allowing lower temperature processing to decrease pH. The heat treatment of these juices: orange alone or in cocktails showed that the antioxidant power decreases by 12% in presence of 30% of juice treated by the heat and of 28 and 32% in the presence of 10 and 20% juice which shows the effect prickly pear juice of Opuntia. During storage for 4 weeks the loss of vitamin C is 40 and 38% in the presence of 10 and 20% juice and 33% in the presence of 30% pear juice parallel, a treatment of stabilization by heat affects relatively the polyphenols rate which decreases from 10.5% to 30% in the cocktail, and 6.11-6.71pour cocktails at 10% and 20%. Vitamin C decreases to 12 to 24 % after a heat treatment at 85°C for 30 minutes respectively for the orange juice and pear juice; this reduction is higher when the juice is in the form of cocktails composed of 10 to 30 % pear juice.

Keywords: prickly pear juice, orange cocktail, polyphenol, Opuntia ficus indica, vitamin

Procedia PDF Downloads 360
1397 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes

Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo

Abstract:

Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.

Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic

Procedia PDF Downloads 144
1396 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 169
1395 Blended Intensive Programmes: A Way Forward to Promote Internationalization in Higher Education

Authors: Sonja Gögele, Petra Kletzenbauer

Abstract:

International strategies are ranked as one of the core activities in the development plans of Austrian universities. This has led to numerous promising activities in terms of internationalization (i.e. development of international degree programmes, increased staff and student mobility, and blended international projects). The latest innovative approach in terms of Erasmus+ are so called Blended Intensive Programmes (BIP) which combine jointly delivered teaching and learning elements of at least three participating ERASMUS universities in a virtual and short-term mobility setup. Students who participate in BIP can maintain their study plans at their home institution and include BIP as a parallel activity. This paper presents the experiences of this programme on the topic of sustainable computing hosted by the University of Applied Sciences FH JOANNEUM. By means of an online survey and face-to-face interviews with all stakeholders (20 students, 8 professors), the empirical study addresses the challenges of hosting an international blended learning programme (i.e. virtual phase and on-site intensive phase) and discusses the impact of such activities in terms of internationalization and Englishization. In this context, key roles are assigned to the development of future transnational and transdisciplinary curricula by considering innovative aspects for learning and teaching (i.e. virtual collaboration, research-based learning).

Keywords: internationalization, englishization, short-term mobility, international teaching and learning

Procedia PDF Downloads 102
1394 BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover

Authors: T. Pakulski, L. Kryza, A. Linossier

Abstract:

The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universität Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator’s simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform’s initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE’s development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator’s design. Finally, it comments on the utility of robot design projects for educating future engineers.

Keywords: education, low-cost, manipulator, robotics, rover

Procedia PDF Downloads 232
1393 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 421
1392 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.

Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop

Procedia PDF Downloads 460
1391 Learning from Dendrites: Improving the Point Neuron Model

Authors: Alexander Vandesompele, Joni Dambre

Abstract:

The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.

Keywords: dendritic computation, spiking neural networks, point neuron model

Procedia PDF Downloads 109
1390 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 92
1389 Novel Correlations for P-Substituted Phenols in NMR Spectroscopy

Authors: Khodzhaberdi Allaberdiev

Abstract:

Substituted phenols are widely used for the synthesis of advanced polycondensation polymers. In terms of the structure regularity and practical value of obtained polymers are of special interest the p-substituted phenols. The lanthanide induced shifts (LIS) of the aromatic ring and the OH protons by addition Eu(fod)3 to various p-substituted phenols in CDCL3 solvent were measured Nuclear Magnetic Resonance spectroscopy. A linear relationship has been observed between the LIS of protons (∆=δcomplex –δsubstrate) and Eu(fod)3/substrate molar ratios. The LIS protons of the investigated phenols decreases in the following order: ОН > ortho > meta. The LIS of these protons also depends on both steric and electronic effects of p-substituents. The effect on the LIS of protons steric hindrance of substituents by way of example p-substituted alkyl phenols was studied. Alkyl phenols exhibit pronounced europium- induced shifts, their sensitivity increasing in the order: CH3 > C2H5 > sym-C5H11 > tert-C5H11 > tert-C4H9, i.e. in parallel with decreasing steric hindrance. The influence steric hindrance p-substituents of phenols on the LIS of protons in sequence following decreases: OH> meta >ortho. Contrary to the expectations, it is found that the LIS of the ortho protons an excellent linear correlation with meta-substituent constants, σm for 14 p-substituted phenols: ∆H2, 6=8.165-9.896 σm (r2=0,999). Moreover, a linear correlation between the LIS of the ortho protons and ionization constants, РКa of p-substituted phenols has been revealed. Similarly, the linear relationships for the LIS of the meta and the OH protons were obtained. Use the LIS of the phenolic hydroxyl groups for linear relationships is necessary with care, because of the signal broadening of the OH protons. New constants may be determinate with unusual case by this approach.

Keywords: novel correlations, NMR spectroscopy, phenols, shift reagent

Procedia PDF Downloads 286
1388 Neotectonic Features of the Fethiye-Burdur Fault Zone between Kozluca and Burdur, SW Anatolia, Turkey

Authors: Berkant Coşkuner, Rahmi Aksoy

Abstract:

The aim of this study is to present some preliminary stratigraphic and structural evidence for the Fethiye-Burdur fault zone between Kozluca and Burdur. The Fethiye-Burdur fault zone, the easternmost extension of the west Anatolian extensional province, extends from the Gulf of Fethiye northeastward through Burdur, a distance of about 300 km. The research area is located in the Burdur segment of the fault zone. Here, the fault zone includes several parallel to subparallel fault branching and en-echelon faults that lie within a linear belt, as much as 20 km in width. The direction of movement in the fault zone has been oblique-slip in the left lateral sense. The basement of the study area consists of the Triassic-Eocene Lycian Nappes, the Eocene-Oligocene molasse sediments and the lower Miocene marine rocks. The Burdur basin contains two basin infills. The ancient and deformed basin fill is composed of lacustrine sediments of the upper Miocene-lower Pliocene age. The younger and undeformed basin fill comprises Plio-Quaternary alluvial fan and recent basin-floor deposits and unconformably overlies the ancient basin infill. The Burdur basin is bounded by the NE-SW trending, left lateral oblique-slip normal faults, the Karakent fault on the northwest and the Burdur fault on the southeast. These faults played a key role in the development of the Burdur basin as a pull-apart basin.

Keywords: Burdur basin, Fethiye-Burdur fault zone, left lateral oblique-slip fault, Western Anatolia

Procedia PDF Downloads 390
1387 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force vs deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: graphene, pressure sensor, circular graphene nanoflake, molecular dynamics

Procedia PDF Downloads 370
1386 Eros and Postmodern Nihilism in Don Delillo’s Zero K (2016): A Psychoanalytical Reading

Authors: Nouioua Wafa

Abstract:

It is broadly accepted that the existence of postmodern individuals is distinguished by a predominant presence of skepticism, anxiety and loneliness. This social unrest is the consequence of a drastic shift in how reality and meaning are conceived, which has been replaced by something that is referred to in media theory and criticism as hyperreality. The purpose of this paper is to investigate the hyperreality that exists in the postmodern nihilistic American community that Don Delillo depicts in Zero K (2016) through the use of Jean Baudrillard's notions of Simulacra and Simulations. It is a troubled technological late capitalist society obsessed with immortality and fear of demise, and ergo it is an appropriate reading to implement Sigmund Freud’s theory of life drive (Eros), which refers to the life instinct fundamental to all humans and the urge to support productivity and construction. The results obtained from a qualitative analysis of Zero K indicate the presence of a clash between the character’s life drive and fear of mortality. In an effort to escape loneliness and death, the character Ross Lockhart undergoes, after a moment of hesitation, cryonic freezing in the convergence to preserve his life as well as that of his wife Artis, yet his son Jeffery is firmly convinced of the uselessness of combating the inevitable death.

Keywords: Don DeLillo, Eros, postmodernism Nihilism, Zero K

Procedia PDF Downloads 55
1385 Eros and Postmodern Nihilism in Don Delillo’s Zero K (2016): A Psychoanalytical Reading

Authors: Wafa Nouioua

Abstract:

It is broadly accepted that the existence of postmodern individuals is distinguished by a predominant presence of skepticism, anxiety and loneliness. This social unrest is the consequence of a drastic shift in how reality and meaning are conceived, which has been replaced by something that is referred to in media theory and criticism as hyperreality. The purpose of this paper is to investigate the hyperreality that exists in the postmodern nihilistic American community that Don Delillo depicts in Zero K (2016) through the use of Jean Baudrillard notions of Simulacra and Simulations. It is a troubled technological late capitalist society obsessed with immortality and fear of demise, ergo it is an appropriate reading to implement Sigmund Freud’s theory of life drive (Eros), which refers to the life instinct fundamental to all humans and the urge to support productivity and construction. The results obtained from a qualitative analysis of Zero K indicate the presence of a clash between the character’s life drive and fear of mortality. In an effort to escape loneliness and death, the character Ross Lockhart undergoes, after a moment of hesitation, cryonic freezing in the convergence to preserve his life as well as that of his wife Artis, yet his son Jeffery is firmly convinced of the uselessness of combating the inevitable death.

Keywords: Don Dellilo, Eros, Postmodernism Nihilism, Zero K

Procedia PDF Downloads 50
1384 Authoring Tactile Gestures: Case Study for Emotion Stimulation

Authors: Rodrigo Lentini, Beatrice Ionascu, Friederike A. Eyssel, Scandar Copti, Mohamad Eid

Abstract:

The haptic modality has brought a new dimension to human computer interaction by engaging the human sense of touch. However, designing appropriate haptic stimuli, and in particular tactile stimuli, for various applications is still challenging. To tackle this issue, we present an intuitive system that facilitates the authoring of tactile gestures for various applications. The system transforms a hand gesture into a tactile gesture that can be rendering using a home-made haptic jacket. A case study is presented to demonstrate the ability of the system to develop tactile gestures that are recognizable by human subjects. Four tactile gestures are identified and tested to intensify the following four emotional responses: high valence – high arousal, high valence – low arousal, low valence – high arousal, and low valence – low arousal. A usability study with 20 participants demonstrated high correlation between the selected tactile gestures and the intended emotional reaction. Results from this study can be used in a wide spectrum of applications ranging from gaming to interpersonal communication and multimodal simulations.

Keywords: tactile stimulation, tactile gesture, emotion reactions, arousal, valence

Procedia PDF Downloads 348
1383 Nations in Labour: Incorporating National Narratives in Sociological Models of Cultural Labour

Authors: Anna Lytvynova

Abstract:

This essay presents labour as a performatively national phenomenon from a cultural perspective. Considering Engels’ proposition of labour as the epicentre of development of social structures and communities, it theorizes the formation and sustainment of group identities through labour identities. Taking labour in the cultural sector as the starting point case study, the essay further enunciates such labour and labour identity as a form of engaged citizenship. In doing so, this piece hopes to arrive at a potential contemporary understanding of labour as having a central and dynamic role in cultural organization and citizenship. A parallel goal is to de-link sociological models of cultural labor from narratives of art and culture as something that stands separate from the 'real world' and the economy and exists in precarity. Combining discourse from cultural sociology, performance studies, and economics and grounding it in historical archive, the essay makes a primarily discursive theoretical contribution. Taking North American theatre organizations as the exemplifying starting point, this project positions cultural workers not solely as workers in a professional industry but as active citizen-subjects who are deeply involved in their society’s democratic processes. The resulting discourse can be used to shape more effective labour policies, as well as help art and cultural organizations find more effective organizational structures to engage the arts in the economic, political, and social spheres.

Keywords: arts labour, cultural sociology, national identity, performativity

Procedia PDF Downloads 112
1382 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation

Procedia PDF Downloads 116
1381 The Woman in Arabic Popular Proverbs, Stereotypical Roles and Actual Pain: The Woman in the Institution of Marriage as a Sample

Authors: Hanan Bishara

Abstract:

This study deals with the subject of Popular Arabic Proverbs and the stereotypical roles and images that they create about the woman in general and Arab woman in particular. Popular proverbs in general are considered to be essence of experiences of society and the extract of its collective thought establish wisdom in a distinguished concise tight mold or style that affects the majority of people and keep them alive by virtue of constant use and oral currency through which they are transmitted from one generation to another. Proverbs deal with different aspects and types of people, different social relations, including the society's attitude about the woman. Proverbs about women in the human heritage in general and the Arab heritage in particular are considered of a special characteristics and remarkable in their being dynamic ones that move in all directions of life. Most of them carry the essence of the social issues and are distributed in such a way that they have become part of the private life of the general public. This distribution covers all periods and fields of the woman's life, the social, the economic and psychological ones. The woman occupies a major space in the Popular Proverbs because she is the center of social life inside and outside the house. The woman's statuses and images in the provers are numerous and she is often described in parallel images but each one differs from the other. These images intertwine due to their varieties and multiplicity and ultimately, they constitute a general stereotypical image of the woman, which degrades her status as a woman, a mother and a wife. The study shows how Popular Proverbs in Arabic reflect the Arab woman's position and status in her society.

Keywords: Arab, proverb, popular, society, woman

Procedia PDF Downloads 173
1380 Numerical Investigations on the Coanda Effect

Authors: Florin Frunzulica, Alexandru Dumitrache, Octavian Preotu

Abstract:

The Coanda effect consists of the tendency of a jet to remain attached to a sufficiently long/large convex surface. Flows deflected by a curved surface have caused great interest during last fifty years a major interest in the study of this phenomenon is caused by the possibility of using this effect to aircraft with short take-off and landing, for thrust vectoring. It is also used in applications involving mixing two of more fluids, noise attenuation, ventilation, etc. The paper proposes the numerical study of an aerodynamic configuration that can passively amplify the Coanda effect. On a wing flaps with predetermined configuration, a channel is applied between two particular zones, a low-pressure one and a high-pressure another one, respectively. The secondary flow through this channel yields a gap between the jet and the convex surface, maintaining the jet attached on a longer distance. The section altering-based active control of the secondary flow through the channel controls the attachment of the jet to the surface and automatically controls the deviation angle of the jet. The numerical simulations have been performed in Ansys Fluent for a series of wing flaps-channel configurations with varying jet velocity. The numerical results are in good agreement with experimental results.

Keywords: blowing jet, CFD, Coanda effect, circulation control

Procedia PDF Downloads 325
1379 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control

Procedia PDF Downloads 135
1378 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study

Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton

Abstract:

The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.

Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline

Procedia PDF Downloads 286
1377 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain

Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado

Abstract:

In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.

Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM

Procedia PDF Downloads 327
1376 Development and Characterization of Synthetic Non-Woven for Sound Absorption

Authors: P. Sam Vimal Rajkumar, K. Priyanga

Abstract:

Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.

Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient

Procedia PDF Downloads 283
1375 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin

Authors: Mohammad Salehi, Mohammad Erfan Doraki

Abstract:

In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.

Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink

Procedia PDF Downloads 103
1374 Types of School Aggression Amongst Bulgarian Students in the Age Group of 12–18 Years-Old

Authors: Yolanda Zografova, Ekaterina Dimitrova, Tsvetelina Panchelieva, Victoria Nedeva-Atanasova

Abstract:

Aggression and violence amongst school-aged children are widely spread phenomenon, which is expanding both on a global level and in Bulgaria. The purpose of the paper is to reveal the overall range of different types and manifestations of school aggression in a specific age group (12 to 18 years old students) from the 5th to the 12th grade according to the Bulgarian education system. In addition, the research investigates the dynamics of aggressive behaviour in two parallel lines – a horizontal one (with students from the same age) and a vertical one (with students from different grade). In the current study based on the original authors’ inventory (School Aggression Questionnaire), the three main types of aggression are measured – physical, verbal and indirect. The sample consists of 300 students from schools in a big metropolitan city, a mid-sized town, and a small town. Results show that the predominant aggression type is the verbal one, but this is the predominant type for the girls in the sample, not for the boys. Another result is that the higher the school grade, the lower levels of overall aggression is shown by the students. The study of such a multi-dimensional phenomenon as the aggression will provide up-to-date scientific knowledge, important both for the development of science on these topics, and useful for public interests in relation to the balanced development of children and adolescents at school. The results provide an excellent base for the development of prevention and intervention programs in order to reduce school aggression.

Keywords: educational psychology, School aggression, interpersonal relations, school aggression questionnaire, types of aggression

Procedia PDF Downloads 111
1373 Slip Suppression Sliding Mode Control with Various Chattering Functions

Authors: Shun Horikoshi, Tohru Kawabe

Abstract:

This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.

Keywords: sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis

Procedia PDF Downloads 304