Search results for: machine resistance training
7941 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 4367940 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications
Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches
Abstract:
Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.Keywords: groundwater monitoring, observation networks, machine learning, madrid
Procedia PDF Downloads 777939 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.Keywords: temporal graph network, anomaly detection, cyber security, IDS
Procedia PDF Downloads 1027938 Tunnelling Concepts in Overstressed Weak Rocks
Authors: Entfellner Manuel, Wannenmacher Helmut, Reisenbauer Josef, Schubert Wulf
Abstract:
When tunnelling in overstressed weak rocks ("squeezing ground"), two basic design approaches are available: the resistance principle, and the yielding principle. The resistance principle relies on rigid support systems to withstand the ground pressure. Alternatively, the yielding principle prioritizes controlled deformation, allowing the ground to deform without compromising tunnel integrity. This paper highlights the beneficial factors of the yielding principle for conventionally excavated tunnels in overstressed weak rocks. Especially the application of a ductile shotcrete lining with yielding elements is analysed in detail. Construction costs, safety, short- and long-term stabilities are discussed.Keywords: squeezing ground, yielding principle, yielding element, conventional tunneling
Procedia PDF Downloads 697937 Implications of Creating a 3D Vignette as a Reflective Practice for Continuous Professional Development of Foreign Language Teachers
Authors: Samiah H. Ghounaim
Abstract:
The topic of this paper is significant because of the increasing need for intercultural training for foreign language teachers due to the continuous challenges they face in their diverse classrooms. First, the structure of the intercultural training program designed will be briefly described, and the structure of a 3D vignette and its intended purposes will be elaborated on. This was the first stage where the program was designed and implemented on the period of three months with a group of local and expatriate foreign language teachers/practitioners at a university in the Middle East. After that, a set of primary data collected during the first stage of this research on the design and co-construction process of a 3D vignette will be reviewed and analysed in depth. Each practitioner designed a personal incident into a 3D vignette where each dimension of the vignette viewed the same incident from a totally different perspective. Finally, the results and the implications of having participant construct their personal incidents into a 3D vignette as a reflective practice will be discussed in detail as well as possible extensions for the research. This process proved itself to be an effective reflective practice where the participants were stimulated to view their incidents in a different light. Co-constructing one’s own critical incidents –be it a positive experience or not– into a structured 3D vignette encouraged participants to decentralise themselves from the incidents and, thus, creating a personal reflective space where they had the opportunity to see different potential outcomes for each incident, as well as prepare for the reflective discussion of their vignette with their peers. This provides implications for future developments in reflective writing practices and possibilities for educators’ continuous professional development (CPD).Keywords: 3D vignettes, intercultural competence training, reflective practice, teacher training
Procedia PDF Downloads 1057936 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring
Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam
Abstract:
The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera
Procedia PDF Downloads 1397935 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance
Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu
Abstract:
Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance
Procedia PDF Downloads 1327934 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 1657933 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering
Authors: Alieh Farshbaf
Abstract:
Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.Keywords: stem cell, AIDS, gene modification, cell engineering
Procedia PDF Downloads 2997932 Permanent Deformation Resistance of Asphalt Mixtures with Red Mud as a Filler
Authors: Liseane Padilha Thives, Mayara S. S. Lima, João Victor Staub De Melo, Glicério Trichês
Abstract:
Red mud is a waste resulting from the processing of bauxite to alumina, the raw material of the production of aluminum. The large quantity of red mud generated and inadequately disposed in the environment has motivated researchers to develop methods for reinsertion of this waste into the productive cycle. This work aims to evaluate the resistance to permanent deformation of dense asphalt mixtures with red mud filler. The red mud was characterized by tests of X-ray diffraction, fluorescence, specific mass, laser granulometry, pH and scanning electron microscopy. For the analysis of the influence of the quantity of red mud in the mechanical performance of asphalt mixtures, a total filler content of 7% was established. Asphalt mixtures with 3%, 5% and 7% red mud were produced. A conventional mixture with 7% stone powder filler was used as reference. The asphalt mixtures were evaluated for performance to permanent deformation in the French Rutting Tester (FRT) traffic simulator. The mixture with 5% red mud presented greater resistance to permanent deformation with rutting depth at 30,000 cycles of 3.50%. The asphalt mixtures with red mud presented better performance, with reduction of the rutting of 12.63 to 42.62% in relation to the reference mixture. This study confirmed the viability of reinserting the red mud in the production chain and possible usage in the construction industry. The red mud as filler in asphalt mixtures is a reuse option of this waste and mitigation of the disposal problems, as well as being an environmentally friendly alternative.Keywords: asphalt mixtures, permanent deformation, red mud, pavements
Procedia PDF Downloads 2887931 The Effect of Low Power Laser on CK and Some of Markers Delayed Onset Muscle Soreness (DOMS)
Authors: Bahareh Yazdanparast Chaharmahali
Abstract:
The study showed effect of low power laser therapy on knee range of motion (flexion and extension), resting angle of knee joint, knee circumference and rating of delayed onset muscle soreness induced pain, 24 and 48 hours after eccentric training of knee flexor muscle (hamstring muscle). We investigate the effects of pulsed ultrasound on swelling, relaxed, flexion and extension knee angle and pain. 20 volunteers among girl students of college voluntary participated in this research. After eccentric training, subjects were randomly divided into two groups, control and laser therapy. In day 1 and in order to induce delayed onset muscle soreness, subjects eccentrically trained their knee flexor muscles. In day 2, subjects were randomly divided into two groups: control and low power laser therapy. 24 and 48 hours after eccentric training. Variables (knee flexion and extension, srang of motion, resting knee joint angle and knee circumferences) were measured and analyzed. Data are reported as means ± standard error (SE) and repeated measured was used to assess differences within groups. Methods of treatment (low power laser therapy) have significant effects on delayed onset muscle soreness markers. 24 and 48 hours after training a significant difference was observed between mean pains of 2 groups. This difference was significant between low power laser therapy and C groups. The Bonferroni post hock is significant. Low power laser therapy trophy as used in this study did significantly diminish the effects of delayed – onset muscle soreness on swelling, relaxed – knee extension and flexion angle.Keywords: creatine kinase, DOMS, eccentric training, low power laser
Procedia PDF Downloads 2457930 Effect of 8 Weeks of Intervention on Physical Fitness, Hepatokines, and Insulin Resistance in Obese Subjects
Authors: Adela Penesova, Zofia Radikova, Boris Bajer, Andrea Havranova, Miroslav Vlcek
Abstract:
Background: The aim of our study was to compare the effect of intensified lifestyle intervention on insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fibroblast growth factor (FGF) 21 after 8 weeks of lifestyle intervention. Methods: A group of 43 obese patients (13M/30F; 43.0±12.4 years; BMI (body mass index) 31.2±6.3 kg/m2 participated in a weight loss interventional program (NCT02325804) following an 8-week hypocaloric diet (-30% energy expenditure) and physical activity 150 minutes/week. Insulin sensitivity was evaluated according to the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity indices according to Matsuda and Cederholm were calculated (ISImat and ISIced). Plasma ALT, AST, Fetuin-A, FGF 21, and physical fitness were measured. Results: The average reduction of body weight was 6.8±4.9 kg (0-15 kg; p=0.0006), accompanied with a significant reduction of body fat amount of fat mass (p=0.03), and waist circumference (p=0.02). Insulin sensitivity has been improved (IR HOMA 2.71±3.90 vs 1.24±0.83; p=0.01; ISIMat 6.64±4.38 vs 8.93±5.36 p ≤ 0.001). Total, LDL cholesterol, and triglycerides decreased (p=0.05, p=0.04, p=0.04, respectively). Physical fitness significantly improved after intervention (as measure VO2 max (maximal oxygen uptake) (p ≤ 0.001). ALT decreased significantly (0.44±0.26 vs post 0.33±0.18 ukat/l, p=0.004); however, AST not (pre 0.40±0.15 vs 0.35±0.09 ukat/l, p=0.07). Hepatokine Fetuin-A significantly decreased after intervention (43.1±10.8 vs 32.6±8.6 ng/ml, p < 0.001); however, FGF 21 levels tended to decrease (146±152 vs 132±164 pg/ml, p=0.07). Conclusion: 8-weeks of diet and physical activity intervention program in obese otherwise healthy subjects led to an improvement of insulin resistance parameters and liver marker profiles, as well as increased physical fitness. This study was supported by grants APVV 15-0228; VEGA 2/0161/16.Keywords: obesity, diet, exercice, insulin sensitivity
Procedia PDF Downloads 2007929 Teaching Italian Sign Language in Higher Education
Authors: Maria Tagarelli De Monte
Abstract:
Since its formal recognition in 2021, Italian Sign Language (LIS) and interpreters’ education has become a topic for higher education in Italian universities. In April 2022, Italian universities have been invited to present their proposals to create sign language courses for interpreters’ training for both LIS and tactile LIS. As a result, a few universities have presented a three-year course leading candidate students from the introductory level to interpreters. In such a context, there is an open debate not only on the fact that three years may not be enough to prepare skillful interpreters but also on the need to refer to international standards in the definition of the training path to follow. Among these, are the Common European Framework of Reference (CEFR) for languages and Dublin’s descriptors. This contribution will discuss the potentials and the challenges given by LIS training in academic settings, by comparing traditional studies to the requests coming from universities. Particular attention will be given to the use of CEFR as a reference document for the Italian Sign Language Curriculum. Its use has given me the chance to reflect on how LIS can be taught in higher education, and the adaptations that need to be addressed to respect the visual-gestural nature of sign language and the formal requirements of academic settings.Keywords: Italian sign language, higher education, sign language curriculum, interpreters education, CEFR
Procedia PDF Downloads 427928 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery
Authors: Payal Patel
Abstract:
Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.Keywords: flyer, size optimization, textile, weight
Procedia PDF Downloads 2147927 Predicting Daily Patient Hospital Visits Using Machine Learning
Authors: Shreya Goyal
Abstract:
The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.Keywords: machine learning, SVM, HIPAA, data
Procedia PDF Downloads 657926 Virtual Screening of Potential Inhibitors against Efflux Pumps of Mycobacterium tuberculosis
Authors: Gagan Dhawan
Abstract:
Mycobacterium tuberculosis was described as ‘captain of death’ with an inherent property of multiple drug resistance majorly caused by the competent mechanism of efflux pumps. In this study, various open source tools combining chemo-informatics with bioinformatics were used for efficient in-silico drug designing. The efflux pump, Rv1218c, belonging to the ABC transporter superfamily, which is predicted to be a tetronasin-transporter in M. tuberculosis was targeted. Recent studies have shown that Rv1218c forms a complex with two more efflux pumps (Rv1219c and Rv1217c) to provide multidrug resistance to the bacterium. The 3D structure of the protein was modeled (as the structure was unavailable in the previously collected databases on this gene). The TMHMM analysis of this protein in TubercuList has shown that this protein is present in the outer membrane of the bacterium. Virtual screening of compounds from various publically available chemical libraries was performed on the M. tuberculosis protein using various open source tools. These ligands were further assessed where various physicochemical properties were evaluated and analyzed. On comparison of different physicochemical properties, toxicity and docking, the ligand 2-(hydroxymethyl)-6-[4, 5, 6-trihydroxy-2-(hydroxymethyl) tetrahydropyran-3-yl] oxy-tetrahydropyran-3, 4, 5-triol was found to be best suited for further studies.Keywords: drug resistance, efflux pump, molecular docking, virtual screening
Procedia PDF Downloads 3687925 Effects of 8-Week of Yoga Training on Muscular Strength, Muscular Endurance, Flexibility and Agility of Female Hockey Players
Authors: Tarsem Singh
Abstract:
The aim of the present study was to investigate the effect of yoga training on muscular strength, muscular endurance, flexibility and agility of female hockey players. For this purpose, a sample of forty (N=40) female hockey players of age ranging from 18 to 25 years were selected from different colleges affiliated to Guru Nanak Dev University Amritsar. Further, the subjects were purposively divided in two groups. First group, designated as experimental group (N1=20) and the second one as control group (N2=20). All the participants were informed about the objectives and methodology of this study and they volunteered to participate in this experimental study. The study was restricted to the variables: muscular strength, muscular endurance, flexibility and agility. The same were measured by using Flexed Arms Hang Test, Sit-Ups Test, Sit and Reach Test and Shuttle Run Test respectively. Experimental group have undergone yoga training for 8-week by following a sequence of selected yogic asanas i.e. Sarvangasana, Chakra-asana, Utthita Parsvakonasana, Parivrtta Trikonasana, Halasana, Bhujangasana, Dhanurasana, Ustrasana, Gomukasana, Paschimotansana, Ardha-Matsyendrasana and Hanumanasan. Paired sample t-test was applied to study the effects of yoga training on female hockey players. The level of significance was set at 0.05. Results revealed significant differences between pre and post-tests of experimental group in respect to Muscular strength (t-6.946*), Muscular endurance (t-9.863*), Flexibility (t-11.052*) and Agility (t-14.068*). However, insignificant differences were observed between pre and post-tests of control group.Keywords: yoga, muscular strength, muscular endurance, flexibility, agility
Procedia PDF Downloads 3257924 Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte
Authors: Manuel Salado, Mikel Rincón, Arkaitz Fidalgo, Roberto Fernandez, Senentxu Lanceros-Méndez
Abstract:
Lithium-ion batteries (LIBs) are a promising technology for energy storage, but they suffer from safety concerns due to the use of flammable organic solvents in their liquid electrolytes. Solid-state electrolytes (SSEs) offer a potential solution to this problem, but they have their own limitations, such as poor ionic conductivity and high interfacial resistance. The aim of this research was to develop a new type of SSE based on metal-organic frameworks (MOFs) and ionic liquids (ILs). MOFs are porous materials with high surface area and tunable electronic properties, making them ideal for use in SSEs. ILs are liquid electrolytes that are non-flammable and have high ionic conductivity. A series of MOFs were synthesized, and their electrochemical properties were evaluated. The MOFs were then infiltrated with ILs to form a quasi-solid gel and solid xerogel SSEs. The ionic conductivity, interfacial resistance, and electrochemical performance of the SSEs were characterized. The results showed that the MOF-IL SSEs had significantly higher ionic conductivity and lower interfacial resistance than conventional SSEs. The SSEs also exhibited excellent electrochemical performance, with high discharge capacity and long cycle life. The development of MOF-IL SSEs represents a significant advance in the field of solid-state electrolytes. The high ionic conductivity and low interfacial resistance of the SSEs make them promising candidates for use in next-generation LIBs. The data for this research was collected using a variety of methods, including X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The data was analyzed using a variety of statistical and computational methods, including principal component analysis, density functional theory, and molecular dynamics simulations. The main question addressed by this research was whether MOF-IL SSEs could be developed that have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. The results of this research demonstrate that MOF-IL SSEs are a promising new type of solid-state electrolyte for use in LIBs. The SSEs have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. These properties make them promising candidates for use in next-generation LIBs that are safer and have higher energy densities.Keywords: energy storage, solid-electrolyte, ionic liquid, metal-organic-framework, electrochemistry, organic inorganic plastic crystal
Procedia PDF Downloads 827923 Music Training as an Innovative Approach to the Treatment of Language Disabilities
Authors: Jonathan Bolduc
Abstract:
Studies have demonstrated the effectiveness of music training approaches to help children with language disabilities. Because music is closely associated with a number of cognitive functions, including language, it has been hypothesized that musical skills transfer to other domains. Research suggests that music training strengthens basic auditory processing skills in dyslexic children and may ameliorate phonological deficits. Furthermore, music instruction has the particular advantage of being non-literacy-based, thus removing the frustrations that can be associated with reading and writing activities among children with specific learning disabilities. In this study, we assessed the effect of implementing an intensive music program on the development of language skills (phonological and reading) in 4- to 9-year-old children. Seventeen children (N=17) participated in the study. The experiment took place over 6 weeks in a controlled environment. Eighteen lessons of 40 minutes were offered during this period by two music specialists. The Dalcroze, Orff, and Kodaly approaches were used. A series of qualitative measures were implemented to document the contribution of music training to this population. Currently, the data is being analyzed. The first results show that learning music seems to significantly improve verbal memory. We already know that language disabilities are considered one of the main causes of school dropout as well as later professional and social failure. We aim to corroborate that an integrated music education program can provide children with language disabilities with the same opportunities to develop and succeed in school as their classmates. Scientifically, the results will contribute to advance the knowledge by identifying the more effective music education strategies to improve the overall development of children worldwide.Keywords: music education, music, art education, language diasabilities
Procedia PDF Downloads 2297922 Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance
Authors: Aysegul Sarac
Abstract:
Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms.Keywords: optimization, 6-Sigma methodology, washer-dryers, water condensation technology
Procedia PDF Downloads 3587921 M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times
Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi
Abstract:
Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature.Keywords: algorithm, assembly flowshop, scheduling, simulation, total tardiness
Procedia PDF Downloads 3287920 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface
Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu
Abstract:
Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.Keywords: shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface
Procedia PDF Downloads 1607919 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen
Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev
Abstract:
The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms
Procedia PDF Downloads 887918 Epidemiological Profile of Hospital Acquired Infections Caused by Acinetobacter baumannii in Intensive Care Unit
Authors: A. Dali-Ali, F. Agag, H. Beldjilali, A. Oukebdane, K. Meddeber, R. Dali-Yahia, N. Midoun
Abstract:
The ability of Acinetobacter baumannii to develop multiple resistances towards to the majority of antibiotics explains the therapeutic difficulties encountered in severe infections. Furthermore, its persistence in the humid or dry environment promotes cross-contamination in intensive care units. The aim of our study was to describe the epidemiological and bacterial resistance profiles of hospital-acquired infections caused by Acinetobacter baumannii in the intensive care unit of our teaching hospital. During the study period (June 3, 2012 to December 31, 2013), 305 patients having duration of hospitalization equal or more than 48 hours were included in the study. Among these, 36 had developed, at least, one health-care associated infection caused by Acinetobacter baumannii. The rate of infected patients was equal to 11.8% (36/305). The rate of cumulative incidence of hospital-acquired pneumonia was the highest (9.2%) followed by central venous catheter infection (1.3%). Analysis of the various antibiotic resistance profile shows that 93.8% of the strains were resistant to imipenem. The nosocomial infection control committee set up a special program not only to reduce the high rates of incidence of these infections but also to descrease the rate of imipenem resistance.Keywords: Acinetobacer baumannii, epidemiological profile, hospital acquired infections, intensive care unit
Procedia PDF Downloads 3287917 Microbial Load, Prevalence and Antibiotic Resistance of Microflora Isolated from the Ghanaian Paper Currency Note: A Potential Health Threat
Authors: Simon Nyarko
Abstract:
This study examined the microbial flora contamination of the Ghanaian paper currency notes and antibiotic resistance in Ejura Municipal, Ashanti Region, Ghana. This is a descriptive cross-sectional study designed to assess the profile of microflora contamination of the Ghanaian paper currency notes and antibiotic-resistant in the Ejura Municipality. The research was conducted in Ejura, a town in the Ejura Sekyeredumase Municipal of the Ashanti region of Ghana. 70 paper currency notes which were freshly collected from the bank, consisting of 15 pieces of GH ¢1, GH ¢2, and GH ¢5, 10 pieces of GH ¢10 and GH ¢20, and 5 pieces of GH ¢50, were randomly sampled from people by exchanging their money in usage with those freshly secured from the bank. The surfaces of each GH¢ note were gently swabbed and sent to the lab immediately in sterile Zip Bags and sealed, and tenfold serial dilution was inoculated on plate count agar (PCA), MacConkey agar (MCA), mannitol salt agar (MSA), and deoxycholate citrate agar (DCA). For bacterial identification, the study used appropriate laboratory and biochemical tests. The data was analyzed using SPSS-IBM version 20.0. It was found that 95.2 % of the 70 GH¢ notes tested positive for one or more bacterial isolates. On each GH¢ note, mean counts on PCA ranged from 3.0 cfu/ml ×105 to 4.8 cfu/ml ×105. Of 124 bacteria isolated. 36 (29.03 %), 32 (25.81%), 16 (12.90 %), 20 (16.13%), 13 (10.48 %), and 7 (5.66 %) were from GH¢1, GH¢2, GH¢10, GH¢5, GH¢20, and GH¢50, respectively. Bacterial isolates were Escherichia coli (25.81%), Staphylococcus aureus (18.55%), coagulase-negative Staphylococcus (15.32%), Klebsiella species (12.10%), Salmonella species (9.68%), Shigella species (8.06%), Pseudomonas aeruginosa (7.26%), and Proteus species (3.23%). Meat shops, commercial drivers, canteens, grocery stores, and vegetable shops contributed 25.81 %, 20.16 %, 19.35 %, 17.74 %, and 16.94 % of GH¢ notes, respectively. There was 100% resistance of the isolates to Erythromycin (ERY), and Cotrimoxazole (COT). Amikacin (AMK) was the most effective among the antibiotics as 75% of the isolates were susceptible to it. This study has demonstrated that the Ghanaian paper currency notes are heavily contaminated with potentially pathogenic bacteria that are highly resistant to the most widely used antibiotics and are a threat to public health.Keywords: microflora, antibiotic resistance, staphylococcus aureus, culture media, multi-drug resistance
Procedia PDF Downloads 1067916 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1437915 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3487914 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 667913 Importance of Human Resources Training in an Information Age
Authors: A. Serap Fırat
Abstract:
The aim of this study is to display conceptually the relationship and interaction between matter of human resources training and the information age. Fast development from industrial community to an information community has occurred and organizations have been seeking ways to overcome this change. Human resources policy and human capital with enhanced competence will have direct impact on work performance; therefore, this paper deals with the increased importance of human resource management due to the fact that it nurtures human capital. Researching and scanning are used as a method in this study. Both local and foreign literature and expert views are employed -as much as one could be- in the making of the theoretical framework of this study.Keywords: human resources, information age, education, organization, occupation
Procedia PDF Downloads 3717912 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)
Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz
Abstract:
Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)
Procedia PDF Downloads 383