Search results for: legal artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4182

Search results for: legal artificial intelligence

2622 The Analysis of Regulation on Sustainability in the Financial Sector in Lithuania

Authors: Dalia Kubiliūtė

Abstract:

Lithuania is known as a trusted location for global business institutions, and it attracts investors with it’s competitive environment for financial service providers. Along with the aspiration to offer a strong results-oriented and innovations-driven environment for financial service providers, Lithuanian regulatory authorities consistently implement the European Union's high regulatory standards for financial activities, including sustainability-related disclosures. Since European Union directed its policy towards transition to a climate-neutral, green, competitive, and inclusive economy, additional regulatory requirements for financial market participants are adopted: disclosure of sustainable activities, transparency, prevention of greenwashing, etc. The financial sector is one of the key factors influencing the implementation of sustainability objectives in European Union policies and mitigating the negative effects of climate change –public funds are not enough to make a significant impact on sustainable investments, therefore directing public and private capital to green projects may help to finance the necessary changes. The topic of the study is original and has not yet been widely analyzed in Lithuanian legal discourse. There are used quantitative and qualitative methodologies, logical, systematic, and critical analysis principles; hence the aim of this study is to reveal the problem of the implementation of the regulation on sustainability in the Lithuanian financial sector. Additional regulatory requirements could cause serious changes in financial business operations: additional funds, employees, and time have to be dedicated in order for the companies could implement these regulations. Lack of knowledge and data on how to implement new regulatory requirements towards sustainable reporting causes a lot of uncertainty for financial market participants. And for some companies, it might even be an essential point in terms of business continuity. It is considered that the supervisory authorities should find a balance between financial market needs and legal regulation.

Keywords: financial, legal, regulatory, sustainability

Procedia PDF Downloads 105
2621 Unravelling the Procedural Obligations of the Administration in the Case Law of the European Court of Human Rights

Authors: Agne Andrijauskaite

Abstract:

The observance of procedural rights by administrative authorities is essential for the effective implementation of subjective rights and is part and parcel of the notion of good governance. Whilst a lot of legal scholarship addresses the scope and content of such rights under the European Union legal framework, a very limited attention is given to their application in the case law of European Court of Human Rights (ECtHR) despite its growing engagement with the subject. This paper written as a part of a wider project on the development of pan-European principles of good administration by the Council of Europe aims to fill this lacuna. This will be done by delimiting the scope and extent of individual procedural safeguards through an analysis of the practice of the ECtHR. The right to be heard, the right to access the files and the right to a decision in reasonable time by administrative authorities will be selected as loci classici for the purpose of this article. The results presented in the paper should contribute to the awareness of growing body of ECtHR’s case-law revolving around administrative procedural law and the growing debate on the notion of good governance found therein within academic community.

Keywords: European Court of Human Rights, good governance, procedural rights, procedural Law

Procedia PDF Downloads 286
2620 Multiple Intelligence Theory with a View to Designing a Classroom for the Future

Authors: Phalaunnaphat Siriwongs

Abstract:

The classroom of the 21st century is an ever-changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pinpoint an exact number, it is clear that in this case, more does not mean better. By looking into the success and pitfalls of classroom size, the true advantages of smaller classes becomes clear. Previously, one class was comprised of 50 students. Since they were seventeen- and eighteen-year-old students, it was sometimes quite difficult for them to stay focused. To help students understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.

Keywords: multiple intelligences, role play, performance assessment, formative assessment

Procedia PDF Downloads 283
2619 The Role of Executive Functions and Emotional Intelligence in Leadership: A Neuropsychological Perspective

Authors: Chrysovalanto Sofia Karatosidi, Dimitra Iordanoglou

Abstract:

The overlap of leadership skills with personality traits, beliefs, values, and the integration of cognitive abilities, analytical and critical thinking skills into leadership competencies raises the need to segregate further and investigate them. Hence, the domains of cognitive functions that contribute to leadership effectiveness should also be identified. Organizational cognitive neuroscience and neuroleadership can shed light on the study of these critical leadership skills. As the first part of our research, this pilot study aims to explore the relationships between higher-order cognitive functions (executive functions), trait emotional intelligence (EI), personality, and general cognitive ability in leadership. Twenty-six graduate and postgraduate students were assessed on neuropsychological tests that measure important aspects of executive functions (EF) and completed self-reported questionnaires about trait EI, personality, leadership styles, and leadership effectiveness. Specifically, we examined four core EF—fluency (phonemic and semantic), information updating and monitoring, working memory, and inhibition of prepotent responses. Leadership effectiveness was positively associated with phonemic fluency (PF), which involves mental flexibility, in turn, an increasingly important ability for future leaders in this rapidly changing world. Transformational leadership was positively associated with trait EI, extraversion, and openness to experience, a result that is following previous findings. The relationship between specific EF constructs and leadership effectiveness emphasizes the role of higher-order cognitive functions in the field of leadership as an individual difference. EF brings a new perspective into leadership literature by providing a direct, non-invasive, scientifically-valid connection between brain function and leadership behavior.

Keywords: cognitive neuroscience, emotional intelligence, executive functions, leadership

Procedia PDF Downloads 160
2618 Mending Broken Fences Policing: Developing the Intelligence-Led/Community-Based Policing Model(IP-CP) and Quality/Quantity/Crime(QQC) Model

Authors: Anil Anand

Abstract:

Despite enormous strides made during the past decade, particularly with the adoption and expansion of community policing, there remains much that police leaders can do to improve police-public relations. The urgency is particularly evident in cities across the United States and Europe where an increasing number of police interactions over the past few years have ignited large, sometimes even national, protests against police policy and strategy, highlighting a gap between what police leaders feel they have archived in terms of public satisfaction, support, and legitimacy and the perception of bias among many marginalized communities. The decision on which one policing strategy is chosen over another, how many resources are allocated, and how strenuously the policy is applied resides primarily with the police and the units and subunits tasked with its enforcement. The scope and opportunity for police officers in impacting social attitudes and social policy are important elements that cannot be overstated. How do police leaders, for instance, decide when to apply one strategy—say community-based policing—over another, like intelligence-led policing? How do police leaders measure performance and success? Should these measures be based on quantitative preferences over qualitative, or should the preference be based on some other criteria? And how do police leaders define, allow, and control discretionary decision-making? Mending Broken Fences Policing provides police and security services leaders with a model based on social cohesion, that incorporates intelligence-led and community policing (IP-CP), supplemented by a quality/quantity/crime (QQC) framework to provide a four-step process for the articulable application of police intervention, performance measurement, and application of discretion.

Keywords: social cohesion, quantitative performance measurement, qualitative performance measurement, sustainable leadership

Procedia PDF Downloads 297
2617 Fragmentation of The Multilateral Trading System: The Impact of Regionalism on WTO Law

Authors: Musa Njabulo Shongwe

Abstract:

The multilateral trading system is facing a great danger of fragmentation. Its modus operandi, multilateralism, is increasingly becoming clogged by trade barriers created by the proliferation of preferential regional trading blocs. The paper explores the fragmentation of the multilateral trade regulation system (WTO law) by analysing whether and to what extent Regional Trade Agreements (RTAs) have conflicted with the Multilateral Trading System. The paper examines the effects of RTA dominance in view of the WTO's quest for trade liberalization. This is an important inquiry because the proliferation of RTAs implies the erosion of the WTO law’s core principle of non-discrimination. The paper further explores how the proliferation of RTAs has endangered the coherence of the multilateral trading system. The study is carried out with the initial assumption that RTAs could be complementary and coherent with WTO law, and thus facilitate international trade and enhance development prospects. There is evidence that is tested by this study which suggests that RTAs can be divergent and hence undermine the WTO multilateral rules of regulating international trade. The paper finally recommends legal tools of regulating and managing the WTO-RTA interface, as well as other legal means of ensuring a harmonious existence between the WTO and regional trade arrangements.

Keywords: fragmentation of international trade law, regionalism, regional trade agreements, WTO law

Procedia PDF Downloads 377
2616 Differences in Parental Acceptance, Rejection, and Attachment and Associations with Adolescent Emotional Intelligence and Life Satisfaction

Authors: Diana Coyl-Shepherd, Lisa Newland

Abstract:

Research and theory suggest that parenting and parent-child attachment influence emotional development and well-being. Studies indicate that adolescents often describe differences in relationships with each parent and may form different types of attachment to mothers and fathers. During adolescence and young adulthood, romantic partners may also become attachment figures, influencing well being, and providing a relational context for emotion skill development. Mothers, however, tend to be remain the primary attachment figure; fathers and romantic partners are more likely to be secondary attachment figures. The following hypotheses were tested: 1) participants would rate mothers as more accepting and less rejecting than fathers, 2) participants would rate secure attachment to mothers higher and insecure attachment lower compared to father and romantic partner, 3) parental rejection and insecure attachment would be negatively related to life satisfaction and emotional intelligence, and 4) secure attachment and parental acceptance would be positively related life satisfaction and emotional intelligence. After IRB and informed consent, one hundred fifty adolescents and young adults (ages 11-28, M = 19.64; 71% female) completed an online survey. Measures included parental acceptance, rejection, attachment (i.e., secure, dismissing, and preoccupied), emotional intelligence (i.e., seeking and providing comfort, use, and understanding of self emotions, expressing warmth, understanding and responding to others’ emotional needs), and well-being (i.e., self-confidence and life satisfaction). As hypothesized, compared to fathers’, mothers’ acceptance was significantly higher t (190) = 3.98, p = .000 and rejection significantly lower t (190) = - 4.40, p = .000. Group differences in secure attachment were significant, f (2, 389) = 40.24, p = .000; post-hoc analyses revealed significant differences between mothers and fathers and between mothers and romantic partners; mothers had the highest mean score. Group differences in preoccupied attachment were significant, f (2, 388) = 13.37, p = .000; post-hoc analyses revealed significant differences between mothers and romantic partners, and between fathers and romantic partners; mothers have the lowest mean score. However, group differences in dismissing attachment were not significant, f (2, 389) = 1.21, p = .30; scores for mothers and romantic partners were similar; father means score was highest. For hypotheses 3 and 4 significant negative correlations were found between life satisfaction and dismissing parent, and romantic attachment, preoccupied father and romantic attachment, and mother and father rejection variables; secure attachment variables and parental acceptance were positively correlated with life satisfaction. Self-confidence was correlated only with mother acceptance. For emotional intelligence, seeking and providing comfort were negatively correlated with parent dismissing and mother rejection; secure mother and romantic attachment and mother acceptance were positively correlated with these variables. Use and understanding of self-emotions were negatively correlated with parent and partner dismissing attachment, and parent rejection; romantic secure attachment and parent acceptance were positively correlated. Expressing warmth was negatively correlated with dismissing attachment variables, romantic preoccupied attachment, and parent rejection; whereas attachment secure variables were positively associated. Understanding and responding to others’ emotional needs were correlated with parent dismissing and preoccupied attachment variables and mother rejection; only secure father attachment was positively correlated.

Keywords: adolescent emotional intelligence, life satisfaction, parent and romantic attachment, parental rejection and acceptance

Procedia PDF Downloads 193
2615 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 28
2614 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis

Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta

Abstract:

Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.

Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer

Procedia PDF Downloads 537
2613 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 323
2612 Next-Gen Solutions: How Generative AI Will Reshape Businesses

Authors: Aishwarya Rai

Abstract:

This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.

Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses

Procedia PDF Downloads 78
2611 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 9
2610 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 320
2609 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning

Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang

Abstract:

Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.

Keywords: intelligence, software architecture, re-architecting, software reuse, High level design

Procedia PDF Downloads 120
2608 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 200
2607 The Concept of the Family and Its Principles from the Perspective of International Human Rights Instruments

Authors: Mahya Saffarinia

Abstract:

The family has existed as a natural unit of human relations from the beginning of creation and life of human society until now and has been the core of the relationship between women, men, and children. However, in the field of human relations, the definition of family, related rights and duties, principles governing the family, the impact of the family on other individual or social phenomena and various other areas have changed over time, especially in recent decades, and the subject has now become one of the important categories of studies including interdisciplinary studies. It is difficult to provide an accurate and comprehensive definition of the family, and in the context of different cultures, customs, and legal systems, different definitions of family are presented. The meaning of legal principles governing the family is the general rules of law that determine the organization of different dimensions of the family, and dozens of partial rules are inferred from it or defined in the light of these general rules. How each of these principles was formed has left its own detailed history. In international human rights standards, which have been gradually developed over the past 72 years, numerous data can be found that in some way represent a rule in the field of family law or provide an interpretation of existing international rules which also address obligations of governments in the field of family. Based on a descriptive-analytical method and by examining human rights instruments, the present study seeks to explain the effective elements in defining and the principles governing the family. This article makes it clear that international instruments do not provide a clear definition of the family and that governments are empowered to define the family in terms of the cultural context of their community. But at the same time, it has been stipulated that governments do not have the exclusive authority to provide this definition, and certain principles should be considered as essential elements. Also, 7 principles have been identified as general legal rules governing all international human rights instruments related to the family, such as the principle of voluntary family formation and the prohibition of forced marriage, and the principle of respecting human dignity for all family members. Each of these 7 principles has led to different debates, and the acceptance or non-acceptance of each of them has different consequences in the rights and duties related to the family and the relations between its members and even the family's interactions with others and society. One of the consequences of the validity of these principles in family-related human rights standards is that many of the existing legal systems of countries in some cases need to be amended and their regulations revised, and some established cultural traditions in societies that are considered inhumane in terms of these principles need to be modified and changed. Of course, this process of governing the principles derived from human rights standards over the family also has vulnerabilities and misinterpretations that should not be neglected.

Keywords: family, human rights, international instruments, principles

Procedia PDF Downloads 179
2606 Effect of Long Term Orientation and Indulgence on Earnings Management: The Moderating Role of Legal Tradition

Authors: I. Martinez-Conesa, E. Garcia-Meca, M. Barradas-Quiroz

Abstract:

The objective of this study is to assess the impact on earnings management of latest two Hofstede cultural dimensions: long-term orientation and indulgence. Long-term orientation represents the alignment of a society towards the future and indulgence expresses the extent to which a society exhibits willingness, or restrain, to realise their impulses. Additionally, this paper tests if there are relevant differences by testing the moderating role of the legal tradition, Continental versus Anglo-Saxon. Our sample comprises 15 countries: Belgium, Canada, Germany, Spain, France, Great Britain, Hong Kong, India, Japan, Korea, Netherlands, Philippines, Portugal, Sweden, and Thailand, with a total of 12,936 observations from 2003 to 2013. Our results show that managers in countries with high levels of long-term orientation reduce their levels of discretionary accruals. The findings do not confirm the effect of indulgence on earnings management. In addition, our results confirm previous literature regarding the effect of individualism, noting that firms in countries with high levels of collectivism might be more inclined to use earnings discretion to protect the welfare of the collective group of firm stakeholders. Uncertainty avoidance results in downwards earnings management as well as high disclosure, suggesting that less manipulation takes place when transparency is higher. Indulgence is the cultural dimension that confronts wellbeing versus survival; dimension is formulated including happiness, the perception of live control and the importance of leisure. Indulgence shows a weak negative correlation with power distance indicating a slight tendency for more hierarchical societies to be less indulgent. Anglo-Saxon countries are a positive effect of individualism and a negative effect of masculinity, uncertainty avoidance, and disclosure. With respect to continental countries, we can see a significant and positive effect of individualism and a significant and negative effect of masculinity, long-term orientation, and indulgence. Therefore, we observe the negative effect on earnings management provoked by higher disclosure and uncertainty avoidance only happens in Anglo-Saxon countries. Meanwhile, the improvement in reporting quality motivated by higher long-term orientation and higher indulgence is dominant in Continental countries. Our results confirm that there is a moderating effect of the legal system in the association between culture and earnings management. This effect is especially relevant in the dimensions related to uncertainty avoidance, long term orientation, indulgence, and disclosure. The negative effect of long-term orientation on earnings management only happens in those countries set in continental legal systems because of the Anglo-Saxon legal systems is supported by the decisions of the courts and the traditions, so it already has long-term orientation. That does not occur in continental systems, depending mainly of contend of the law. Sensitivity analysis used with Jones modified CP model, Jones Standard model and Jones Standard CP model confirm the robustness of these results. This paper collaborates towards a better understanding on how earnings management, culture and legal systems relate to each other, and contribute to previous literature by examining the influence of the two latest Hofstede’s dimensions not previously studied in papers.

Keywords: Hofstede, long-term-orientation, earnings management, indulgence

Procedia PDF Downloads 240
2605 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling

Authors: Sushma Ghogale

Abstract:

With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.

Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis

Procedia PDF Downloads 97
2604 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 90
2603 Mediation in Criminal Matters: A Perspective from Kosovo

Authors: Flutura Tahiraj, Emine Abdyli

Abstract:

As a new alternative, mediation is integrated in the legislation of both developed and developing countries in Europe. Various researches in member states of the Council of Europe revealed obstacles, particularly related to the implementation of mediation in criminal matters. They are addressed through several recommendations and non-binding guidelines. However, there is limited empirical research on how the mediation in criminal matters is being implemented in the contexts of developing countries in South-Eastern Europe. Hence, the purpose of this qualitative study is to assess mediation in criminal matters in Kosovo by exploring how the main stakeholders describe the legal basis and implementation process and what it indicates for future practices. The data were gathered through 11 semi-structured interviews with judges, prosecutors, mediation clerks and mediators. Results show that laws and other guidelines that have been introduced since 2008 constitute a solid legal ground that facilitates mediation in criminal matters. The stakeholders are well aware of benefits mediation brings and express their willingness to advance its application to criminal matters. Results also indicate uncertainty among judges and prosecutors regarding the assessment and referral of certain criminal offences to mediation. To address it, specialized trainings, exchange programs and continuous monitoring and evaluation of the process could be supportive.

Keywords: mediation in criminal matters, legislation, implementation of mediation

Procedia PDF Downloads 40
2602 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 89
2601 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 421
2600 Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Navjotinder Singh, Gurjinder Singh, Amardeep Singh

Abstract:

Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined.

Keywords: aluminium alloys, TIG welding, post weld heat treatment

Procedia PDF Downloads 579
2599 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 213
2598 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking

Authors: Jonas Colin

Abstract:

Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.

Keywords: chatbot, GPT 3.5, metacognition, symbiose

Procedia PDF Downloads 72
2597 How Envisioning Process Is Constructed: An Exploratory Research Comparing Three International Public Televisions

Authors: Alexandre Bedard, Johane Brunet, Wendellyn Reid

Abstract:

Public Television is constantly trying to maintain and develop its audience. And to achieve those goals, it needs a strong and clear vision. Vision or envision is a multidimensional process; it is simultaneously a conduit that orients and fixes the future, an idea that comes before the strategy and a mean by which action is accomplished, from a business perspective. Also, vision is often studied from a prescriptive and instrumental manner. Based on our understanding of the literature, we were able to explain how envisioning, as a process, is a creative one; it takes place in the mind and uses wisdom and intelligence through a process of evaluation, analysis and creation. Through an aggregation of the literature, we build a model of the envisioning process, based on past experiences, perceptions and knowledge and influenced by the context, being the individual, the organization and the environment. With exploratory research in which vision was deciphered through the discourse, through a qualitative and abductive approach and a grounded theory perspective, we explored three extreme cases, with eighteen interviews with experts, leaders, politicians, actors of the industry, etc. and more than twenty hours of interviews in three different countries. We compared the strategy, the business model, and the political and legal forces. We also looked at the history of each industry from an inertial point of view. Our analysis of the data revealed that a legitimacy effect due to the audience, the innovation and the creativity of the institutions was at the cornerstone of what would influence the envisioning process. This allowed us to identify how different the process was for Canadian, French and UK public broadcasters, although we concluded that the three of them had a socially constructed vision for their future, based on stakeholder management and an emerging role for the managers: ideas brokers.

Keywords: envisioning process, international comparison, television, vision

Procedia PDF Downloads 135
2596 UWB Open Spectrum Access for a Smart Software Radio

Authors: Hemalatha Rallapalli, K. Lal Kishore

Abstract:

In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method.

Keywords: cognitive radio, energy detection, software radio, spectrum sensing

Procedia PDF Downloads 429
2595 Corporate Cautionary Statement: A Genre of Professional Communication

Authors: Chie Urawa

Abstract:

Cautionary statements or disclaimers in corporate annual reports need to be carefully designed because clear cautionary statements may protect a company in the case of legal disputes and may undermine positive impressions. This study compares the language of cautionary statements using two corpora, Sony’s cautionary statement corpus (S-corpus) and Panasonic’s cautionary statement corpus (P-corpus), illustrating the differences and similarities in relation to the use of meaningful cautionary statements and critically analyzing why practitioners use the way. The findings describe the distinct differences between the two companies in the presentation of the risk factors and the way how they make the statements. The word ability is used more for legal protection in S-corpus whereas the word possibility is used more to convey a better impression in P-corpus. The main similarities are identified in the use of lexical words and pronouns, and almost the same wordings for eight years. The findings show how they make the statements unique to the company in the presentation of risk factors, and the characteristics of specific genre of professional communication. Important implications of this study are that more comprehensive approach can be applied in other contexts, and be used by companies to reflect upon their cautionary statements.

Keywords: cautionary statements, corporate annual reports, corpus, risk factors

Procedia PDF Downloads 173
2594 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 70
2593 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 98