Search results for: background noise statistical modeling
11218 Modeling of Dam Break Flood Wave Propagation Using HEC-RAS 2D and GIS: A Case Study of Taksebt Dam in Algeria
Authors: Abdelghani Leghouchi
Abstract:
This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan (EAP) for mitigation purposes. To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam. Geospatial analysis of the simulation results conducted in a Geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk. Overall, the present study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures.Keywords: taksebt dam, dam break, wave propagation time, HEC-RAS 2D
Procedia PDF Downloads 11511217 The Relationship between First-Day Body Temperature and Mortality in Traumatic Patients
Authors: Neda Valizadeh, Mani Mofidi, Sama Haghighi, Ali Hashemaghaee, Soudabeh Shafiee Ardestani
Abstract:
Background: There are many systems and parameters to evaluate trauma patients in the emergency department. Most of these evaluations are to distinguish patients with worse conditions so that the care systems have a better prediction of condition for a better care-giving. The purpose of this study is to determine the relationship between axillary body temperature and mortality in patients hospitalized in the intensive care unit (ICU) with multiple traumas and with other clinical and para-clinical factors. Methods: All patients between 16 and 75 years old with multiple traumas who were admitted into Emergency Department then hospitalized in the ICU were included in our study. An axillary temperature in the first and the second day of admission, Glasgow cola scale (GCS), systolic blood pressure, Serum glucose levels, and white blood cell counts of all patients at the admission day were recorded and their relationship with mortality were analyzed by SPSS software with suitable statistical tests. Results: Axillary body temperatures in the first and second day were statistically lower in expired traumatic patients (p=0.001 and p<0,001 respectively). Patients with lower GCS had a significantly lower first-day temperature and a significantly higher mortality. (p=0.006 and p=0.006 respectively). Furthermore, the first-day axillary temperature was significantly lower in patients with a lower first-day systolic blood pressure (p=0.014). Conclusion: Our results showed that lower axillary body temperature in the first day is associated with higher mortality, lower GCS, and lower systolic blood pressure. Thus, this could be used as a predictor of mortality in evaluation of traumatic patients in emergency settings.Keywords: fever, trauma, mortality, emergency
Procedia PDF Downloads 37911216 The Mediatory Role of Innovation in the Link between Social and Financial Performance
Authors: Bita Mashayekhi, Amin Jahangard, Milad Samavat, Saeid Homayoun
Abstract:
In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation.Keywords: ESG, financial performance, innovation, social performance, structural equation modeling
Procedia PDF Downloads 10611215 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence
Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park
Abstract:
Scripts are one of the basic text resources to understand broadcasting contents. Since broadcast media wields lots of influence over the public, tools for understanding broadcasting contents are more required. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches. Scripts also provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scripts consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics based on statistical learning method. To tackle this problem, we propose a method of learning with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, by using high quality of topics, we can get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.Keywords: broadcasting contents, scripts, text similarity, topic model
Procedia PDF Downloads 32311214 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment
Authors: Leila Torkaman, Nasser Ghassembaglou
Abstract:
Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.Keywords: cooler, EER, energy label, optimization
Procedia PDF Downloads 34611213 Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector
Authors: Mayesha Tahsin, A.S. Mollah
Abstract:
Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield.Keywords: shield, NaI (Tl) detector, gamma radiation, intensity, linear attenuation coefficient
Procedia PDF Downloads 16711212 Understanding the Impact of Background Experience from Staff in Diversion Programs: The Voices of a Community-Based Diversion Program
Authors: Ana Magana
Abstract:
Youth are entering the juvenile justice system at alarming rates. For the youth of color entering the system, the outcomes are far worse than for their white counterparts. In fact, the youth of color are more likely to be arrested and sentenced for longer periods of time than white youth. Race disproportionality in the juvenile justice system is evident, but what happens to the youth that exit the juvenile justice system? Who supports them after they are incarcerated and who can prevent them from re-offending? There are several diversion programs that have been implemented in the US to aid the reduction of juvenile incarceration and help reduce recidivism. The program interviewed for this study is a community-based diversion program (CBDP). The CBDP is a pre-filing diversion non-profit organization based in South Seattle. The objective of this exploratory research study is to provide a space and platform for the CBDP team to speak about their background experiences and the influence their background has on their current approach and practice with juveniles. A qualitative, exploratory study was conducted. Interviews were conducted with staff and provided oral consent. The interview included six open-ended, semi-structured questions. Interviews were digitally recoded and transcribed. The aim of this study was to understand how the influence of the participant’s backgrounds and previous experiences impact their current practice approaches with the CBDP youth and young adults. Ecological systems theory was the guiding framework for analysis. After careful analysis, three major themes emerged: 1) strong influence of participant’s background, 2) participants belonging to community and 3) strong self-identity with the CBDP. Within these three themes, subthemes were developed based on participant’s responses. It was concluded that the participant’s approach is influenced by their background experiences. This corresponds to the ecological systems theory and the community-based lens which underscores theoretical analysis. The participant’s approach is grounded in interpersonal relationships within the client’s systems, meaning that the participants understand and view their clients within an ecological systems perspective. When choosing participants that reflect the population being served, the clients receive a balanced, inclusive and caring approach. Youth and young adults are searching for supportive adults to be there for them, it is essential for diversion programs to provide a space for shared background experiences and have people that hold similar identities. Grassroots organizations such as CBDP have the tools and experience to work with marginalized populations that are constantly being passed on. While articles and studies focus on the reduction of recidivism and re-offending it is important to question the reasons behind this data. For instance, there can be a reduction in statistics, but at whose expense. Are the youth and young adults truly being supported? Or is it just a requirement that they are completing in order to remove their charge? This research study can serve as the beginning of a series of studies conducted at CBDP to further understand and validate the need to employ individuals with similar backgrounds as the participants CBDP serves.Keywords: background experience, diversion, ecological systems theory, relationships
Procedia PDF Downloads 14611211 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 30311210 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.Keywords: additive manufacturing, decision-makings, environmental impact, predictive models
Procedia PDF Downloads 13611209 The Impact of Using Building Information Modeling Technology in Construction Projects Management
Authors: Mohammad Ashraf
Abstract:
This research links the use of Building Information Modeling technology in constructions and infrastructure projects, starting from the moment when considering the establishment of a project to demolishing or renovating it, going through the design work, planning, procurement and implementation. BIM Software's which used are Revit, Navisworks and Asta Project in the case study for the Atletico Madrid Stadium project (Wanda Stadium). Also, the project improves through various phases of construction (planning - implementation - management). Besides, the level of the details managed within this project advances gradually. In addition, the construction process problems become about 30 % less than before, resulting from high coordination between designing, implementation and follow through that is done by the project management office (PMO). The current disposition in the industry is to tightly manage the detail contained within the planning and coordination phases of construction, but we miss the opportunity to manage that data as it matures and grows into the execution and commissioning phases.Keywords: construction management, BIM technology, planning, design, procurements, critical path method
Procedia PDF Downloads 28411208 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index
Authors: A. Sathiya Susuman, Hamisi F. Hamisi
Abstract:
Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index
Procedia PDF Downloads 47811207 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 53211206 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses
Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee
Abstract:
Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles
Procedia PDF Downloads 16811205 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 11011204 Modeling of the Energy Storage Device: LTC3588
Authors: Mojtaba Ghodsi, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This study provides a detailed analysis of the LTC3588 as a low-power energy storage model, focusing on its internal circuitry and energy harvesting capabilities. The study highlights the relationship between the input and output capacitors and the behavior of the output voltage, particularly its rise time. It was found that increasing the input capacitance (Cᵢₙ) from 1 µF to 220 µF reduces oscillations in the output voltage (Vₒᵤₜ) and slows the rate of increase in the input voltage, demonstrating the impact of input capacitance on voltage dynamics. Furthermore, the study revealed that smaller output capacitors (Cₒᵤₜ) result in fewer voltage jumps required to reach the target output voltage of 3.2 V, suggesting that a smaller Cₒᵤₜ improves voltage regulation speed and stability. The study concludes that both input and output capacitors play a critical role in the LTC3588's performance. Optimizing these capacitors is crucial for efficient energy storage and harvesting in applications requiring minimal power consumption.Keywords: LTC3588, modeling, Zener diode, LED
Procedia PDF Downloads 1511203 Analysis of the Temperature Dependence of Local Avalanche Compact Model for Bipolar Transistors
Authors: Robert Setekera, Ramses van der Toorn
Abstract:
We present an extensive analysis of the temperature dependence of the local avalanche model used in most of the modern compact models for bipolar transistors. This local avalanche model uses the Chynoweth's empirical law for ionization coefficient to define the generation of the avalanche current in terms of the local electric field. We carry out the model analysis using DC-measurements taken on both Si and advanced SiGe bipolar transistors. For the advanced industrial SiGe-HBTs, we consider both high-speed and high-power devices (both NPN and PNP transistors). The limitations of the local avalanche model in modeling the temperature dependence of the avalanche current mostly in the weak avalanche region are demonstrated. In addition, the model avalanche parameters are analyzed to see if they are in agreement with semiconductor device physics.Keywords: avalanche multiplication, avalanche current, bipolar transistors, compact modeling, electric field, impact ionization, local avalanche
Procedia PDF Downloads 62511202 Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity
Authors: Ganiyat Soliu, Glen Bright, Chiemela Onunka
Abstract:
Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario.Keywords: performance optimization, productivity, queuing theory, robotics
Procedia PDF Downloads 15611201 Flourishing in Marriage among Arab Couples in Israel: The Impact of Capitalization Support and Accommodation on Positive and Negative Affect
Authors: Niveen Hassan-Abbas, Tammie Ronen-Rosenbaum
Abstract:
Background and purpose: 'Flourishing in marriage' is a concept refers to married individuals’ high positivity ratio regarding their marriage, namely greater reported positive than negative emotions. The study proposes a different approach to marriage which emphasizes the place of the individual himself as largely responsible for his personal flourishing within marriage. Accordingly, the individual's desire to preserve and strengthen his marriage largely determines the marital behavior in a way that will contribute to his marriage success (Actor Effect), regardless the contribution of his or her partner to his marriage success (Partner Effect). Another assumption was that flourishing in marriage could be achieved by two separate processes, where capitalization support increases the positive marriage's evaluations and accommodation decreases the negative one. A theoretical model was constructed, whereby individuals who were committed to their marriage were hypothesized as employing self-control skills by way of two dynamic processes. First, individual’s higher degree of 'capitalization supportive responses' - supportive responses to the partner's sharing of positive personal experiences - was hypothesized as increasing one’s positive evaluations of marriage and thereby one’s positivity ratio. Second, individual’s higher degree of 'accommodation' responses - the ability during conflict situations to control the impulse to respond destructively and instead to respond constructively - was hypothesized as decreasing one’s negative evaluations of marriage and thereby increasing one’s positivity ratio. Methods: Participants were 156 heterosexual Arab couples from different regions of Israel. The mean period of marriage was 10.19 (SD=7.83), ages were 31.53 years for women (SD=8.12) and 36.80 years for men (SD=8.07). Years of education were 13.87 for women (SD=2.84) and 13.23 years for men (SD=3.45). Each participant completed seven questionnaires: socio-demographic, self-control skills, commitment, capitalization support, accommodation, marital quality, positive and negative affect. Using statistical analyses adapted to dyadic research design, firstly descriptive statistics were calculated and preliminary tests were performed. Next, dyadic model based on the Actor-Partner Interdependence Model (APIM) were tested using structural equation modeling (SEM). Results: The assumption according to which flourishing in marriage can be achieved by two processes was confirmed. All of the Actor Effect hypotheses were confirmed. Participants with higher self-control used more capitalization support and accommodation responses. Among husbands, unlike wives, these correlations were stronger when the individual's commitment level was higher. More capitalization supportive responses were found to increase positive evaluations of marriage, and greater spousal accommodation was found to decrease negative evaluations of marriage. High positive evaluations and low negative evaluations were found to increase positivity ratio. Not according to expectation, four partner effect paths were found significant. Conclusions and Implications: The present findings coincide with the positive psychology approach that emphasizes human strengths. The uniqueness of this study is its proposal that individuals are largely responsible for their personal flourishing in marriage. This study demonstrated that marital flourishing can be achieved by two processes, where capitalization increases the positive and accommodation decreases the negative. Practical implications include the need to construct interventions that enhance self-control skills for employment of capitalizing responsiveness and accommodation processes.Keywords: accommodation, capitalization support, commitment, flourishing in marriage, positivity ratio, self-control skills
Procedia PDF Downloads 16211200 A Clustering-Based Approach for Weblog Data Cleaning
Authors: Amine Ganibardi, Cherif Arab Ali
Abstract:
This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data
Procedia PDF Downloads 17111199 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility
Procedia PDF Downloads 22211198 Knowledge, Attitude, and Practice Among Diabetic Patients About Diabetic Foot Disease in Khartoum State Primary Health Care Centers, November 2022
Authors: Abrar Noorain, Zeinab Amara, Sulaf Abdelaziz
Abstract:
Background: Diabetic foot disease imposes a financial burden on diabetic patients and healthcare services. In Sudan, diabetic foot ulcer prevalence reached 18.1%. This study aims to assess the knowledge, attitudes, and practices and the correlation between the level of foot care knowledge and self-care practices among diabetic patients in Sudan. Methodology: In a cross-sectional study involving 262 patients with type 1 and type 2 diabetes attending diabetic clinics in three primary care centers in Khartoum, Sudan, during September to November 2022, information regarding participants sociodemographic status, foot care knowledge, attitudes, and practices was gathered using a validated, structured questionnaire in a face-to-face interview method. These data were analyzed using the statistical package for the social sciences (SPSS) 22. Results: The patients’ mean age was 54.9 years, with a female predominance (56%). Of the participants, 37% had diabetes mellitus for over ten years. On the topic of foot care, 35.5% of patients showed good knowledge, and 76% were aware of the risk of reduced foot sensation. In relation to nail care, only 19% knew how to cut nails correctly. Conclusion: Knowledge, attitudes, and practices about diabetic foot care are substandard. There is a positive correlation between foot care knowledge and self-care practices. Hence, educating diabetic patients with foot care knowledge through an awareness program and the characteristics of diabetic shoes may improve self-care practices.Keywords: DM, DFD, DFU, PHC, SPSS
Procedia PDF Downloads 7711197 The Challenges of Implementing Building Information Modeling in Small-Medium Enterprises Architecture Firms in Indonesia
Authors: Furry A. Wilis, Dewi Larasati, Suhendri
Abstract:
Around 96% of architecture firms in Indonesia are classified as small-medium enterprises (SME). This number shows that the SME firms have an important role in architecture, engineering, and construction (AEC) industry in Indonesia. Some of them are still using conventional system (2D based) in arranging construction project documents. This system is fragmented and not fully well-coordinated, so causes many changes in the whole project cycle. Building information modeling (BIM), as a new developed system in Indonesian construction industry, has been assumed can decrease changes in the project. But BIM has not fully implemented in Indonesian AEC industry, especially in SME architecture firms. This article identifies the challenges of implementing BIM in SME architecture firms in Indonesia. Quantitative-explorative research with questionnaire was chosen to achieve the goal of this article. The scarcity of skilled BIM user, low demand from client, high investment cost, and the unwillingness of the firm to switch into BIM were found as the result of this paper.Keywords: architecture consultants, BIM, SME, Indonesia
Procedia PDF Downloads 34611196 The Epigenetic Background Depended Treatment Planning for Glioblastoma Multiforme
Authors: Rasime Kalkan, Emine Ikbal Atli, Ali Arslantaş, Muhsin Özdemir, Sevilhan Artan
Abstract:
Glioblastoma (WHO grade IV), is the malignant form of brain tumor, the genetic background of the GBM is highly variable. The tumor mass of a GBM is multilayered and every tumor layer shows distinct characteristics with a different cell population. The treatment planning of GBM should be focused on the tumor genetic characteristics. We screened primary glioblastoma multiforme (GBM) in a population-based study for MGMT and RARβ methylation and IDH1 mutation correlated them with clinical data and treatment. There was no correlation between MGMT-promoter methylation and overall survival. The overall survival time of the patients with methylated RARβ was statically (OS;p<0,05) significance between the patients who were treated with chemotherapy and radiotherapy. Here we showed the status of IDH1 gene associatied with younger age. We demonstrated that the together with MGMT gene the RARβ gene should be used as a potantial treatment decision marker for GBMs.Keywords: RARβ, primary glioblastoma multiforme, methylation, MGMT
Procedia PDF Downloads 35011195 Modeling and Simulation of Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 53211194 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 43811193 Supply Chain Optimisation through Geographical Network Modeling
Authors: Cyrillus Prabandana
Abstract:
Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain
Procedia PDF Downloads 35011192 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis
Authors: Syamala Krishnannair
Abstract:
A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale
Procedia PDF Downloads 21111191 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters
Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu
Abstract:
An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters
Procedia PDF Downloads 31311190 Comparison Performance between PID and PD Controllers for 3 and 4 Cable-Based Robots
Authors: Fouad. Inel, Lakhdar. Khochemane
Abstract:
This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: The first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-Integrated Derivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.Keywords: parallel cable-based robots, geometric modeling, dynamic modeling, graphical user interface, open loop, PID/PD controllers
Procedia PDF Downloads 45511189 X-Ray Detector Technology Optimization In CT Imaging
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 278