Search results for: PM₂.₅ concentration
3427 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley
Authors: Kali Prasad Sarma, Sanghita Dutta
Abstract:
Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.Keywords: Deepor Beel, enrichment factor, principal component analysis, trace metals
Procedia PDF Downloads 2883426 In Vitro Antibacterial Activity of Selected Tanzania Medicinal Plants
Authors: Mhuji Kilonzo, Patrick Ndakidemi, Musa Chacha
Abstract:
Objective: To evaluate antibacterial activity from four selected medicinal plants namely Mystroxylon aethiopicum, Lonchocarpus capassa, Albizia anthelmentica and Myrica salicifolia used for management of bacterial infection in Tanzania. Methods: Minimum Inhibitory Concentration (MIC) of plants extracts against the tested bacterial species was determined by using 96 wells microdilution method. In this method, 50 μL of nutrient broth were loaded in each well followed by 50 μL of extract (100 mg/mL) to make a final volume of 100 μL. Subsequently, 50 μL were transferred from first rows of each well to the second rows and the process was repeated down the columns to the last wells from which 50 μL were discarded. Thereafter, 50 μL of the selected bacterial suspension were added to each well thus making a final volume of 100 μL. The lowest concentration which showed no bacterial growth was considered as MIC. Results: It was revealed that L. capassa leaf ethyl acetate extract exhibited antibacterial activity against Salmonella kisarawe and Salmonella typhi with MIC values of 0.39 and 0.781 mg/mL respectively. Likewise, L. capassa root bark ethyl acetate extracts inhibited growth of S. typhi and E. coli with MIC values of 0.39 and 0.781 mg/mL respectively. The M. aethiopicum leaf and root bark chloroform extracts displayed antibacterial activity against S. kisarawe and S. typhi respectively with MIC value of 0.781 mg/mL. The M. salicifolia stem bark ethyl acetate exhibited antibacterial activity against P. aeruginosa with MIC value of 0.39 mg/mL whereas the methanolic stem and root bark of the same plant inhibited the growth of Proteus mirabilis and Klebsiella pneumoniae with MIC value of 0.781 mg/mL. Conclusion: It was concluded that M. aethiopicum, L. capassa, A. anthelmentica and M. salicifolia are potential source of antibacterial agents. Further studies to establish structures of antibacterial and evaluate active ingredients are recommended.Keywords: Albizia anthelmentica, Lonchocarpus capassa, Mystroxylon aethiopicum, Myrica salicifolia
Procedia PDF Downloads 2193425 Antioxidant and Cytotoxic Effects of Different Extracts of Fruit Peels Against Three Cancer Cell Lines
Authors: Emad A. Shalaby
Abstract:
Cancer is a disease that causes abnormal cell proliferation and invades nearby tissues. Lung cancer is the second most frequent cancer worldwide. Natural anti-cancer drugs have been developed with low side effects and toxicity. Citrus peels and extracts have been demonstrated to have significant pharmacological and physiological effects as a result of the high concentration of phenolic compounds found in citrus fruits, particularly peels. Tangerine peels can serve as an effective source of bioactive substances such as phenolics, flavonoids, and catechins, which have antioxidant, antibacterial, anticancer, and anti-inflammatory properties. Consequently, this work aims to determine the anticancer activity of ethanol extract of Tangerine peels against the A549 cell line and identify the phenolic compound profile (19 compounds) by using HPLC. Anticancer and antioxidant potentials of the extract were evaluated by MTT assay and TLC- TLC-bioautography sprayed with DPPH reagent, respectively. The obtained results revealed that tangerine peel extract showed significant activity against the A549 cell line with IC50 of 97.66 μg/mL. HPLC analysis proved that the highest concentration is naringenin 464.05 mg/g. More studies indicate that naringenin has significant anticancer potential on A549 cancer cells. The results showed that naringenin binds t0 EGFR protein in A549 with high binding affinity and thus may reduce lung cancer cell migration and enhance the apoptosis of cancer cells. From the obtained results it could be concluded that tangerine peel extract is an effective anti-cancer agent that may potentially serve as a natural therapeutic option for lung cancer treatment.Keywords: tangerine peel, A549 cell line, anticancer, naringenin, HPLC analysis, naringenin, TLC bioautography
Procedia PDF Downloads 623424 Vulnerability Assessment of Vertically Irregular Structures during Earthquake
Authors: Pranab Kumar Das
Abstract:
Vulnerability assessment of buildings with irregularity in the vertical direction has been carried out in this study. The constructions of vertically irregular buildings are increasing in the context of fast urbanization in the developing countries including India. During two reconnaissance based survey performed after Nepal earthquake 2015 and Imphal (India) earthquake 2016, it has been observed that so many structures are damaged due to the vertically irregular configuration. These irregular buildings are necessary to perform safely during seismic excitation. Therefore, it is very urgent demand to point out the actual vulnerability of the irregular structure. So that remedial measures can be taken for protecting those structures during natural hazard as like earthquake. This assessment will be very helpful for India and as well as for the other developing countries. A sufficient number of research has been contributed to the vulnerability of plan asymmetric buildings. In the field of vertically irregular buildings, the effort has not been forwarded much to find out their vulnerability during an earthquake. Irregularity in vertical direction may be caused due to irregular distribution of mass, stiffness and geometrically irregular configuration. Detailed analysis of such structures, particularly non-linear/ push over analysis for performance based design seems to be challenging one. The present paper considered a number of models of irregular structures. Building models made of both reinforced concrete and brick masonry are considered for the sake of generality. The analyses are performed with both help of finite element method and computational method.The study, as a whole, may help to arrive at a reasonably good estimate, insight for fundamental and other natural periods of such vertically irregular structures. The ductility demand, storey drift, and seismic response study help to identify the location of critical stress concentration. Summarily, this paper is a humble step for understanding the vulnerability and framing up the guidelines for vertically irregular structures.Keywords: ductility, stress concentration, vertically irregular structure, vulnerability
Procedia PDF Downloads 2293423 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine
Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau
Abstract:
A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux
Procedia PDF Downloads 3173422 Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor
Authors: Sudeshna Chandra, Christian Gäbler, Christian Schliebe, Heinrich Lang
Abstract:
Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody.Keywords: ferrocenyl dendrimers, electrochemical immunosensors, immunoglobulin, amperometry
Procedia PDF Downloads 3373421 Geochemical Modeling of Mineralogical Changes in Rock and Concrete in Interaction with Groundwater
Authors: Barbora Svechova, Monika Licbinska
Abstract:
Geochemical modeling of mineralogical changes of various materials in contact with an aqueous solution is an important tool for predicting the processes and development of given materials at the site. The modeling focused on the mutual interaction of groundwater at the contact with the rock mass and its subsequent influence on concrete structures. The studied locality is located in Slovakia in the area of the Liptov Basin, which is a significant inter-mountain lowland, which is bordered on the north and south by the core mountains belt of the Tatras, where in the center the crystalline rises to the surface accompanied by Mesozoic cover. Groundwater in the area is bound to structures with complicated geological structures. From the hydrogeological point of view, it is an environment with a crack-fracture character. The area is characterized by a shallow surface circulation of groundwater without a significant collector structure, and from a chemical point of view, groundwater in the area has been classified as calcium bicarbonate with a high content of CO2 and SO4 ions. According to the European standard EN 206-1, these are waters with medium aggression towards the concrete. Three rock samples were taken from the area. Based on petrographic and mineralogical research, they were evaluated as calcareous shale, micritic limestone and crystalline shale. These three rock samples were placed in demineralized water for one month and the change in the chemical composition of the water was monitored. During the solution-rock interaction there was an increase in the concentrations of all major ions, except nitrates. There was an increase in concentration after a week, but at the end of the experiment, the concentration was lower than the initial value. Another experiment was the interaction of groundwater from the studied locality with a concrete structure. The concrete sample was also left in the water for 1 month. The results of the experiment confirmed the assumption of a reduction in the concentrations of calcium and bicarbonate ions in water due to the precipitation of amorphous forms of CaCO3 on the surface of the sample.Vice versa, it was surprising to increase the concentration of sulphates, sodium, iron and aluminum due to the leaching of concrete. Chemical analyzes from these experiments were performed in the PHREEQc program, which calculated the probability of the formation of amorphous forms of minerals. From the results of chemical analyses and hydrochemical modeling of water collected in situ and water from experiments, it was found: groundwater at the site is unsaturated and shows moderate aggression towards reinforced concrete structures according to EN 206-1a, which will affect the homogeneity and integrity of concrete structures; from the rocks in the given area, Ca, Na, Fe, HCO3 and SO4. Unsaturated waters will dissolve everything as soon as they come into contact with the solid matrix. The speed of this process then depends on the physicochemical parameters of the environment (T, ORP, p, n, water retention time in the environment, etc.).Keywords: geochemical modeling, concrete , dissolution , PHREEQc
Procedia PDF Downloads 1973420 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore
Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale
Abstract:
Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction
Procedia PDF Downloads 3943419 Phytochemical Screening and Hepatotoxic Effect of Datura metel Linn. Aqueous Seed Extract in Albino Wistar Rats
Authors: I. M. Fakai, A. Abdulhamid, I. Sani, F. Bello, E. O. Olusesi
Abstract:
The phytochemical screening and hepatotoxic effect of Datura metel aqueous seeds extract in Albino Wistar rats were evaluated. Phytochemicals were screened using standard methods. The enzymes activity and liver function indices were also determined using standard methods of analysis. The phytochemicals screening revealed the presence of alkaloid, tannin, glycoside and flavonoid. The organ-body weight decreased significantly (P<0.05) at all the doses of the extract treated groups compared to the control. The activity of alkaline phosphatase decreased significantly (P<0.05) in the liver and increased significantly in the serum at all the doses of the extract treated groups compared to the control. The activity of serum alanine transaminase increased significantly (P<0.05) while there is no significant difference (P>0.05) in the activity liver alanine transaminase at all the doses of the extract treated groups compared to the control. The result also revealed significant increase (P<0.05) in the aspartate transaminase activity in both liver and serum at all doses of the extract treated groups compared to the control. Serum total protein, albumin, globulin, and total bilirubin concentration decreased significantly (P<0.05), while direct bilirubin concentration increased significantly (P<0.05) at all the doses of the extract treated groups compared to the control. The present study therefore revealed that, the present of some phytochemicals in the plant extract attributed the plant to its hepatotoxic effects as revealed in the alteration of marker enzymes and some liver function indices analyzed.Keywords: datura metel, transaminases, hepatotoxic effect, phytochemicals, rats
Procedia PDF Downloads 4443418 Humoral and Cellular Immune Responses to Major Human Cytomegalovirus Antigens in Mice Model
Authors: S. Essa, H. Safar, R. Raghupathy
Abstract:
Human cytomegalovirus (CMV) continues to be a source of severe complications to immunologically immature and immune-compromised hosts. Effective CMV vaccine that diminishes CMV disease in transplant patients and avoids congenital infection remains of high importance as no approved vaccines exist. Though the exact links of defense mechanisms are unidentified, viral-specific antibodies and Th1/Th2 cytokine responses have been involved in controlling viral infections. CMV envelope glycoprotein B (UL55/gB), the matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and the assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. In this study, mice were immunized with five HCMV antigens (UL32/pp150, UL80a/pp38, UL99/pp28, and UL83/pp65), and serum samples were collected and evaluated for eliciting viral-specific antibody responses. Moreover, Splenocytes were collected, stimulated, and assessed for cytokine responses. The results demonstrated a CMV-antigen-specific antibody response to pp38 and pp65 (E/C >2.0). The highest titers were detected with pp38 (average E/C 16.275) followed by pp65 (average E/C 7.72). Compared to control cells, splenocytes from PP38 antigen immunized mice gave a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-5, and IL-17A (P<0.05). Also, splenocytes from pp65 antigen immunized mice resulted in a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF- α. The designation of target CMV peptides by identifying viral-specific antibodies and cytokine responses is vital for understanding the protective immune mechanisms during CMV infection and identifying appropriate viral antigens to develop novel vaccines.Keywords: hepatitis C virus, peripheral blood mononuclear cells, neutrophils, cytokines
Procedia PDF Downloads 1393417 Green Tea Extract: Its Potential Protective Effect on Bleomycin Induced Lung Injuries in Rats
Authors: Azza EL-Medany, Jamila EL-Medany
Abstract:
Lung fibrosis is a common side effect of the chemotherapeutic agent, bleomycin. Current evidence suggests that reactive oxygen species may play a key role in the development of lung fibrosis. The present work studied the effect of green tea extract on bleomycin–induced lung fibrosis in rats. Animals were divided into three groups: (1) Saline control group; (2) bleomycin group in which rats were injected with bleomycin (15mg/kg,i.p.) three times a week for four weeks; (3) bleomycin and green tea group in which green tea extract was given to rats (100mg/kg/day, p.o) a week prior to bleomycin and daily during bleomycin injections for 4 weeks until the end of the experiment. Bleomycin–induced pulmonary injury and lung fibrosis that was indicated by increased lung hydroxyproline content, elevated nitric oxide synthase, myeoloperoxidase (MPO), platelet activating factor (PAF), tumor necrosis factor α (TNF_α), transforming growth factor 1β (TGF1β) and angiotensin converting enzyme (ACE) activity in lung tissues. On the other hand, bleomycin induced a reduction in reduced glutathione concentration (GSH). Moreover, bleomycin resulted in a severe histological changes in lung tissues revealed as lymphocytes and neutrophils infiltration, increased collagen deposition and fibrosis. Co-administration of bleomycin and green tea extract reduced bleomycin–induced lung injury as evaluated by the significant reduction in hydroxyproline content, nitric oxide synthase activity, levels of MPO, PAF, TNF-α, and ACE in lung tissues. Furthermore, green tea extract ameliorated bleomycin– induced reduction in GSH concentration. Finally, histological evidence supported the ability of green tea extract to attenuate bleomycin–induced lung fibrosis and consolidation. Thus, the finding of the present study provides that green tea may serve as a novel target for potential therapeutic treatment of lung fibrosis.Keywords: bleomycin, lung fibrosis, green tea, oxygen species
Procedia PDF Downloads 4523416 Bioremediation of Phenol in Wastewater Using Polymer-Supported Bacteria
Authors: Areej K. Al-Jwaid, Dmitiry Berllio, Andrew Cundy, Irina Savina, Jonathan L. Caplin
Abstract:
Phenol is a toxic compound that is widely distributed in the environment including the atmosphere, water and soil, due to the release of effluents from the petrochemical and pharmaceutical industries, coking plants and oil refineries. Moreover, a range of daily products, using phenol as a raw material, may find their way into the environment without prior treatment. The toxicity of phenol effects both human and environment health, and various physio-chemical methods to remediate phenol contamination have been used. While these techniques are effective, their complexity and high cost had led to search for alternative strategies to reduce and eliminate high concentrations of phenolic compounds in the environment. Biological treatments are preferable because they are environmentally friendly and cheaper than physico-chemical approaches. Some microorganisms such as Pseudomonas sp., Rhodococus sp., Acinetobacter sp. and Bacillus sp. have shown a high ability to degrade phenolic compounds to provide a sole source of energy. Immobilisation process utilising various materials have been used to protect and enhance the viability of cells, and to provide structural support for the bacterial cells. The aim of this study is to develop a new approach to the bioremediation of phenol based on an immobilisation strategy that can be used in wastewater. In this study, two bacterial species known to be phenol degrading bacteria (Pseudomonas mendocina and Rhodococus koreensis) were purchased from National Collection of Industrial, Food and Marine Bacteria (NCIMB). The two species and mixture of them were immobilised to produce macro porous crosslinked cell cryogels samples by using four types of cross-linker polymer solutions in a cryogelation process. The samples were used in a batch culture to degrade phenol at an initial concentration of 50mg/L at pH 7.5±0.3 and a temperature of 30°C. The four types of polymer solution - i. glutaraldehyde (GA), ii. Polyvinyl alcohol with glutaraldehyde (PVA+GA), iii. Polyvinyl alcohol–aldehyde (PVA-al) and iv. Polyetheleneimine–aldehyde (PEI-al), were used at different concentrations, ranging from 0.5 to 1.5% to crosslink the cells. The results of SEM and rheology analysis indicated that cell-cryogel samples crosslinked with the four cross-linker polymers formed monolithic macro porous cryogels. The samples were evaluated for their ability to degrade phenol. Macro porous cell–cryogels crosslinked with GA and PVA+GA showed an ability to degrade phenol for only one week, while the other samples crosslinked with a combination of PVA-al + PEI-al at two different concentrations have shown higher stability and viability to reuse to degrade phenol at concentration (50 mg/L) for five weeks. The initial results of using crosslinked cell cryogel samples to degrade phenol indicate that is a promising tool for bioremediation strategies especially to eliminate and remove the high concentration of phenol in wastewater.Keywords: bioremediation, crosslinked cells, immobilisation, phenol degradation
Procedia PDF Downloads 2343415 Studying the Evolution of Soot and Precursors in Turbulent Flames Using Laser Diagnostics
Authors: Muhammad A. Ashraf, Scott Steinmetz, Matthew J. Dunn, Assaad R. Masri
Abstract:
This study focuses on the evolution of soot and soot precursors in three different piloted diffusion turbulent flames. The fuel composition is as follow flame A (ethylene/nitrogen, 2:3 by volume), flame B (ethylene/air, 2:3 by volume), and flame C (pure methane). These flames are stabilized using a 4mm diameter jet surrounded by a pilot annulus with an outer diameter of 15 mm. The pilot issues combustion products from stoichiometric premixed flames of hydrogen, acetylene, and air. In all cases, the jet Reynolds number is 10,000, and air flows in the coflow stream at a velocity of 5 m/s. Time-resolved laser-induced fluorescence (LIF) is collected at two wavelength bands in the visible (445 nm) and UV regions (266 nm) along with laser-induced incandescence (LII). The combined results are employed to study concentration, size, and growth of soot and precursors. A set of four fast photo-multiplier tubes are used to record emission data in temporal domain. A 266nm laser pulse preferentially excites smaller nanoparticles which emit a fluorescence spectrum which is analysed to track the presence, evolution, and destruction of nanoparticles. A 1064nm laser pulse excites sufficiently large soot particles, and the resulting incandescence is collected at 1064nm. At downstream and outer radial locations, intermittency becomes a relevant factor. Therefore, data collected in turbulent flames is conditioned to account for intermittency so that the resulting mean profiles for scattering, fluorescence, and incandescence are shown for the events that contain traces of soot. It is found that in the upstream regions of the ethylene-air and ethylene-nitrogen flames, the presence of soot precursors is rather similar. However, further downstream, soot concentration grows larger in the ethylene-air flames.Keywords: laser induced incandescence, laser induced fluorescence, soot, nanoparticles
Procedia PDF Downloads 1463414 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo
Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis
Abstract:
Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cellsKeywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks
Procedia PDF Downloads 1323413 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning
Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher
Abstract:
Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping
Procedia PDF Downloads 1373412 Rheological Properties of Polymer Systems in Magnetic Field
Authors: T. S. Soliman, A. G. Galyas, E. V. Rusinova, S. A. Vshivkov
Abstract:
The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum.Keywords: rheology, liquid crystals, magnetic field, cellulose ethers
Procedia PDF Downloads 3483411 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize
Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah
Abstract:
Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens
Procedia PDF Downloads 1253410 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model
Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle
Abstract:
In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model
Procedia PDF Downloads 1033409 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor
Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis
Procedia PDF Downloads 2733408 Isolation and Characterization of an Ethanol Resistant Bacterium from Sap of Saccharum officinarum for Efficient Fermentation
Authors: Rukshika S Hewawasam, Sisira K. Weliwegamage, Sanath Rajapakse, Subramanium Sotheeswaran
Abstract:
Bio fuel is one of the emerging industries around the world due to arise of crisis in petroleum fuel. Fermentation is a cost effective and eco-friendly process in production of bio-fuel. So inventions in microbes, substrates, technologies in fermentation cause new modifications in fermentation. One major problem in microbial ethanol fermentation is the low resistance of conventional microorganisms to the high ethanol concentrations, which ultimately lead to decrease in the efficiency of the process. In the present investigation, an ethanol resistant bacterium was isolated from sap of Saccharum officinarum (sugar cane). The optimal cultural conditions such as pH, temperature, incubation period, and microbiological characteristics, morphological characteristics, biochemical characteristics, ethanol tolerance, sugar tolerance, growth curve assay were investigated. Isolated microorganism was tolerated to 18% (V/V) of ethanol concentration in the medium and 40% (V/V) glucose concentration in the medium. Biochemical characteristics have revealed as Gram negative, non-motile, negative for Indole test ,Methyl Red test, Voges- Proskauer`s test, Citrate Utilization test, and Urease test. Positive results for Oxidase test was shown by isolated bacterium. Sucrose, Glucose, Fructose, Maltose, Dextrose, Arabinose, Raffinose, Lactose, and Sachcharose can be utilized by this particular bacterium. It is a significant feature in effective fermentation. The fermentation process was carried out in glucose medium under optimum conditions; pH 4, temperature 30˚C, and incubated for 72 hours. Maximum ethanol production was recorded as 12.0±0.6% (V/V). Methanol was not detected in the final product of the fermentation process. This bacterium is especially useful in bio-fuel production due to high ethanol tolerance of this microorganism; it can be used to enhance the fermentation process over conventional microorganisms. Investigations are currently conducted on establishing the identity of the bacteriumKeywords: bacterium, bio-fuel, ethanol tolerance, fermentation
Procedia PDF Downloads 3403407 Influence of Gamma-Radiation Dosimetric Characteristics on the Stability of the Persistent Organic Pollutants
Authors: Tatiana V. Melnikova, Lyudmila P. Polyakova, Alla A. Oudalova
Abstract:
As a result of environmental pollution, the production of agriculture and foodstuffs inevitably contain residual amounts of Persistent Organic Pollutants (POP). The special attention must be given to organic pollutants, including various organochlorinated pesticides (OCP). Among priorities, OCP is DDT (and its metabolite DDE), alfa-HCH, gamma-HCH (lindane). The control of these substances spends proceeding from requirements of sanitary norms and rules. During too time often is lost sight of that the primary product can pass technological processing (in particular irradiation treatment) as a result of which transformation of physicochemical forms of initial polluting substances is possible. The goal of the present work was to study the OCP radiation degradation at a various gamma-radiation dosimetric characteristics. The problems posed for goal achievement: to evaluate the content of the priority of OCPs in food; study the character the degradation of OCP in model solutions (with micro concentrations commensurate with the real content of their agricultural and food products) depending upon dosimetric characteristics of gamma-radiation. Qualitative and quantitative analysis of OCP in food and model solutions by gas chromatograph Varian 3400 (Varian, Inc. (USA)); chromatography-mass spectrometer Varian Saturn 4D (Varian, Inc. (USA)) was carried out. The solutions of DDT, DDE, alpha- and gamma- isomer HCH (0.01, 0.1, 1 ppm) were irradiated on "Issledovatel" (60Co) and "Luch - 1" (60Co) installations at a dose 10 kGy with a variation of dose rate from 0.0083 up to 2.33 kGy/sec. It was established experimentally that OCP residual concentration in individual samples of food products (fish, milk, cereal crops, meat, butter) are evaluated as 10-1-10-4 mg/kg, the value of which depends on the factor-sensations territory and natural migration processes. The results were used in the preparation of model solutions OCP. The dependence of a degradation extent of OCP from a dose rate gamma-irradiation has complex nature. According to our data at a dose 10 kGy, the degradation extent of OCP at first increase passes through a maximum (over the range 0.23 – 0.43 Gy/sec), and then decrease with the magnification of a dose rate. The character of the dependence of a degradation extent of OCP from a dose rate is kept for various OCP, in polar and nonpolar solvents and does not vary at the change of concentration of the initial substance. Also in work conditions of the maximal radiochemical yield of OCP which were observed at having been certain: influence of gamma radiation with a dose 10 kGy, in a range of doses rate 0.23 – 0.43 Gy/sec; concentration initial OCP 1 ppm; use of solvent - 2-propanol after preliminary removal of oxygen. Based on, that at studying model solutions of OCP has been established that the degradation extent of pesticides and qualitative structure of OCP radiolysis products depend on a dose rate, has been decided to continue researches radiochemical transformations OCP into foodstuffs at various of doses rate.Keywords: degradation extent, dosimetric characteristics, gamma-radiation, organochlorinated pesticides, persistent organic pollutants
Procedia PDF Downloads 2493406 Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity
Authors: Kai-Cheng Yang, Yen-Ling Chen, Er-Chieh Cho, Kuen-Chan Lee
Abstract:
Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant.Keywords: titanium dioxide, fullerene, radical scavenging activity, antioxidant
Procedia PDF Downloads 4043405 Market Chain Analysis of Onion: The Case of Northern Ethiopia
Authors: Belayneh Yohannes
Abstract:
In Ethiopia, onion production is increasing from time to time mainly due to its high profitability per unit area. Onion has a significant contribution to generating cash income for farmers in the Raya Azebo district. Therefore, enhancing onion producers’ access to the market and improving market linkage is an essential issue. Hence, this study aimed to analyze structure-conduct-performance of onion market and identifying factors affecting the market supply of onion producers. Data were collected from both primary and secondary sources. Primary data were collected from 150 farm households and 20 traders. Four onion marketing channels were identified in the study area. The highest total gross margin is 27.6 in channel IV. The highest gross marketing margin of producers of the onion market is 88% in channel II. The result from the analysis of market concentration indicated that the onion market is characterized by a strong oligopolistic market structure, with the buyers’ concentration ratio of 88.7 in Maichew town and 82.7 in Mekelle town. Lack of capital, licensing problems, and seasonal supply was identified as the major entry barrier to onion marketing. Market conduct shows that the price of onion is set by traders while producers are price takers. Multiple linear regression model results indicated that family size in adult equivalent, irrigated land size, access to information, frequency of extension contact, and ownership of transport significantly determined the quantity of onion supplied to the market. It is recommended that strengthening and diversifying extension services in information, marketing, post-harvest handling, irrigation application, and water harvest technology is highly important.Keywords: oligopoly, onion, market chain, multiple linear regression
Procedia PDF Downloads 1463404 Towards the Production of Least Contaminant Grade Biosolids and Biochar via Mild Acid Pre-treatment
Authors: Ibrahim Hakeem
Abstract:
Biosolids are stabilised sewage sludge produced from wastewater treatment processes. Biosolids contain valuable plant nutrient which facilitates their beneficial reuse in agricultural land. However, the increasing levels of legacy and emerging contaminants such as heavy metals (HMs), PFAS, microplastics, pharmaceuticals, microbial pathogens etc., are restraining the direct land application of biosolids. Pyrolysis of biosolids can effectively degrade microbial and organic contaminants; however, HMs remain a persistent problem with biosolids and their pyrolysis-derived biochar. In this work, we demonstrated the integrated processing of biosolids involving the acid pre-treatment for HMs removal and selective reduction of ash-forming elements followed by the bench-scale pyrolysis of the treated biosolids to produce quality biochar and bio-oil enriched with valuable platform chemicals. The pre-treatment of biosolids using 3% v/v H₂SO₄ at room conditions for 30 min reduced the ash content from 30 wt% in raw biosolids to 15 wt% in the treated sample while removing about 80% of limiting HMs without degrading the organic matter. The preservation of nutrients and reduction of HMs concentration and mobility via the developed hydrometallurgical process improved the grade of the treated biosolids for beneficial land reuse. The co-removal of ash-forming elements from biosolids positively enhanced the fluidised bed pyrolysis of the acid-treated biosolids at 700 ℃. Organic matter devolatilisation was improved by 40%, and the produced biochar had higher surface area (107 m²/g), heating value (15 MJ/kg), fixed carbon (35 wt%), organic carbon retention (66% dry-ash free) compared to the raw biosolids biochar with surface area (56 m²/g), heating value (9 MJ/kg), fixed carbon (20 wt%) and organic carbon retention (50%). Pre-treatment also improved microporous structure development of the biochar and substantially decreased the HMs concentration and bioavailability by at least 50% relative to the raw biosolids biochar. The integrated process is a viable approach to enhancing value recovery from biosolids.Keywords: biosolids, pyrolysis, biochar, heavy metals
Procedia PDF Downloads 763403 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications
Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang
Abstract:
Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.Keywords: immobilization, enzyme, nanocarrier, nanofibers
Procedia PDF Downloads 2933402 Haematological Changes and Anticoccidial Activities of Kaempferol in Eimeria Tenella Infected Broiler Chickens
Authors: Ya'u Muhammad, Umar Umar A. Mallammadori, Dahiru Mansur
Abstract:
Effect of kaempferol on haematological parameters in two weeks old broiler chickens with experimental Eimeria tenella infection was evaluated in this study. Sixty-day old broilers were randomly allotted into six groups (I-VI) of ten broilers each and brooded for two weeks with commercial broiler feed (vital feed®) and provided water ad libitum. At two weeks of age broilers in group 1 were neither infected nor treated. Broilers in groups II-VI were infected with Eimeria tenella sporulated oocyst (104/ml) via oral inoculation. After infection was established, broilers in groups II-IV were treated orally with 1 mg/kg, 1.5 mg/kg, and 2 mg/kg of kaempferol, respectively. Broilers in group V were treated for five days with amprolium, 1.25 g/L in drinking water. Broilers in group VI were administered normal saline, 5 ml/kg per os for five days. Five days post infection; all broilers were sacrificed by severing their jugular veins. Blood sample from each bird was collected in EDTA container for haematology. Caecal contents were harvested and used to determine the lesion score and caecal Oocyst count respectively. Data obtained was analyzed using pad prism version 5.0. Mean Packed Cell Volume (PCV), haemoglobin (Hb) concentration, and Red Blood Cell (RBC) count significantly (P < 0.05) increased in groups II, III, and IV in a dose dependent manner. Similarly, PCV, Hb concentration, and RBC count significantly (P < 0.05) increased in groups II, III, and IV when compared to VI. No significant (P > 0.05) difference in the mean values of PCV, Hb and RBC count were recorded between groups treated with kaempferol and group V. Caecal Oocyst counts and lesion scores reduced significantly (P < 0.05) in groups II, III, and IV in a dose dependent manner. It was therefore observed in this study that kaempferol improved haematological parameters and reduced Oocyst count as well as the lesion scores in broilers infected with Eimeria tenella.Keywords: broilers, Eimeria tenella, kaempferol, lesion scores, oocyst count,
Procedia PDF Downloads 1943401 Effects of IMUNO-2865® as Immune Supplement for the Aquaculture Industry
Authors: Ivan Zupan, Tomislav Saric, Suzana Tkalcic
Abstract:
IMUNO-2865® is a commercially available, β–glucan based, natural hemicellulose compound with proven immunostimulative properties in people, domestic and some aquatic animals. During the experimental feeding trial with IMUNO-2865® in juvenile wild-caught chub under laboratory conditions, supplementation resulted in overall higher growth performance for all experimental groups regardless of the concentration of the added compound. The maximum, 5% concentration of the supplement, resulted in highest weight gain and calculated specific growth rate. In sea bream, as economically most important species in the Mediterranean aquaculture, significant increases in numbers of monocytes and heterophils were observed in the group supplemented with 2.5 % of IMUNO-2865® in the feed. An overall increase of erythrocytes was noted by the end of the experiment, although with variable distribution among groups. Blood Ca++ levels, total proteins, and total NH₃ were significantly higher after 60 days of feeding in all treatment groups compared to the control and remained elevated in the treated group following the secession of supplementation. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and serum paraoxonase PON1 (U/L) showed similar trends. All these parameters are playing a significant role in either oxygen supplementation of tissues, or anabolic and catabolic processes that on molecular levels contribute to the overall health and immune-building capacity of cells and tissues. The complete lack of mortality in sea bream and presented increases in cellular, biochemical and oxidative stress parameters in the blood suggest that the IMUNO-2865® represents a safe dietary supplement for in aquaculture, with an overall positive and potentially immunostimulative effect on farmed fish.Keywords: IMUNO-2865®, β–glucans, Mediterranean aquaculture, fish imunnostimulans
Procedia PDF Downloads 1423400 Combustion Characteristics of Wet Woody Biomass in a Grate Furnace: Including Measurements within the Bed
Authors: Narges Razmjoo, Hamid Sefidari, Michael Strand
Abstract:
Biomass combustion is a growing technique for heat and power production due to the increasing stringent regulations with CO2 emissions. Grate-fired systems have been regarded as a common and popular combustion technology for burning woody biomass. However, some grate furnaces are not well optimized and may emit significant amount of unwanted compounds such as dust, NOx, CO, and unburned gaseous components. The combustion characteristics inside the fuel bed are of practical interest, as they are directly related to the release of volatiles and affect the stability and the efficiency of the fuel bed combustion. Although numerous studies have been presented on the grate firing of biomass, to the author’s knowledge, none of them have conducted a detailed experimental study within the fuel bed. It is difficult to conduct measurements of temperature and gas species inside the burning bed of the fuel in full-scale boilers. Results from such inside bed measurements can also be applied by the numerical experts for modeling the fuel bed combustion. The current work presents an experimental investigation into the combustion behavior of wet woody biomass (53 %) in a 4 MW reciprocating grate boiler, by focusing on the gas species distribution along the height of the fuel bed. The local concentrations of gases (CO, CO2, CH4, NO, and O2) inside the fuel bed were measured through a glass port situated on the side wall of the furnace. The measurements were carried out at five different heights of the fuel bed, by means of a bent stainless steel probe containing a type-k thermocouple. The sample gas extracted from the fuel bed, through the probe, was filtered and dried and then was analyzed using two infrared spectrometers. Temperatures of about 200-1100 °C were measured close to the grate, indicating that char combustion is occurring at the bottom of the fuel bed and propagates upward. The CO and CO2 concentration varied in the range of 15-35 vol % and 3-16 vol %, respectively, and NO concentration varied between 10-140 ppm. The profile of the gas concentrations distribution along the bed height provided a good overview of the combustion sub-processes in the fuel bed.Keywords: experimental, fuel bed, grate firing, wood combustion
Procedia PDF Downloads 3263399 Fabrication of Durable and Renegerable Superhydrophobic Coatings on Metallic Surfaces for Potential Industrial Applications
Authors: Priya Varshney, Soumya S. Mohapatra
Abstract:
Fabrication of anti-corrosion and self-cleaning superhydrophobic coatings for metallic surfaces which are regenerable and durable in the aggressive conditions has shown tremendous interest in materials science. In this work, the superhydrophobic coatings on metallic surfaces (aluminum, steel, copper) were prepared by two-step and one-step chemical etching process. In two-step process, roughness on surface was created by chemical etching and then passivation of roughened surface with low surface energy materials whereas, in one-step process, roughness on surface by chemical etching and passivation of surface with low surface energy materials were done in a single step. Beside this, the effect of etchant concentration and etching time on wettability and morphology was also studied. Thermal, mechanical, ultra-violet stability of these coatings were also tested. Along with this, regeneration of coatings and self-cleaning, corrosion resistance and water repelling characteristics were also studied. The surface morphology shows the presence of a rough microstuctures on the treated surfaces and the contact angle measurements confirms the superhydrophobic nature. It is experimentally observed that the surface roughness and contact angle increases with increase in etching time as well as with concentration of etchant. Superhydrophobic surfaces show the excellent self-cleaning behaviour. Coatings are found to be stable and maintain their superhydrophobicity in acidic and alkaline solutions. Water jet impact, floatation on water surface, and low temperature condensation tests prove the water-repellent nature of the coatings. These coatings are found to be thermal, mechanical and ultra-violet stable. These durable superhydrophobic metallic surfaces have potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 2793398 Syndecan -1 as Regulator of Ischemic-Reperfusion Damage Limitation in Experiment
Authors: M. E. Kolpakova, A. A. Jakovleva, L. S. Poliakova, H. El Amghari, S. Soliman, D. R. Faizullina, V. V. Sharoyko
Abstract:
Brain neuroplasticity is associated with blood-brain barrier vascular endothelial proteoglycans and post-stroke microglial activation. The study of the mechanisms of reperfusion injury limitation by remote ischemic postconditioning (RC) is of interest due to the effects on functional recovery after cerebral ischemia. The goal of the study is the assessment of the role of syndecan-1 (SDC-1) in restriction of ischemic-reperfusion injury on middle cerebral artery model in rats using RC protocol. Randomized controlled trials were conducted. Ischemia was performed by middle cerebral artery occlusion by Belayev L. (1996) on the Wistar rat-males (n= 87) weighting 250 ± 50 g. under general anesthesia (Zoletil 100 и Xylazine 2%). Syndecan-1 (SDC-1) concentration difference in plasma samples of false operated animals and animals with brain ischemia was 30% (30 min. МСАо: 41.4 * ± 1.3 ng/ml). SDC-1 concentration in animal plasma samples with ischemia + RC protocol was 112% (30 min МСАо+ RC): 67.8**± 5.8 ng/ml). Calculation of infarction volume in the ischemia group revealed brain injury in 31.97 ± 2.5%; the volume of infarction was 13.6 ± 1.3% in 30 min. МCАо + RC group. Swelling of tissue in the group 30 min. МCАо + RC was 16 ± 2.1%; it was 47 ± 3.3%. in 30 min. МCАо group. Correlation analysis showed a high direct correlation relationship between infarct area and muscle strength in the right forelimb (КК=0.72) in the 30 min. МCАо + RC group. Correlation analysis showed very high inverse correlation between infarct area and capillary blood flow in the 30 min. МCАо + RC group (p <0.01; r = -0.98). We believe the SDC-1 molecule in blood plasma may play role of potential messenger of ischemic-reperfusion injury restriction mechanisms. This leads to infarct-limiting effect of remote ischemic postconditioning and early functioning recovery.Keywords: ischemia, МСАо, remote ischemic postconditioning, syndecan-1
Procedia PDF Downloads 62