Search results for: salt water dip wheel test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17338

Search results for: salt water dip wheel test

15808 Storm-water Management for Greenfield Area Using Low Impact Development Concept for Town Planning Scheme Mechanism

Authors: Sahil Patel

Abstract:

Increasing urbanization leads to a concrete forest. The effects of new development practices occur in the natural hydrologic cycle. Here the concerns have been raised about the groundwater recharge in sufficient quantity. With further development, porous surfaces reduce rapidly. A city like Ahmedabad, with a non-perennial river, is 100% dependent on groundwater. The Ahmedabad city receives its domestic use water from the Narmada river, located about 200 km away. The expenses to bring water is much higher. Ahmedabad city receives annually 800 mm rainfall, and mostly this water increases the local level waterlogging problems; after that, water goes to the Sabarmati river and merges into the sea. The existing developed area of Ahmedabad city is very dense, and does not offer many chances to change the built form and increase porous surfaces to absorb storm-water. Therefore, there is a need to plan upcoming areas with more effective solutions to manage storm-water. This paper is focusing on the management of stormwater for new development by retaining natural hydrology. The Low Impact Development (LID) concept is used to manage storm-water efficiently. Ahmedabad city has a tool called the “Town Planning Scheme,” which helps the local body drive new development by land pooling mechanism. This paper gives a detailed analysis of the selected area (proposed Town Planning Scheme area by the local authority) in Ahmedabad. Here the development control regulations for individual developers and some physical elements for public places are presented to manage storm-water. There is a different solution for the Town Planning scheme than that of the conventional way. A local authority can use it for any area, but it can be site-specific. In the end, there are benefits to locals with some financial analysis and comparisons.

Keywords: water management, green field development, low impact development, town planning scheme

Procedia PDF Downloads 127
15807 The Comparison Study of Methanol and Water Extract of Chuanxiong Rhizoma: A Fingerprint Analysis

Authors: Li Chun Zhao, Zhi Chao Hu, Xi Qiang Liu, Man Lai Lee, Chak Shing Yeung, Man Fei Xu, Yuen Yee Kwan, Alan H. M. Ho, Nickie W. K. Chan, Bin Deng, Zhong Zhen Zhao, Min Xu

Abstract:

Background: Chuangxiong Rhizoma (Chuangxion, CX) is one of the most frequently used herbs in Chinese medicine because of its wide therapeutic effects such as vasorelaxation and anti-inflammation. Aim: The purposes of this study are (1) to perform non-targeted / targeted analyses of CX methanol extract and water extract, and compare the present data with previously LC-MS or GC-MS fingerprints; (2) to examine the difference between CX methanol extract and water extract for preliminarily evaluating whether current compound markers of methanol extract from crude CX materials could be suitable for quality control of CX water extract. Method: CX methanol extract was prepared according to the Hong Kong Chinese Materia Medica Standards. DG water extract was prepared by boiling with pure water for three times (one hour each). UHPLC-Q-TOF-MS/MS fingerprint analysis was performed by C18 column (1.7 µm, 2.1 × 100 mm) with Agilent 1290 Infinity system. Experimental data were analyzed by Agilent MassHunter Software. A database was established based on 13 published LC-MS and GC-MS CX fingerprint analyses. Total 18 targeted compounds in database were selected as markers to compare present data with previous data, and these markers also used to compare CX methanol extract and water extract. Result: (1) Non-targeted analysis indicated that there were 133 compounds identified in CX methanol extract, while 325 compounds in CX water extract that was more than double of CX methanol extract. (2) Targeted analysis further indicated that 9 in 18 targeted compounds were identified in CX methanol extract, while 12 in 18 targeted compounds in CX water extract that showed a lower lose-rate of water extract when compared with methanol extract. (3) By comparing CX methanol extract and water extract, Senkyunolide A (+1578%), Ferulic acid (+529%) and Senkyunolide H (+169%) were significantly higher in water extract when compared with methanol extract. (4) Other bioactive compounds such as Tetramethylpyrazine were only found in CX water extract. Conclusion: Many new compounds in both CX methanol and water extracts were found by using UHPLC Q-TOF MS/MS analysis when compared with previous published reports. A new standard reference including non-targeted compound profiling and targeted markers functioned especially for quality control of CX water extract (herbal decoction) should be established in future. (This project was supported by Hong Kong Baptist University (FRG2/14-15/109) & Natural Science Foundation of Guangdong Province (2014A030313414)).

Keywords: Chuanxiong rhizoma, fingerprint analysis, targeted analysis, quality control

Procedia PDF Downloads 491
15806 Preliminary Study on Chinese Traditional Garden Making Based on Water Storage Projects

Authors: Liu Fangxin, Zhao Jijun

Abstract:

Nowadays, China and the world are facing the same problems of flooding, city waterlogging and other environment issues. Throughout history, China had many excellent experiences dealing with the flood, and can be used as a significant reference for contemporary urban construction. In view of this, the research used the method of literature analysis to find out the main water storage measures in ancient cities, including reservoir storage and pond water storage. And it used the case study method to introduce the historical evolution, engineering measures and landscape design of 4 typical ancient Chinese cities in details. Then we found the pond and the reservoir were the main infrastructures for the ancient Chinese city to avoid the waterlogging and flood. At last this paper summed up the historical experience of Chinese traditional water storage and made conclusions that the establishment of a reasonable green water storage facilities could be used to solve today's rain and flood problems, and hoped to give some enlightenment of stormwater management to our modern city.

Keywords: ancient Chinese cities, water storage project, Chinese classical gardening, stormwater management, green facilities

Procedia PDF Downloads 334
15805 Water's Role in Creating a Sense of Belonging

Authors: Narges Nejati

Abstract:

Nowadays as science hasten toward technology, only quantity of construction noticed and there is a little attention toward quality of construction and there is no usage for element which was prevalent in traditional architecture. This is the cause of this issue that nowadays we see building that most of them just keep you from heat and cold of outside environment and there is no trace of any culture of their country or nation in it. And although we know that man is a creature that adores beauty by his nature, but this spiritual need of him is ignored. And designers by taking an enormous price instead of planning (spiritual designing) to release peace, they attend to planning which make a human soul bothered and ill. The present research is trying to illustrate price of concepts and principles of water usage as one of the elements of nature and also shows the water application in some of the Iranian constructions and the results show the motif of using water in constructions and also some benefits of using it in constructions. And also this matter can causes a reconnection between nature and constructing of a beautiful environment which is consonant and proportional with man’ physical, spiritual and cultural needs. And causes peace and comfort of men. A construction which man feels a friendly atmosphere in them which he has a sense of belonging to them not a construction which arouses feeling of weariness and fatigue.

Keywords: water usage, belonging, sustainable architecture, urban design

Procedia PDF Downloads 380
15804 Experimental Investigation of Recycling Cementitious Materials in Low Strength Range for Sustainability and Affordability

Authors: Mulubrhan Berihu

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete continues to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes, and the use of these industrial waste products has technical, economic, and environmental benefits besides the reduction of CO2 emission from cement production. This paper aims to document the effect on the strength property of concrete due to the use of low cement by maximizing supplementary cementitious materials like fly ash. The amount of cement content was below 250 kg/m3, and in all the mixes, the quantity of powder (cement + fly ash) is almost kept at about 500 kg. According to this, seven different cement content (250 kg/m3, 195 kg/m3, 150 kg/m3, 125 kg/m3, 100 kg/m3, 85 kg/m3, 70 kg/m3) with different amount of replacement of SCMs was conducted. The mix proportion was prepared by keeping the water content constant and varying the cement content, SCMs, and water-to-binder ratio. Based on the different mix proportions of fly ash, a range of mix designs was formulated. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa, and the experimental results indicate that strength is a function of w/b. The experiment result shows a big difference in gaining of compressive strength from 7 days to 28 days and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases, the strength decreases significantly. At the same time, higher permeability was seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 40
15803 Formulation of Sun Screen Cream and Sun Protecting Factor Activity from Standardized–Partition Compound of Mahkota Dewa Leaf (Phaleria macrocarpa (Scheff.) Boerl.)

Authors: Abdul Karim Zulkarnain, Marchaban, Subagus Wahyono, Ratna Asmah Susidarti

Abstract:

Mahkota Dewa contains phalerin which has activity as sun screen. In this study, 13 formulations of cream oil in water (o/w) were prepared and tested for their physical characteristics. The physical characteristics were then used for determining the optimum formula. This study aimed to explore the physical stability of optimized formulation of cream, its sun protecting factor (SPF) values using in vitro and in vivo tests. The optimum formula of o/w cream were prepared based on Simplex Lattice Design (LSD) method using software Design Expert®. The formulation of o/w cream were varied based on the proportion of cetyl alcohol, mineral oil and tween 80. The difference of physical characteristic of optimum and predicted formula was tested using t-test with significant level of 95%. The optimum formula of o/w cream was the formula which consists of cetyl alcohol 9.71%, mineral oil, 29%, and tween 80 3.29. Based on t-test, there was no significant difference of physical characteristics of optimum and predicted formulation. Viscosity, spread power, adhesive power, and separation volume ratio of o/w at week 0-4 were relatively stable. The o/w creams were relatively stable at extreme temperature. The o/w creams from mahkota dewa, phalerin, and benzophenone have SPF values of 21.32, 33.12, and 42.49, respectively. The formulas did not irritate the skin based on in vivo test.

Keywords: cream, stability, In vitro, In vivo

Procedia PDF Downloads 225
15802 Trans-Boundary Water Disputes between India and Bangladesh and the Policy Responses

Authors: Aditaya Narayan Mishra

Abstract:

Unequal distribution of environmental resources as a possible cause of conflict has been the topic of substantial research, and these connections have ruled the post-Cold War attention in the discourse of environmental security. In this category, considerable concentration has been given to water resources, on account of their important standing for human existence. Thus, water is considered to be one of the most important non-conventional security issues. As per this consideration, the case of India-Bangladesh is one of the most critical examples of disputes over transboundary water sharing. The concern regarding sharing of trans-boundary rivers has been the main focus of Bangladesh and India‘s relationship for the last forty-five years. Both countries share fifty-four rivers, most of which have originated in the Himalayan range. The main causes for problems in the sharing of the waters of trans-boundary rivers between India and Bangladesh include the: Farakka Barrage, Teesta river sharing issue, River linking project and Tipaimukh Dam. The construction of Farakka barrage across the Ganga River was the beginning of water dispute. Attempts at unilateral exploitation of the trans-boundary water resources led to inter-state conflicts that spilled over into other areas of bilateral disputes between India and Bangladesh. Apart from Farakka, Barrage, the disputes over Teesta River sharing, River linking project and Tipaimukh Dam are also vital contents for the both countries bilateral diplomacy. Till date, India and Bangladesh have signed five treaties regarding water sharing. However, all these treaties have been rendered worthless due to mistrust and political upheaval in both countries. The current paper would address all these water sharing disputes between India and Bangladesh with focus on the various policy responses (both bilateral and multilateral initiatives) to deal with these water sharing disputes. It will try to analyze the previous agreements and their drawbacks and loopholes. In addition, it will mention the reasons for water sharing cooperation between India and Bangladesh.

Keywords: India and Bangladesh relations, water disputes, Teesta, river linking project, Tipaimukh Dam, Farakka, policy responses

Procedia PDF Downloads 227
15801 Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle

Authors: Huirui Han, Chao Zhang

Abstract:

The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods.

Keywords: heat transfer, rod bundle, supercritical water, wall temperature

Procedia PDF Downloads 96
15800 Investigation of the Fading Time Effects on Microstructure and Mechanical Properties in Vermicular Cast Iron

Authors: Mehmet Ekici

Abstract:

In this study, the fading time affecting the mechanical properties and microstructures of vermicular cast iron were studied. Pig iron and steel scrap weighing about 12 kg were charged into the high-frequency induction furnace crucible and completely melted for production of vermicular cast iron. The slag was skimmed using a common flux. After fading time was set at 1. 3 and 5 minutes. In this way, three vermicular cast iron was produced that same composition but different phase structures. The microstructure of specimens was investigated, and uni-axial tensile test and the Charpy impact test were performed, and their micro-hardness measurements were done in order to characterize the mechanical behaviours of vermicular cast iron.

Keywords: vermicular cast iron, fading time, hardness, tensile test and impact test

Procedia PDF Downloads 344
15799 Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification

Authors: Neway Adele, Adey Feleke

Abstract:

Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times.

Keywords: coagulation efficiency, extraction, natural coagulant, protein extract

Procedia PDF Downloads 64
15798 Simulation of the Effect of Sea Water using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams

Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty

Abstract:

The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. As it well known that, fiber reinforced polymer (FRP) has been applied to many purposes for civil engineering structures not only for new structures but also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance, as well as high tensile strength, to weight ratio. Glass composed FRP (GFRP) sheet is most commonly used due to its relatively lower cost compared to the other FRP materials. GFRP sheet is applied externally by bonding it on the concrete surface. Many studies have been done to investigate the bonding of GFRP sheet. However, it is still very rarely studies on the effect of sea water to the bonding capacity of GFRP sheet on the strengthened beams due to flexural loadings. This is important to be clarified for the wider application of GFRP sheet especially on the flexural structure that directly contact to the sea environment. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six months exposed to the sea water.

Keywords: GFRP sheet, sea water, concrete beams, bonding

Procedia PDF Downloads 321
15797 Electrochemistry and Performance of Bryophylum pinnatum Leaf (BPL) Electrochemical Cell

Authors: M. A. Mamun, M. I. Khan, M. H. Sarker, K. A. Khan, M. Shajahan

Abstract:

The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter), etc. The AAS, UV-Vis, and pH-metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as the oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of the equilibrium constant (K) implies the big change in Gibbs free energy (∆G), the more electromotive force works in electron transfer during the forward electrochemical reaction which coincides with the fast reduction of the weight of zinc plate, revealed the additional electrical work in the presence of PKL sap. This easily fabricated high-performance PKL battery can show an excellent promise during the off-peak across the countryside.

Keywords: Atomic Absorption Spectrophotometer (AAS), Bryophylum Pinnatum Leaf (BPL), electricity, electrochemistry, organic acids

Procedia PDF Downloads 322
15796 Investigation of Heavy Metals and Nitrate Level in Drinking Water and the Side Effects on Public Health in the Capital City of Iran

Authors: Iman Nazari, Behrouz Shaabani, Ali Ramouz

Abstract:

Regarding to the dramatic rise of cancer prevalence of cancers in Iran and also base on the investigations around environmental factors which causes cancer, The air and water pollution is in high level in Iran’s capital city this issue motivated us to start an investigation on concentration of heavy metals and nitrate in Tehran’s Tap water, additionally we investigated the effects of this contaminations on public health, it is clear that heavy metals and also nitrate are causes cancers directly and indirectly, we divided the city to four districts: (1) North, (2) East, (3) West, (4) South and totally collected over 30 samples from noted districts, we obvious difference in concentrations, after a study we founded the reasons of this difference, the old distribution system, non-standard sewage disposal system, travel up from contaminated rains, releasing industrial wastes waters without any pretreatment, the most important one is the old distribution system, Tehran is an old city hence distribution system is old too we know that the old water pipes were built from alloys which containing several of this harmful heavy metals, releasing of this heavy metals from pipes to the tap water is one of the most Important reasons, as the result we presented the concentrations by districts and the alternatives to decreasing the level of this contaminations.

Keywords: water quality, heavy metals, drinking water, environmental toxinology

Procedia PDF Downloads 288
15795 Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature

Authors: James S. Kwame, E. Yakushina, P. Blackwell

Abstract:

The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects.

Keywords: titanium alloys, hole expansion test, edge formability, non-conventional machining

Procedia PDF Downloads 136
15794 Variation of Base Width of a Typical Concrete Gravity Dam under Different Seismic Conditions Using Static Seismic Loading

Authors: Prasanna Kumar Khaund, Sukanya Talukdar

Abstract:

A concrete gravity dam is a major hydraulic structure and it is very essential to consider the earthquake forces, to get a proper design base width, so that the entire weight of the dam resists the overturning moment due to earthquake and other forces. The main objective of this study is to obtain the design base width of a dam for different seismic conditions by varying the earthquake coefficients in both vertical and horizontal directions. This shall be done by equating the factor of safety against overturning, factor of safety against sliding and factor of safety against shear friction factor for a dam with their limiting values, under both tail water and no tail water condition. The shape of the Mettur dam in India is considered for the study. The study has been done taking a constant head of water at the reservoir, which is the maximum reservoir water level and a constant height of tail water. Using linear approximation method of Newton Raphson, the obtained equations against different factors of safety under different earthquake conditions are solved using a programme in C++ to get different values of base width of dam for varying earthquake conditions.

Keywords: design base width, horizontal earthquake coefficient, tail water, vertical earthquake coefficient

Procedia PDF Downloads 279
15793 Lubricating Grease from Waste Cooking Oil and Waste Motor Sludge

Authors: Aseem Rajvanshi, Pankaj Kumar Pandey

Abstract:

Increase in population has increased the demand of energy to fulfill all its needs. This will result in burden on fossil fuels especially crude oil. Waste oil due to its disposal problem creates environmental degradation. In this context, this paper studies utilization of waste cooking oil and waste motor sludge for making lubricating grease. Experimental studies have been performed by variation in time and concentration of mixture of waste cooking oil and waste motor sludge. The samples were analyzed using penetration test (ASTM D-217), dropping point (ASTM D-566), work penetration (ASTM D-217) and copper strip test (ASTM D-408). Among 6 samples, sample 6 gives the best results with a good drop point and a fine penetration value. The dropping point and penetration test values were found to be 205 °C and 315, respectively. The penetration value falls under the category of NLGI (National Lubricating Grease Institute) consistency number 1.

Keywords: crude oil, copper strip corrosion test, dropping point, penetration test

Procedia PDF Downloads 290
15792 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Authors: Panpan Xu, Qiying Zhang, Hui Qian

Abstract:

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Keywords: irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process

Procedia PDF Downloads 135
15791 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section

Authors: Mohammed Alrajhi

Abstract:

Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.

Keywords: cross-section, neutron, photon, coefficient, mathematics

Procedia PDF Downloads 368
15790 The Effects of Above-Average Precipitation after Extended Drought on Phytoplankton in Southern California Surface Water Reservoirs

Authors: Margaret K. Spoo-Chupka

Abstract:

The Metropolitan Water District of Southern California (MWDSC) manages surface water reservoirs that are a source of drinking water for more than 19 million people in Southern California. These reservoirs experience periodic planktonic cyanobacteria blooms that can impact water quality. MWDSC imports water from two sources – the Colorado River (CR) and the State Water Project (SWP). The SWP brings supplies from the Sacramento-San Joaquin Delta that are characterized as having higher nutrients than CR water. Above average precipitation in 2017 after five years of drought allowed the majority of the reservoirs to fill. Phytoplankton was analyzed during the drought and after the drought at three reservoirs: Diamond Valley Lake (DVL), which receives SWP water exclusively, Lake Skinner, which can receive a blend of SWP and CR water, and Lake Mathews, which generally receives only CR water. DVL experienced a significant increase in water elevation in 2017 due to large SWP inflows, and there were no significant changes to total phytoplankton biomass, Shannon-Wiener diversity of the phytoplankton, or cyanobacteria biomass in 2017 compared to previous drought years despite the higher nutrient loads. The biomass of cyanobacteria that could potentially impact DVL water quality (Microcystis spp., Aphanizomenon flos-aquae, Dolichospermum spp., and Limnoraphis birgei) did not differ significantly between the heavy precipitation year and drought years. Compared to the other reservoirs, DVL generally has the highest concentration of cyanobacteria due to the water supply having greater nutrients. Lake Mathews’ water levels were similar in drought and wet years due to a reliable supply of CR water and there were no significant changes in the total phytoplankton biomass, phytoplankton diversity, or cyanobacteria biomass in 2017 compared to previous drought years. The biomass of cyanobacteria that could potentially impact water quality at Lake Mathews (L. birgei and Microcystis spp.) did not differ significantly between 2017 and previous drought years. Lake Mathews generally had the lowest cyanobacteria biomass due to the water supply having lower nutrients. The CR supplied most of the water to Lake Skinner during drought years, while the SWP was the primary source during 2017. This change in water source resulted in a significant increase in phytoplankton biomass in 2017, no significant change in diversity, and a significant increase in cyanobacteria biomass. Cyanobacteria that could potentially impact water quality at Skinner included: Microcystis spp., Dolichospermum spp., and A.flos-aquae. There was no significant difference in Microcystis spp. biomass in 2017 compared to previous drought years, but biomass of Dolichospermum spp. and A.flos-aquae were significantly greater in 2017 compared to previous drought years. Dolichospermum sp. and A. flos-aquae are two cyanobacteria that are more sensitive to nutrients than Microcystis spp., which are more sensitive to temperature. Patterns in problem cyanobacteria abundance among Southern California reservoirs as a result of above-average precipitation after more than five years of drought were most closely related to nutrient loading.

Keywords: drought, reservoirs, cyanobacteria, and phytoplankton ecology

Procedia PDF Downloads 280
15789 Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures

Authors: Natia Tabatadze

Abstract:

The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: structural materials, hydraulic concrete, low-deformable, water absorption for mass, water absorption for volume

Procedia PDF Downloads 315
15788 Renewable Energy in Morocco: Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq, R. El Bachtiri

Abstract:

Renewable energies have a major importance of Morocco's new energy strategy. The geographical location of the Kingdom promotes the development of the use of solar energy. The use of this energy reduces the dependence on imports of primary energy, meets the growing demand for water and electricity in remote areas encourages the deployment of a local industry in the renewable energy sector and Minimize carbon emissions. Indeed, given the importance of the radiation intensity received and the duration of the sunshine, the country can cover some of its solar energy needs. The use of solar energy to pump water is one of the most promising application, this technique represents a solution wherever the grid does not exist. In this paper, we will present a presentation of photovoltaic pumping system components, and the important solar pumping projects installed in Morocco to supply water from remote area.

Keywords: PV pumping system, Morocco, PV panel, renewable energy

Procedia PDF Downloads 494
15787 Analysis of the Performance of a Solar Water Heating System with Flat Collector

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.

Abstract:

The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.

Keywords: recycling materials, energy efficiency, solar collector, solar water heating system

Procedia PDF Downloads 594
15786 Suitable Operating Conditions of Hot Water Generators Combined with Central Air Package Units: A Case Study of Tipco Building Group

Authors: Chalermporn Jindapeng

Abstract:

The main objective of the study of the suitable operating conditions of hot water generators combined with central air package units: a case study of Tipco Building Group was to analyze the suitable operating conditions and energy-related costs in each operating condition of hot water generators combined with central air package units which resulted in water-cooled packages. Thermal energy from vapor form refrigerants at high pressures and temperatures was exchanged with thermal energy of the water in the swimming pool that required suitable temperature control for users with the use of plate heat exchangers before refrigerants could enter the condenser in its function to change the status of vapor form refrigerants at high pressures and temperatures to liquid form at high pressures and temperatures. Thus, if this was used to replace heat pumps it could reduce the electrical energy that was used to make hot water and reduce the cost of the electrical energy of air package units including the increased efficacy of air package units. Of the analyses of the suitable operating conditions by means of the study of the elements involved with actual measurements from the system that had been installed at the Tipco Building Group hot water generators were combined with air package units which resulted in water-cooled packages with a cooling capacity of 75 tonnes. Plate heat exchangers were used in the transfer of thermal energy from refrigerants to one set of water with a heat exchanger area of 1.5 m² which was used to increase the temperature of swimming pool water that has a capacity of 240 m³. From experimental results, it was discovered after continuous temperature measurements in the swimming pool every 15 minutes that swimming pool water temperature increased by 0.78 ⁰C 0.75 ⁰C 0.74 ⁰C and 0.71 ⁰C. The rates of flow of hot water through the heat exchangers were equal to 14, 16, 18 and 20 litres per minute respectively where the swimming pool water temperature was at a constant value and when the rate of flow of hot water increased this caused hot water temperatures to decrease and the coefficient of performance of the air package units to increase from 5.9 to 6.3, 6.7, 6.9 and 7.6 while the rates of flow of hot water were equal to 14, 16, 18 and 20 litres per minute, respectively. As for the cooling systems, there were no changes and the system cooling functions were normal as the cooling systems were able to continuously transfer incoming heat for the swimming pool water which resulted in a constant pressure in the cooling system that allowed its cooling functions to work normally.

Keywords: central air package units, heat exchange, hot water generators, swimming pool

Procedia PDF Downloads 255
15785 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 85
15784 Use of Treated Municipal Wastewater on Artichoke Crop

Authors: G. Disciglio, G. Gatta, A. Libutti, A. Tarantino, L. Frabboni, E. Tarantino

Abstract:

Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.

Keywords: artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling

Procedia PDF Downloads 423
15783 Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks

Authors: Ugur Fidan, Naim Karasekreter

Abstract:

Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people.

Keywords: wireless sensor networks (WSN), monitoring, chlorine, water tank, security

Procedia PDF Downloads 156
15782 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach

Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal

Abstract:

The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.

Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)

Procedia PDF Downloads 67
15781 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column

Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan

Abstract:

Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.

Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill

Procedia PDF Downloads 73
15780 Recovery of Petroleum Reservoir by Waterflooding Technique

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi, Shigeo Honma

Abstract:

Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery.

Keywords: Buckley-Leverett theory, waterflooding technique, petroleum engineering, immiscible displacement

Procedia PDF Downloads 251
15779 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria

Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah

Abstract:

This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.

Keywords: cold spring, Ikogosi, melting point, warm spring, water samples

Procedia PDF Downloads 539