Search results for: online database
2680 Smart Unmanned Parking System Based on Radio Frequency Identification Technology
Authors: Yu Qin
Abstract:
In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.Keywords: RFID, embedded system, unmanned, parking management
Procedia PDF Downloads 3332679 Microstructure and Mechanical Properties of Boron-Containing AZ91D Mg Alloys
Authors: Ji Chan Kim, Seok Hong Min, Tae Kwon Ha
Abstract:
Effect of boron addition on the microstructure and mechanical properties of AZ91D Mg alloy was investigated in this study. Through calculation of phase equilibria, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as 420 °C where supersaturated solid solution can be obtained. Solid solution treatment was conducted at 420 °C for 24 hrs followed by hot rolling at 420 °C and the total reduction was about 60%. Recrystallization heat treatment was followed at 420 °C for 6 hrs to obtain equiaxed microstructure. After recrystallization treatment, aging heat treatment was conducted at temperature of 200 °C for time intervals from 1 min to 200 hrs and hardness of each condition was measured by micro-Vickers method. Peak hardness was observed after 20 hrs. Tensile tests were also conducted on the specimens aged for various time intervals and the results were compared with hardness.Keywords: AZ91D Mg alloy, boron, heat treatment, microstructure, mechanical properties, hardness
Procedia PDF Downloads 3162678 On the Dwindling Supply of the Observable Cosmic Microwave Background Radiation
Authors: Jia-Chao Wang
Abstract:
The cosmic microwave background radiation (CMB) freed during the recombination era can be considered as a photon source of small duration; a one-time event happened everywhere in the universe simultaneously. If space is divided into concentric shells centered at an observer’s location, one can imagine that the CMB photons originated from the nearby shells would reach and pass the observer first, and those in shells farther away would follow as time goes forward. In the Big Bang model, space expands rapidly in a time-dependent manner as described by the scale factor. This expansion results in an event horizon coincident with one of the shells, and its radius can be calculated using cosmological calculators available online. Using Planck 2015 results, its value during the recombination era at cosmological time t = 0.379 million years (My) is calculated to be Revent = 56.95 million light-years (Mly). The event horizon sets a boundary beyond which the freed CMB photons will never reach the observer. The photons within the event horizon also exhibit a peculiar behavior. Calculated results show that the CMB observed today was freed in a shell located at 41.8 Mly away (inside the boundary set by Revent) at t = 0.379 My. These photons traveled 13.8 billion years (Gy) to reach here. Similarly, the CMB reaching the observer at t = 1, 5, 10, 20, 40, 60, 80, 100 and 120 Gy are calculated to be originated at shells of R = 16.98, 29.96, 37.79, 46.47, 53.66, 55.91, 56.62, 56.85 and 56.92 Mly, respectively. The results show that as time goes by, the R value approaches Revent = 56.95 Mly but never exceeds it, consistent with the earlier statement that beyond Revent the freed CMB photons will never reach the observer. The difference Revert - R can be used as a measure of the remaining observable CMB photons. Its value becomes smaller and smaller as R approaching Revent, indicating a dwindling supply of the observable CMB radiation. In this paper, detailed dwindling effects near the event horizon are analyzed with the help of online cosmological calculators based on the lambda cold dark matter (ΛCDM) model. It is demonstrated in the literature that assuming the CMB to be a blackbody at recombination (about 3000 K), then it will remain so over time under cosmological redshift and homogeneous expansion of space, but with the temperature lowered (2.725 K now). The present result suggests that the observable CMB photon density, besides changing with space expansion, can also be affected by the dwindling supply associated with the event horizon. This raises the question of whether the blackbody of CMB at recombination can remain so over time. Being able to explain the blackbody nature of the observed CMB is an import part of the success of the Big Bang model. The present results cast some doubts on that and suggest that the model may have an additional challenge to deal with.Keywords: blackbody of CMB, CMB radiation, dwindling supply of CMB, event horizon
Procedia PDF Downloads 1192677 Design of Doctor’s Appointment Scheduling Application
Authors: Shilpa Sondkar, Maithili Patil, Atharva Potnis
Abstract:
The current health care landscape desires efficiency and patient satisfaction for optimal performance. Medical appointment booking apps have increased the overall efficiency of clinics, hospitals, and e-health marketplaces while simplifying processes. These apps allow patients to connect with doctors online. Not only are mobile doctor appointment apps a reliable and efficient solution, but they are also the future of clinical progression and a distinct new stage in the patient-doctor relationship. Compared to the usual queuing method, the web-based appointment system could significantly increase patients' satisfaction with registration and reduce total waiting time effectively.Keywords: appointment, patient, scheduling, design and development, Figma
Procedia PDF Downloads 902676 Action Research-Informed Multiliteracies-Enhanced Pedagogy in an Online English for Academic Purposes Course
Authors: Heejin Song
Abstract:
Employing a critical action research approach that rejects essentialist onto-epistemological orientations to research in English language teaching (ELT) and interrogates the hegemonic relations in the knowledge construction and reconstruction processes, this study illuminates how an action research-informed pedagogical practice can transform the English for academic purposes (EAP) teaching to be more culturally and linguistically inclusive and critically oriented for English language learners’ advancement in academic literacies skills. More specifically, this paper aims to showcase the action research-informed pedagogical innovations that emphasize multilingual learners’ multiliteracies engagement and experiential education-oriented learning to facilitate the development of learners’ academic literacies, intercultural communicative competence, and inclusive global citizenship in the context of Canadian university EAP classrooms. The pedagogical innovations through action research embarked in response to growing discussions surrounding pedagogical possibilities of plurilingualism in ELT and synchronous online teaching. The paper is based on two iterations of action research over the pandemic years between 2020 and 2022. The data includes student work samples, focus group interviews, anonymous surveys, teacher feedback and comments on student work and teaching reflections. The first iteration of the action research focused on the affordances of multimodal expressions in individual learners’ academic endeavors for their literacy skills development through individual online activities such as ‘my language autobiography,’ ‘multimodal expression corner’ and public speeches. While these activities help English language learners enhance their knowledge and skills of English-spoken discourses, these tasks did not necessarily require learners’ team-based collaborative endeavors to complete the assigned tasks. Identifying this area for improvement in the instructional design, the second action research cycle/iteration emphasized collaborative performativity through newly added performance/action-based innovative learning tasks, including ‘situational role-playing’, ‘my cooking show & interview’, and group debates in order to provide learners increased opportunities to communicate with peers who joined the class virtually from different parts of the world and enhance learners’ intercultural competence through various strategic and pragmatic communicative skills to collaboratively achieve their shared goals (i.e., successful completion of the given group tasks). The paper exemplifies instances wherein learners’ unique and diverse linguistic and cultural strengths were amplified, and critical literacies were further developed through learners’ performance-oriented multiliteracies engagement. The study suggests that the action research-informed teaching practice that advocates for collaborative multiliteracies engagement serves to facilitate learners’ activation of their existing linguistic and cultural knowledge and contributes to the development of learners’ academic literacy skills. Importantly, the study illuminates that such action research-informed pedagogical initiatives create an inclusive space for learners to build a strong sense of connectedness as global citizens with increased intercultural awareness in their community of language and cultural practices, and further allow learners to actively participate in the construction of ‘collaborative relations of power’ with their peers.Keywords: action research, EAP, higher education, multiliteracies
Procedia PDF Downloads 792675 Phase Equilibria in the Ln-Sr-Co-O Systems
Authors: Anastasiia Maklakova
Abstract:
The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples.Keywords: phase equilibria, crystal structure, oxygen nonstoichiometry, solid oxide fuel cell
Procedia PDF Downloads 1172674 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.Keywords: CNN, deep-learning, facial emotion recognition, machine learning
Procedia PDF Downloads 952673 The Differential Impacts of Shame and Guilt on Father Involvement in Families with Special Needs Children
Authors: Lo Kai Chung
Abstract:
Fathers in the family of disabled children play a crucial role in fostering child development. Previous studies addressing emotions of father involvement in rearing children with special needs have been rare. With reference to the cultural orientation and masculine idea of Chinese fathers, shame and guilt are probable causal emotions that affect fathers’ psycho-behavioral reactions and, thus, father involvement. Based on the findings of our earlier qualitative studies, the current study aims to develop and validate a multi-item scale of guilt or shame and explore their relations with and fatherhood in families with children with special needs. A model is proposed to understand the roles that shame and guilt play in affecting fathers’ involvement in their family system. The severity and type of the child’s special needs are regarded as independent variables affecting the father’s emotional responses – shame and guilt. It is hypothesized that shame and guilt, under the influence of masculinity, lead to avoidance and compensation, respectively, which subsequently decrease and increase father involvement with children with special needs. A cross-sectional online questionnaire survey of fathers with children with special needs recruited by convenience sampling was conducted. Potential participants were reached by bulk emails, related groups on the Internet and education/social services providers. Totally 537 valid sets of online questionnaires were collected from fathers of children with special needs. EFA on the items pool of shame and guilt was performed, resulting in an x-item single-factor solution and y-item single-factor solution, respectively. Further path model analysis revealed that shame and guilt, under the influence of masculinity, showed differential avoidance and compensation responses and resulted in a decrease and increase in father involvement with special needs children. Demographic and key confounding variables were controlled in the analysis. The shame and guilt scales developed show good psychometric properties. Furthermore, they showed significant differential impacts, under the influence of masculinity, on avoidance and compensation behaviours, consequently resulting in a decrease/increase in father involvement in the expected directions. The findings have important theoretical and practical implications. At the community and policy level, the findings inform the design of strategies for strengthening the role of men in families with special needs children.Keywords: emotions, father involvement, guilt, shame, special needs
Procedia PDF Downloads 712672 Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi
Authors: Daomao Yang, Qizhi Wang
Abstract:
Monoterpenoids are mainly found in plant essential oils and they are ideal substrates for biotransformation into oxygen-containing derivatives with important commercial value due to their low price and simple structure. In this paper, eleven strains of endophytic fungi from Praxelis clematidea were used as test strains to conduct the whole cell biotransformation of the monoterpenoids: (+)-limonene, (-)-limonene and myrcene. The fungi were inoculated in 50 ml Sabouraud medium and incubated at 30 ℃ with the agitation of 150 r/min for 6 d, and then 0.5% (v/v) substrates were added into the medium and biotransformed for further 3 d. Afterwards the cultures were filtered, and extracted using equal volume of ethyl acetate. The metabolites were analyzed by GC-MS technique with NIST database. The Total Ion Chromatogram of the extractions from the eleven strains showed that the main product of (+)- and (-)-limonene biotransformation was limonene-1,2-diol, while it is limonene and linalool oxide for biotransformation of myrcene. This work will help screen the microorganisms to biotransform the monoterpenes.Keywords: endophytic fungi, (+)–limonene, (-)–limonene, myrcene
Procedia PDF Downloads 1262671 Fears of Strangers: Causes of Anonymity Rejection on Virtual World
Authors: Proud Arunrangsiwed
Abstract:
This research is a collaborative narrative research, which is mixed with issues of selected papers and researcher's experience as an anonymous user on social networking sites. The objective of this research is to understand the reasons of the regular users who reject to contact with anonymous users, and to study the communication traditions used in the selected studies. Anonymous users are rejected by regular users, because of the fear of cyber bully, the fear of unpleasant behaviors, and unwillingness of changing communication norm. The suggestion for future research design is to use longitudinal design or quantitative design; and the theory in rhetorical tradition should be able to help develop a strong trust message.Keywords: anonymous, anonymity, online identity, trust message, reliability
Procedia PDF Downloads 3592670 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.Keywords: ANPR, CS, CNN, deep learning, NPL
Procedia PDF Downloads 3062669 Decision Support System for Examination Selection
Authors: Katejarinporn Chaiya, Jarumon Nookong, Nutthapat Kaewrattanapat
Abstract:
The purposes of this research were to develop and find users’ satisfaction after using the Decision Support System for Examination Selection. This research presents the design of information systems. In order to find the necessary examination of the statistics. Based on the examination of the candidate and then taking the easy difficulty setting statistics applied to the test. In addition, research has also made performance appraisals from experts and user satisfaction. By results of analysis showed that the performance appraisals from experts on the system as a whole and at a good level. mean was 3.44 and S.D. was 0.55 and user satisfaction per system as a whole and the good level mean was 3.37 and S.D. was 0.42 can conclude that effective systems are in a good level. Work has been completed in accordance with the scope of work. The website used developing this project is PHP, MySQL.5.0.45 for database.Keywords: secision support system, examination, PHP, information systems
Procedia PDF Downloads 4512668 Regional Dynamics of Innovation and Entrepreneurship in the Optics and Photonics Industry
Authors: Mustafa İlhan Akbaş, Özlem Garibay, Ivan Garibay
Abstract:
The economic entities in innovation ecosystems form various industry clusters, in which they compete and cooperate to survive and grow. Within a successful and stable industry cluster, the entities acquire different roles that complement each other in the system. The universities and research centers have been accepted to have a critical role in these systems for the creation and development of innovations. However, the real effect of research institutions on regional economic growth is difficult to assess. In this paper, we present our approach for the identification of the impact of research activities on the regional entrepreneurship for a specific high-tech industry: optics and photonics. The optics and photonics has been defined as an enabling industry, which combines the high-tech photonics technology with the developing optics industry. The recent literature suggests that the growth of optics and photonics firms depends on three important factors: the embedded regional specializations in the labor market, the research and development infrastructure, and a dynamic small firm network capable of absorbing new technologies, products and processes. Therefore, the role of each factor and the dynamics among them must be understood to identify the requirements of the entrepreneurship activities in optics and photonics industry. There are three main contributions of our approach. The recent studies show that the innovation in optics and photonics industry is mostly located around metropolitan areas. There are also studies mentioning the importance of research center locations and universities in the regional development of optics and photonics industry. These studies are mostly limited with the number of patents received within a short period of time or some limited survey results. Therefore the first contribution of our approach is conducting a comprehensive analysis for the state and recent history of the photonics and optics research in the US. For this purpose, both the research centers specialized in optics and photonics and the related research groups in various departments of institutions (e.g. Electrical Engineering, Materials Science) are identified and a geographical study of their locations is presented. The second contribution of the paper is the analysis of regional entrepreneurship activities in optics and photonics in recent years. We use the membership data of the International Society for Optics and Photonics (SPIE) and the regional photonics clusters to identify the optics and photonics companies in the US. Then the profiles and activities of these companies are gathered by extracting and integrating the related data from the National Establishment Time Series (NETS) database, ES-202 database and the data sets from the regional photonics clusters. The number of start-ups, their employee numbers and sales are some examples of the extracted data for the industry. Our third contribution is the utilization of collected data to investigate the impact of research institutions on the regional optics and photonics industry growth and entrepreneurship. In this analysis, the regional and periodical conditions of the overall market are taken into consideration while discovering and quantifying the statistical correlations.Keywords: entrepreneurship, industrial clusters, optics, photonics, emerging industries, research centers
Procedia PDF Downloads 4072667 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 2622666 The Positive Impact of COVID-19 on the Level of Investments of U.S. Retail Investors: Evidence from a Quantitative Online Survey and Ordered Probit Analysis
Authors: Corina E. Niculaescu, Ivan Sangiorgi, Adrian R. Bell
Abstract:
The COVID-19 pandemic has been life-changing in many aspects of people’s daily and social lives, but has it also changed attitudes towards investments? This paper explores the effect of the COVID-19 pandemic on retail investors’ levels of investments in the U.S. during the first COVID-19 wave in summer 2020. This is an unprecedented health crisis, which could lead to changes in investment behavior, including irrational behavior in retail investors. As such, this study aims to inform policymakers of what happened to investment decisions during the COVID-19 pandemic so that they can protect retail investors during extreme events like a global health crisis. The study aims to answer two research questions. First, was the level of investments affected by the COVID-19 pandemic, and if so, why? Second, how were investments affected by retail investors’ personal experience with COVID-19? The research analysis is based on primary survey data collected on the Amazon Mechanical Turk platform from a representative sample of U.S. respondents. Responses were collected between the 15th of July and 28th of August 2020 from 1,148 U.S. retail investors who hold mutual fund investments and a savings account. The research explores whether being affected by COVID-19, change in the level of savings, and risk capacity can explain the change in the level of investments by using regression analysis. The dependent variable is changed in investments measured as decrease, no change, and increase. For this reason, the methodology used is ordered probit regression models. The results show that retail investors in the U.S. increased their investments during the first wave of COVID-19, which is unexpected as investors are usually more cautious in crisis times. Moreover, the study finds that those who were affected personally by COVID-19 (e.g., tested positive) were more likely to increase their investments, which is irrational behavior and contradicts expectations. An increase in the level of savings and risk capacity was also associated with increased investments. Overall, the findings show that having personal experience with a health crisis can have an impact on one’s investment decisions as well. Those findings are important for both retail investors and policymakers, especially now that online trading platforms have made trading easily accessible to everyone. There are risks and potential irrational behaviors associated with investment decisions during times of crisis, and it is important that retail investors are aware of them before making financial decisions.Keywords: COVID-19, financial decision-making, health crisis retail investors, survey
Procedia PDF Downloads 1922665 Healthcare Data Mining Innovations
Authors: Eugenia Jilinguirian
Abstract:
In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database
Procedia PDF Downloads 662664 2.5D Face Recognition Using Gabor Discrete Cosine Transform
Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao
Abstract:
In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose
Procedia PDF Downloads 3282663 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features
Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng
Abstract:
Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.Keywords: HTML5, web worker, canvas, web socket
Procedia PDF Downloads 3002662 Ensuring Consistency under the Snapshot Isolation
Authors: Carlos Roberto Valêncio, Fábio Renato de Almeida, Thatiane Kawabata, Leandro Alves Neves, Julio Cesar Momente, Mario Luiz Tronco, Angelo Cesar Colombini
Abstract:
By running transactions under the Snapshot isolation we can achieve a good level of concurrency, specially in databases with high-intensive read workloads. However, Snapshot is not immune to all the problems that arise from competing transactions and therefore no serialization warranty exists. We propose in this paper a technique to obtain data consistency with Snapshot by using some special triggers that we named Daemon Triggers. Besides keeping the benefits of the Snapshot isolation, the technique is specially useful for those database systems that do not have an isolation level that ensures serializability, like Firebird and Oracle. We describe all the anomalies that might arise when using the Snapshot isolation and show how to preclude them with Daemon Triggers. Based on the methodology presented here, it is also proposed the creation of a new isolation level: Daemon Snapshot.Keywords: data consistency, serialization, snapshot, isolation
Procedia PDF Downloads 3292661 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building
Authors: A. Schuchter, M. Promegger
Abstract:
The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning
Procedia PDF Downloads 1212660 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)
Authors: Wafa' Slaibi Alsharafat
Abstract:
Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection
Procedia PDF Downloads 4742659 Financial Products Held by University Students: An Empirical Study from the Czech Republic
Authors: Barbora Chmelikova
Abstract:
Current financial markets offer a wide range of financial products to the consumers. However, access to the financial products is not always provided or guaranteed, particularly in less developed countries. For this reason, financial inclusion is an important component in the modern society. This paper investigates financial inclusion and what financial products are held by university students majoring in finance fields. The OECD methodology was used to examine the awareness and use of financial products. The study was conducted via online questionnaire at Masaryk University in the Czech Republic among finance students. The results show that the students use current and savings accounts more than any other financial products.Keywords: financial inclusion, financial products, personal finance, university students
Procedia PDF Downloads 3762658 Site-based Internship Experiences: From Research to Implementation and Community Collaboration
Authors: Jamie Sundvall, Lisa Jennings
Abstract:
Site based field internship learning (SBL) is an educational approach within a Master’s of Social Work (MSW) university field placement department that promotes a more streamlined approach to the integration of theory and evidence based practices for social work students. The SBL model is founded on research in the field, consideration of current work force needs, United States national trends of MSW graduate skill and knowledge deficits, educational trends in students pursing a master’s degree in social work, and current social problems that require unique problem solving skills. This study explores the use of site-based learning in a hybrid social work program. In this setting, site based learning pairs online education courses and social work field education to create training opportunities for social work students within their own community and cultural context. Students engage in coursework in an online setting with both synchronous and asynchronous features that facilitate development of core competencies for MSW students. Through the SBL model, students are then partnered with faculty in a virtual course room and a university vetted site within their community. The study explores how this model of learning creates community partnerships, through which students engage in a learning loop to develop social work skills, while preparing students to address current community, social, and global issues with the engagement of technology. The goal of SBL is to more effectively equip social work students for practice according to current workforce demands, provide access to education and care to populations who have limited access, and create self-sustainable partnerships. Further, the model helps students learn integration of evidence based practices and helps instructors more effectively teach integration of ethics into practice. The study found that the SBL model increases the influence and professional relevance of the social work profession, and ultimately facilitates stronger approaches to integrating theory into practice. Current implementation of the practice in the United States will be presented in the study. dditionally, future research conceptualization of SBL models will be presented, in order to collaborate on advancing best approaches of translating theory into practice, according to the current needs of the profession and needs of social work students.Keywords: collaboration, fieldwork, research, site-based learning, technology
Procedia PDF Downloads 1252657 A Long Tail Study of eWOM Communities
Authors: M. Olmedilla, M. R. Martinez-Torres, S. L. Toral
Abstract:
Electronic Word-Of-Mouth (eWOM) communities represent today an important source of information in which more and more customers base their purchasing decisions. They include thousands of reviews concerning very different products and services posted by many individuals geographically distributed all over the world. Due to their massive audience, eWOM communities can help users to find the product they are looking for even if they are less popular or rare. This is known as the long tail effect, which leads to a larger number of lower-selling niche products. This paper analyzes the long tail effect in a well-known eWOM community and defines a tool for finding niche products unavailable through conventional channels.Keywords: eWOM, online user reviews, long tail theory, product categorization, social network analysis
Procedia PDF Downloads 4212656 Entropy-Based Multichannel Stationary Measure for Characterization of Non-Stationary Patterns
Authors: J. D. Martínez-Vargas, C. Castro-Hoyos, G. Castellanos-Dominguez
Abstract:
In this work, we propose a novel approach for measuring the stationarity level of a multichannel time-series. This measure is based on a stationarity definition over time-varying spectrum, and it is aimed to quantify the relation between local stationarity (single-channel) and global dynamic behavior (multichannel dynamics). To assess the proposed approach validity, we use a well known EEG-BCI database, that was constructed for separate between motor/imagery tasks. Thus, based on the statement that imagination of movements implies an increase on the EEG dynamics, we use as discriminant features the proposed measure computed over an estimation of the non-stationary components of input time-series. As measure of separability we use a t-student test, and the obtained results evidence that such measure is able to accurately detect the brain areas projected on the scalp where motor tasks are realized.Keywords: stationary measure, entropy, sub-space projection, multichannel dynamics
Procedia PDF Downloads 4122655 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: segmentation, road signs, characters, classification
Procedia PDF Downloads 4442654 The Role of ICT in Engaging Youth in Agricultural Transformation of Africa
Authors: Adebola Adedugbe
Abstract:
Agriculture is the mainstay of most countries in Africa. It employs up to 90 percent of the rural workforce, who are mostly youth and women. Engaging youths in Information and Communications Technology (ICT) in agriculture is critical to economic and agricultural development of the African continent. The objective of this paper is to identify and mobilize the potentials of young Africans in agriculture through ICT and recognize their role as the dominant driver for sustainable agricultural development in Africa. This paper identifies the role of ICT as a tool for attracting youths to agriculture. The development of ICT is important in stimulating youths in SME’s to compete favorably and effectively as a way to fight poverty through job and wealth creation. It is one of the strategies for promoting entrepreneurship by increasing the availability and diversity of online information.Keywords: Africa, agriculture, ICT, tool, youth
Procedia PDF Downloads 4502653 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model
Authors: Jaemoon Lim
Abstract:
To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.Keywords: chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME
Procedia PDF Downloads 4572652 The Study of Groundcover for Heat Reduction
Authors: Winai Mankhatitham
Abstract:
This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1) Types of groundcover affecting heat reduction, 2) The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane, 3) Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof.Keywords: green roof, heat reduction, groundcover, energy saving
Procedia PDF Downloads 5152651 Predicting Personality and Psychological Distress Using Natural Language Processing
Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi
Abstract:
Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality
Procedia PDF Downloads 79