Search results for: heterogeneous traffic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1880

Search results for: heterogeneous traffic

350 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 97
349 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 256
348 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 125
347 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
346 Production Optimization under Geological Uncertainty Using Distance-Based Clustering

Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe

Abstract:

It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.

Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization

Procedia PDF Downloads 144
345 Injury Patterns and Outcomes in Alcohol Intoxicated Trauma Patients Admitted at Level I Apex Trauma Centre of a Developing Nation

Authors: G. Kaushik, A. Gupta, S. Lalwani, K. D. Soni, S. Kumar, S. Sagar

Abstract:

Objective: Alcohol is a leading risk factor associated with the disability and death due to RTI. Present study aims to demonstrate the demographic profile, injury pattern, physiological parameters of victims of trauma following alcohol consumption arriving in the emergency department (ED) and mortality in alcohol intoxicated trauma patients admitted to Apex Trauma Center in Delhi. Design and Methods: Present study was performed in randomly selected 182 alcohol breath analyzer tested RTI patients from the emergency department of Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences, New Delhi for over a period of 3 months started from September 2013 to November 2013. Results: A total 182 RTI patients with blunt injury were selected between 30-40 years of age and equally distributed to male and female group. Of these, 93 (51%) were alcohol negative and 89 (49%) were alcohol positive. In 89 alcohol positive patients, 47 (53%) had Artificial Airway as compared to 17 (18%), (p < 0.001) in the other group. The Glasgow Coma Scale (GCS) score was lower (p < 0.001) and higher Injury Severity Score (ISS) was observed in alcohol positive group as compared to other group (p < 0.03). Increased number of patients (58%) were admitted to Intensive Care Unit (ICU), in alcohol positive group (p < 0.001) and they were in ICU for longer time compare to other group (p < 0.001). The alcohol positive patients were on ventilator support for longer duration as compared to non-alcoholic group (p < 0.001). Mortality rate was higher in alcohol intoxicated patients as compared to non-alcoholic RTI patients, however, the difference was not statistically significant. Conclusion: This study revealed that GCS, mean ISS, ICU stay, ventilation time etc. might have considerable impact on mortality in alcohol intoxicated patients as compared to non-alcoholic group.

Keywords: road traffic injuries, alcohol, trauma, emergency department

Procedia PDF Downloads 317
344 Software Development for AASHTO and Ethiopian Roads Authority Flexible Pavement Design Methods

Authors: Amare Setegn Enyew, Bikila Teklu Wodajo

Abstract:

The primary aim of flexible pavement design is to ensure the development of economical and safe road infrastructure. However, failures can still occur due to improper or erroneous structural design. In Ethiopia, the design of flexible pavements relies on doing calculations manually and selecting pavement structure from catalogue. The catalogue offers, in eight different charts, alternative structures for combinations of traffic and subgrade classes, as outlined in the Ethiopian Roads Authority (ERA) Pavement Design Manual 2001. Furthermore, design modification is allowed in accordance with the structural number principles outlined in the AASHTO 1993 Guide for Design of Pavement Structures. Nevertheless, the manual calculation and design process involves the use of nomographs, charts, tables, and formulas, which increases the likelihood of human errors and inaccuracies, and this may lead to unsafe or uneconomical road construction. To address the challenge, a software called AASHERA has been developed for AASHTO 1993 and ERA design methods, using MATLAB language. The software accurately determines the required thicknesses of flexible pavement surface, base, and subbase layers for the two methods. It also digitizes design inputs and references like nomographs, charts, default values, and tables. Moreover, the software allows easier comparison of the two design methods in terms of results and cost of construction. AASHERA's accuracy has been confirmed through comparisons with designs from handbooks and manuals. The software can aid in reducing human errors, inaccuracies, and time consumption as compared to the conventional manual design methods employed in Ethiopia. AASHERA, with its validated accuracy, proves to be an indispensable tool for flexible pavement structure designers.

Keywords: flexible pavement design, AASHTO 1993, ERA, MATLAB, AASHERA

Procedia PDF Downloads 63
343 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle

Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat

Abstract:

Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.

Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats

Procedia PDF Downloads 253
342 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire

Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas

Abstract:

Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.

Keywords: resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan

Procedia PDF Downloads 139
341 Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria

Authors: Jayeola A. O., Ayodele O. S., Olususi J. I.

Abstract:

From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area.

Keywords: petrography, Ila Orangun, petrochemistry, pegmatites, peraluminous

Procedia PDF Downloads 63
340 Studying Together Affects Perceived Social Distance but Not Stereotypes: Nursing Students' Perception of Their Intergroup Relationship

Authors: Michal Alon-Tirosh, Dorit Hadar-Shoval

Abstract:

Social Psychology theories, such as the intergroup contact theory, content that bringing members of different social groups into contact is a promising approach for improving intergroup relations. The heterogeneous nature of the nursing profession generates encounters between members of different social groups .The social relations that nursing students develop with their peers during their years of study, and the meanings they ascribe to these contacts, may affect the success of their nursing careers. Jewish-Arab relations in Israel are the product of an ongoing conflict and are characterized by stereotyped negative perceptions and mutual suspicions. Nursing education is often the first situation in which Jewish and Arab nursing students have direct and long-term contact with people from the other group. These encounters present a significant challenge. The current study explores whether this contact between Jewish and Arab nursing students during their academic studies improves their perception of their intergroup relationship. The study explores the students' perceptions of the social relations between the two groups. We examine attribution of stereotypes (positive and negative) and willingness to engage in social interactions with individuals from the other group. The study hypothesis is that academic seniority (beginning students, advanced students) will be related to perceptions of the relations between the two groups, as manifested in attributions of positive and negative stereotypes and willingness to reduce the social distance between the two groups. Method: One hundred and eighty Jewish and Arab nursing students (111 Jewish and 69 Arab) completed questionnaires examining their perceptions of the social relations between the two groups. The questionnaires were administered at two different points in their studies (beginning students and those at more advanced stages Results: No differences were found between beginning students and advanced students with respect to stereotypes. However, advanced students expressed greater willingness to reduce social distance than did beginning students. Conclusions: The findings indicate that bringing members of different social groups into contact may improve some aspects of intergroup relations. The findings suggest that different aspects of perceptions of social relations are influenced by different contexts: the students' specific context (joint studies and joint work in the future) and the broader general context of relations between the groups. Accordingly, it is recommended that programs aimed at improving relations in a between social groups will focus on willingness to cooperate and reduce social distance rather than on attempts to eliminate stereotypes.

Keywords: nursing education, perceived social relations, social distance, stereotypes

Procedia PDF Downloads 106
339 Corpora in Secondary Schools Training Courses for English as a Foreign Language Teachers

Authors: Francesca Perri

Abstract:

This paper describes a proposal for a teachers’ training course, focused on the introduction of corpora in the EFL didactics (English as a foreign language) of some Italian secondary schools. The training course is conceived as a part of a TEDD participant’s five months internship. TEDD (Technologies for Education: diversity and devices) is an advanced course held by the Department of Engineering and Information Technology at the University of Trento, Italy. Its main aim is to train a selected, heterogeneous group of graduates to engage with the complex interdependence between education and technology in modern society. The educational approach draws on a plural coexistence of various theories as well as socio-constructivism, constructionism, project-based learning and connectivism. TEDD educational model stands as the main reference source to the design of a formative course for EFL teachers, drawing on the digitalization of didactics and creation of learning interactive materials for L2 intermediate students. The training course lasts ten hours, organized into five sessions. In the first part (first and second session) a series of guided and semi-guided activities drive participants to familiarize with corpora through the use of a digital tools kit. Then, during the second part, participants are specifically involved in the realization of a ML (Mistakes Laboratory) where they create, develop and share digital activities according to their teaching goals with the use of corpora, supported by the digital facilitator. The training course takes place into an ICT laboratory where the teachers work either individually or in pairs, with a computer connected to a wi-fi connection, while the digital facilitator shares inputs, materials and digital assistance simultaneously on a whiteboard and on a digital platform where participants interact and work together both synchronically and diachronically. The adoption of good ICT practices is a fundamental step to promote the introduction and use of Corpus Linguistics in EFL teaching and learning processes, in fact dealing with corpora not only promotes L2 learners’ critical thinking and orienteering versus wild browsing when they are looking for ready-made translations or language usage samples, but it also entails becoming confident with digital tools and activities. The paper will explain reasons, limits and resources of the pedagogical approach adopted to engage EFL teachers with the use of corpora in their didactics through the promotion of digital practices.

Keywords: digital didactics, education, language learning, teacher training

Procedia PDF Downloads 155
338 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit

Authors: Khalil Ahmad Kakar

Abstract:

In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.

Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model

Procedia PDF Downloads 184
337 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. Ladier, S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: nuclear decommissioning, logistical optimization, decision-support framework, waste management

Procedia PDF Downloads 324
336 Investigating a Deterrence Function for Work Trips for Perth Metropolitan Area

Authors: Ali Raouli, Amin Chegenizadeh, Hamid Nikraz

Abstract:

The Perth metropolitan area and its surrounding regions have been expanding rapidly in recent decades and it is expected that this growth will continue in the years to come. With this rapid growth and the resulting increase in population, consideration should be given to strategic planning and modelling for the future expansion of Perth. The accurate estimation of projected traffic volumes has always been a major concern for the transport modelers and planners. Development of a reliable strategic transport model depends significantly on the inputs data into the model and the calibrated parameters of the model to reflect the existing situation. Trip distribution is the second step in four-step modelling (FSM) which is complex due to its behavioral nature. Gravity model is the most common method for trip distribution. The spatial separation between the Origin and Destination (OD) zones will be reflected in gravity model by applying deterrence functions which provide an opportunity to include people’s behavior in choosing their destinations based on distance, time and cost of their journeys. Deterrence functions play an important role for distribution of the trips within a study area and would simulate the trip distances and therefore should be calibrated for any particular strategic transport model to correctly reflect the trip behavior within the modelling area. This paper aims to review the most common deterrence functions and propose a calibrated deterrence function for work trips within the Perth Metropolitan Area based on the information obtained from the latest available Household data and Perth and Region Travel Survey (PARTS) data. As part of this study, a four-step transport model using EMME software has been developed for Perth Metropolitan Area to assist with the analysis and findings.

Keywords: deterrence function, four-step modelling, origin destination, transport model

Procedia PDF Downloads 168
335 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.

Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter

Procedia PDF Downloads 331
334 The Impact of Dust Storm Events on the Chemical and Toxicological Characteristics of Ambient Particulate Matter in Riyadh, Saudi Arabia

Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Mohammed Kalafy, Badr Alharbi, Constantinos Sioutas

Abstract:

In this study, we investigated the chemical and toxicological characteristics of PM10 in the metropolitan area of Riyadh, Saudi Arabia. PM10 samples were collected on quartz and teflon filters during cold (December 2019–April 2020) and warm (May 2020–August 2020) seasons, including dust and non-dust events. The PM10 constituents were chemically analyzed for their metal, inorganic ions, and elemental and organic carbon (EC/OC) contents. Additionally, the PM10 oxidative potential was measured by means of the dithiothreitol (DTT) assay. Our findings revealed that the oxidative potential of the collected ambient PM10 samples was significantly higher than those measured in many urban areas worldwide. The oxidative potential of the collected ambient PM¹⁰⁻ samples was also higher during dust episodes compared to non-dust events, mainly due to higher concentrations of metals during these events. We performed Pearson correlation analysis, principal component analysis (PCA), and multi-linear regression (MLR) to identify the most significant sources contributing to the toxicity of PM¹⁰⁻ The results of the MLR analyses indicated that the major pollution sources contributing to the oxidative potential of ambient PM10 were soil and resuspended dust emissions (identified by Al, K, Fe, and Li) (31%), followed by secondary organic aerosol (SOA) formation (traced by SO₄-² and NH+₄) (20%), and industrial activities (identified by Se and La) (19%), and traffic emissions (characterized by EC, Zn, and Cu) (17%). Results from this study underscore the impact of transported dust emissions on the oxidative potential of ambient PM10 in Riyadh and can be helpful in adopting appropriate public health policies regarding detrimental outcomes of exposure to PM₁₀-

Keywords: ambient PM10, oxidative potential, source apportionment, Riyadh, dust episodes

Procedia PDF Downloads 174
333 Effects of Food Habits on Road Accidents Due to Micro-Sleepiness and Analysis of Attitudes to Develop a Food Product as a Preventive Measure

Authors: Rumesh Liyanage, S. B. Nawaratne, K. K. D. S. Ranaweera, Indira Wickramasinghe, K. G. S. C. Katukurunda

Abstract:

Study it was attempted to identify an effect of food habits and publics’ attitudes on micro-sleepiness and preventive measures to develop a food product to combat. Statistical data pertaining to road accidents were collected from, Sri Lanka Police Traffic Division and a pre-tested questionnaire was used to collect data from 250 respondents. They were selected representing drivers (especially highway drivers), private and public sector workers (shift based) and cramming students (university and school). Questionnaires were directed to fill independently and personally and collected data were analyzed statistically. Results revealed that 76.84, 96.39 and 80.93% out of total respondents consumed rice for all three meals which lead to ingesting higher glycemic meals. Taking two hyper glycemic meals before 14.00h was identified as a cause of micro-sleepiness within these respondents. Peak level of road accidents were observed at 14.00 - 20.00h (38.2%)and intensity of micro-sleepiness falls at the same time period (37.36%) while 14.00 to 16.00h was the peak time, 16.00 to 18.00h was the least; again 18.00 to 20.00h it reappears slightly. Even though respondents of the survey expressed that peak hours of micro- sleepiness is 14.00-16.00h, according to police reports, peak hours fall in between 18.00-20.00h. Out of the interviewees, 69.27% strongly wanted to avoid micro-sleepiness and intend to spend LKR 10-20 on a commercial product to combat micro sleepiness. As age-old practices to suppress micro-sleepiness are time taken, modern day respondents (51.64%) like to have a quick solution through a drink. Therefore, food habits of morning and noon may cause for micro- sleepiness while dinner may cause for both, natural and micro-sleepiness due to the heavy glycemic load of food. According to the study micro-sleepiness, can be categorized into three zones such as low-risk zone (08.00-10.00h and 18.00-20.00h), manageable zone (10.00-12.00h), and high- risk zone (14.00-16.00h).

Keywords: food habits, glycemic load, micro-sleepiness, road accidents

Procedia PDF Downloads 545
332 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria

Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar

Abstract:

Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.

Keywords: biocapacity, carbon footprint, ecological footprint assessment, energy consumption

Procedia PDF Downloads 147
331 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 157
330 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 122
329 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya

Authors: Benedict O. Muyale, Emmanuel S. Murunga

Abstract:

Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.

Keywords: cities, transport, Nairobi, green technologies

Procedia PDF Downloads 322
328 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 269
327 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 17
326 A Discrete Event Simulation Model For Airport Runway Operations Optimization (Case Study)

Authors: Awad Khireldin, Colin Law

Abstract:

Runways are the major infrastructure of airports around the world. Efficient operations of runways are key to ensure that airports are running smoothly with minimal delays. There are many factors that affect the efficiency of runway operations, such as the aircraft wake separation, runways system configuration, the fleet mix, and the runways separation distance. This paper aims to address how to maximize runway operations using a Discrete Event Simulation model. A case study of Cairo International Airport (CIA) is developed to maximize the utilizing of three parallel runways using a simulation model. Different scenarios have been designed where every runway could be assigned for arrival, departure, or mixed operations. A benchmarking study was also included to compare the actual to the proposed results to spot the potential improvements. The simulation model shows that there is a significant difference in utilization and delays between the actual and the proposed ones, there are several recommendations that can be provided to airport management, in the short and long term, to increase the efficiency and to reduce the delays. By including the recommendation with different operations scenarios, such as upgrading the airport slot Coordination from Level 1 to Level 2 in the short term. In the long run, discuss the possibilities to increase the International Air Transport association (IATA) slot coordination to Level 3 as more flights are expected to be handled by the airport. Technological advancements such as radar in the approach full airside simulation model could improve the airport performance where the airport is recommended to review the standard operations procedures with the appropriate authorities. Also, the airport can adopt a future operational plan to accommodate the forecasted additional traffic density in case of adding a fourth terminal building to increase the airport capacity.

Keywords: airport performance, runway, discrete event simulation, capacity, airside

Procedia PDF Downloads 136
325 Qualitative and Quantitative Methods in Multidisciplinary Fields Collection Development

Authors: Hui Wang

Abstract:

Traditional collection building approaches are limited in breadth and scope and are not necessarily suitable for multidisciplinary fields development in the institutes of the Chinese Academy of Sciences. The increasing of multidisciplinary fields researches require a viable approach to collection development in these libraries. This study uses qualitative and quantitative analysis to assess collection. The quantitative analysis consists of three levels of evaluation, which including realistic demand, potential demand and trend demand analysis. For one institute, three samples were separately selected from the object institute, more than one international top institutes in highly relative research fields and future research hotspots. Each sample contains an appropriate number of papers published in recent five years. Several keywords and the organization names were reasonably combined to search in commercial databases and the institutional repositories. The publishing information and citations in the bibliographies of these papers were selected to build the dataset. One weighted evaluation model and citation analysis were used to calculate the demand intensity index of every journal and book. Principal Investigator selector and database traffic provide a qualitative evidence to describe the demand frequency. The demand intensity, demand frequency and academic committee recommendations were comprehensively considered to recommend collection development. The collection gaps or weaknesses were ascertained by comparing the current collection and the recommend collection. This approach was applied in more than 80 institutes’ libraries in Chinese Academy of Sciences in the past three years. The evaluation results provided an important evidence for collections building in the second year. The latest user survey results showed that the updated collection’s capacity to support research in a multidisciplinary subject area have increased significantly.

Keywords: citation analysis, collection assessment, collection development, quantitative analysis

Procedia PDF Downloads 219
324 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 262
323 Save Lives: The Application of Geolocation-Awareness Service in Iranian Pre-hospital EMS Information Management System

Authors: Somayeh Abedian, Pirhossein Kolivand, Hamid Reza Lornejad, Amin Karampour, Ebrahim Keshavarz Safari

Abstract:

For emergency and relief service providers such as pre-hospital emergencies, quick arrival at the scene of an accident or any EMS mission is one of the most important requirements of effective service delivery. Response time (the interval between the time of the call and the time of arrival on scene) is a critical factor in determining the quality of pre-hospital Emergency Medical Services (EMS). This is especially important for heart attack, stroke, or accident patients. Location-based e-services can be broadly defined as any service that provides information pertinent to the current location of an active mobile handset or precise address of landline phone call at a specific time window, regardless of the underlying delivery technology used to convey the information. According to research, one of the effective methods of meeting this goal is determining the location of the caller via the cooperation of landline and mobile phone operators in the country. The follow-up of the Communications Regulatory Authority (CRA) organization has resulted in the receipt of two separate secured electronic web services. Thus, to ensure human privacy, a secure technical architecture was required for launching the services in the pre-hospital EMS information management system. In addition, to quicken medics’ arrival at the patient's bedside, rescue vehicles should make use of an intelligent transportation system to estimate road traffic using a GPS-based mobile navigation system independent of the Internet. This paper seeks to illustrate the architecture of the practical national model used by the Iranian EMS organization.

Keywords: response time, geographic location inquiry service (GLIS), location-based service (LBS), emergency medical services information system (EMSIS)

Procedia PDF Downloads 171
322 Finite Element Modeling of a Lower Limb Based on the East Asian Body Characteristics for Pedestrian Protection

Authors: Xianping Du, Runlu Miao, Guanjun Zhang, Libo Cao, Feng Zhu

Abstract:

Current vehicle safety standards and human body injury criteria were established based on the biomechanical response of Euro-American human body, without considering the difference in the body anthropometry and injury characteristics among different races, particularly the East Asian people with smaller body size. Absence of such race specific design considerations will negatively influence the protective performance of safety products for these populations, and weaken the accuracy of injury thresholds derived. To resolve these issues, in this study, we aim to develop a race specific finite element model to simulate the impact response of the lower extremity of a 50th percentile East Asian (Chinese) male. The model was built based on medical images for the leg of an average size Chinese male and slightly adjusted based on the statistical data. The model includes detailed anatomic features and is able to simulate the muscle active force. Thirteen biomechanical tests available in the literature were used to validate its biofidelity. Using the validated model, a pedestrian-car impact accident taking place in China was re-constructed computationally. The results show that the newly developed lower leg model has a good performance in predicting dynamic response and tibia fracture pattern. An additional comparison on the fracture tolerance of the East Asian and Euro-American lower limb suggests that the current injury criterion underestimates the degree of injury of East Asian human body.

Keywords: lower limb, East Asian body characteristics, traffic accident reconstruction, finite element analysis, injury tolerance

Procedia PDF Downloads 290
321 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 60