Search results for: data comparison
27117 Determining Abnomal Behaviors in UAV Robots for Trajectory Control in Teleoperation
Authors: Kiwon Yeom
Abstract:
Change points are abrupt variations in a data sequence. Detection of change points is useful in modeling, analyzing, and predicting time series in application areas such as robotics and teleoperation. In this paper, a change point is defined to be a discontinuity in one of its derivatives. This paper presents a reliable method for detecting discontinuities within a three-dimensional trajectory data. The problem of determining one or more discontinuities is considered in regular and irregular trajectory data from teleoperation. We examine the geometric detection algorithm and illustrate the use of the method on real data examples.Keywords: change point, discontinuity, teleoperation, abrupt variation
Procedia PDF Downloads 16727116 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs
Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro
Abstract:
This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression
Procedia PDF Downloads 44327115 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 19627114 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 43527113 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 27527112 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization
Authors: K. Umbleja, M. Ichino, H. Yaguchi
Abstract:
In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data
Procedia PDF Downloads 17027111 The Impact of Data Science on Geography: A Review
Authors: Roberto Machado
Abstract:
We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.Keywords: data science, geography, systematic review, optimization algorithms, supervised learning
Procedia PDF Downloads 3127110 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments
Procedia PDF Downloads 13427109 Comparison of Formation Sensitivity Gap between Islamic Maybank Indonesia and Islamic Maybank Malaysia
Authors: Puji Sucia Sukmaningrum, Achsania Hendratmi, Noven Suprayogi, Muhammad Madyan
Abstract:
Theoretically, Islamic banks in Indonesia and Malaysia not necessarily aware to the interest rate fluctuation, since they don’t use interest-based instruments. Both countries use dual banking system in which Islamic and conventional banking system are exist. This situation makes the profit-sharing level of the Islamic banks will be indirectly affected by the interest rate fluctuation from the conventional banks system. One of the risk management tools for anticipating the risk of interest rate fluctuation is gap management, which has purpose to narrow the difference between Rate Sensitive Asset (RSA) and Rate Sensitive Liability (RSL). This formed gap will give the information about the risk potential in Islamic banks which respect to the fluctuation on the interest rate. This study aims to determine the position of the gap formed at Islamic Maybank Indonesia and Islamic Maybank Malaysia, and analyze the difference in the formation of gap based on the period of sensitivity. This study is a quantitative research with comparative study using sensitivity gap analysis, independent sample t-test, and Mann-Whitney method. The data being used was secondary data from Maturity Profile contained in the Annual Financial Report of Islamic Maybank Indonesia and Islamic Maybank Malaysia from 2011 to 2015 period. The result shows that, cumulatively the formation of the gap was negative gap. From the results of independent sample t-test and Mann-Whitney, the formation of the gap in Islamic Maybank Indonesia and Islamic Maybank Malaysia for a period of sensitivity of ≤ 1 month and >1-3 months show a significant difference, while the period of sensitivity >3-12 months does not. The result shows, even though Indonesia and Malaysia using same dual banking systems, the gap values are different. The difference in debt policy between Indonesia and Malaysia also affecting the gap sensitivity in debt. In can be concluded that each country needs an appropriate gap management to support its Islamic banking performance specifically.Keywords: assets and liability management, gap management, interest rate risk, Islamic bank
Procedia PDF Downloads 26027108 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 37927107 Real, Ideal, or False Self- Presentation among Young Adult and Middle Adult Facebook Users
Authors: Maria Joan Grafil, Hannah Wendam, Christine Joyce Yu
Abstract:
The use of social networking sites had been a big part of life of most people. One of the most popular among these is Facebook. Users range from young adults to late adults. While it is more popular among emerging and young adults, this social networking site gives people opportunities to express the self. Via Facebook, people have the opportunity to think about what they prefer to show others. This study identified which among the multiple facets of the self (real self, false self or ideal self) is dominantly presented by young adults and middle adults in using the social networking site Facebook. South Metro Manila was the locale of this study where 100 young adult participants (aged 18-25) were students from nearby universities and the 100 middle adult participants (aged 35-45) were working residents within the area. Participants were comprised of 53% females and 47% males. The data was gathered using a self-report questionnaire to determine which online self-presentation (real self-presentation, false self-presentation, or ideal self-presentation) of the participants has greater extent when engaging in the social networking site Facebook. Using means comparison, results showed that both young adults and middle adults engaged primarily in real self-presentation.Keywords: false self, ideal self, middle adult, real self, self presentation, young adult
Procedia PDF Downloads 28827106 Facility Data Model as Integration and Interoperability Platform
Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes
Abstract:
Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.Keywords: airport ontology, energy management, facility data model, ontology modeling
Procedia PDF Downloads 44927105 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building
Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser
Abstract:
This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy
Procedia PDF Downloads 25727104 Investigation on Phase Change Device for Satellite Thermal Control
Authors: Meng-Hao Chen, Jeng-Der Huang, Chia-Ray Chen
Abstract:
With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this studyKeywords: phase change material (PCM), thermal control, solidification, supercooling
Procedia PDF Downloads 38527103 Explaining Listening Comprehension among L2 Learners of English: The Contribution of Vocabulary Knowledge and Working Memory Capacity
Authors: Ahmed Masrai
Abstract:
Listening comprehension constitutes a considerable challenge for the second language (L2) learners, but a little is known about the explanatory power of different variables in explaining variance in listening comprehension. Since research in this area, to the researcher's knowledge, is relatively small in comparison to that focusing on the relationship between reading comprehension and factors such as vocabulary and working memory, there is a need for studies that are seeking to fill the gap in our knowledge about the specific contribution of working memory capacity (WMC), aural vocabulary knowledge and written vocabulary knowledge to explaining listening comprehension. Among 130 English as foreign language learners, the present study examines what proportion of the variance in listening comprehension is explained by aural vocabulary knowledge, written vocabulary knowledge, and WMC. Four measures were used to collect the required data for the study: (1) A-Lex, a measure of aural vocabulary knowledge; (2) XK-Lex, a measure of written vocabulary knowledge; (3) Listening Span Task, a measure of WMC and; (4) IELTS Listening Test, a measure of listening comprehension. The results show that aural vocabulary knowledge is the strongest predictor of listening comprehension, followed by WMC, while written vocabulary knowledge is the weakest predictor. The study discusses implications for the explanatory power of aural vocabulary knowledge and WMC to listening comprehension and pedagogical practice in L2 classrooms.Keywords: listening comprehension, second language, vocabulary knowledge, working memory
Procedia PDF Downloads 38327102 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated
Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi
Abstract:
It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation
Procedia PDF Downloads 22227101 A Study on the Relationships among Teacher Empowerment, Professional Commitment and School Effectiveness
Authors: S. C. Lin, W. F. Hung, W. W. Cheng
Abstract:
Teacher empowerment was regarded as investing teachers with the right to participate in the determination of school goals and policies and to exercise professional judgment about what and how to teach. Professional commitment was considered as a person’s belief in and acceptance of the values of his or her chosen occupation or line of work, and a willingness to maintain membership in that occupation. An effective school has been defined as one in which students’ progress further than might be expected from consideration of its intake. An effective school thus adds extra value to its students' outcomes, in comparison with other schools serving similar intakes. A number of literature from various countries explored that teacher empowerment and professional commitment significantly influenced school effectiveness. However, there lacked more empirical studies to examine the relationships among them. Hence, this study was to explore the relationships among teacher empowerment, professional commitment and school effectiveness in junior high schools in Taiwan. Samples were seven hundred and five junior high school teachers selected from Taichung City, Changhua County and Nantou County. Questionnaire was applied to collect data. Data were analyzed by using descriptive statistics, t-test, one-way ANOVA, Pearson’s product-moment correlation, and multiple regression analysis. The findings of this study were as follows: First, the overall performances of teachers’ perceptions of teacher empowerment, teacher professional commitment and school effectiveness were above average. Second, the teachers’ perceptions of teacher empowerment were significant different in gender, designated duty, and school size. Third, the teachers’ perceptions of teacher professional commitment were significant different in gender, designated duty, and school size. Fourth, the teachers’ perceptions of school effectiveness were significant different in designated duty. Fifth, teacher empowerment was mid-positively correlation by teacher professional commitment. Sixth, there was mid-positively correlation between teacher empowerment and school effectiveness. Seventh, there was mid-positively correlation between teacher professional commitment and school effectiveness. Eighth, Teacher empowerment and professional commitment could significantly predict school effectiveness. Based on the findings of this study, the study proposed some suggestions for educational authorities, schools, teachers, and future studies as well.Keywords: junior high school teacher, teacher empowerment, teacher professional commitment, school effectiveness
Procedia PDF Downloads 46227100 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 10527099 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)
Procedia PDF Downloads 27427098 A Relational Data Base for Radiation Therapy
Authors: Raffaele Danilo Esposito, Domingo Planes Meseguer, Maria Del Pilar Dorado Rodriguez
Abstract:
As far as we know, it is still unavailable a commercial solution which would allow to manage, openly and configurable up to user needs, the huge amount of data generated in a modern Radiation Oncology Department. Currently, available information management systems are mainly focused on Record & Verify and clinical data, and only to a small extent on physical data. Thus, results in a partial and limited use of the actually available information. In the present work we describe the implementation at our department of a centralized information management system based on a web server. Our system manages both information generated during patient planning and treatment, and information of general interest for the whole department (i.e. treatment protocols, quality assurance protocols etc.). Our objective it to be able to analyze in a simple and efficient way all the available data and thus to obtain quantitative evaluations of our treatments. This would allow us to improve our work flow and protocols. To this end we have implemented a relational data base which would allow us to use in a practical and efficient way all the available information. As always we only use license free software.Keywords: information management system, radiation oncology, medical physics, free software
Procedia PDF Downloads 24227097 A Study of Safety of Data Storage Devices of Graduate Students at Suan Sunandha Rajabhat University
Authors: Komol Phaisarn, Natcha Wattanaprapa
Abstract:
This research is a survey research with an objective to study the safety of data storage devices of graduate students of academic year 2013, Suan Sunandha Rajabhat University. Data were collected by questionnaire on the safety of data storage devices according to CIA principle. A sample size of 81 was drawn from population by purposive sampling method. The results show that most of the graduate students of academic year 2013 at Suan Sunandha Rajabhat University use handy drive to store their data and the safety level of the devices is at good level.Keywords: security, safety, storage devices, graduate students
Procedia PDF Downloads 35327096 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment
Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah
Abstract:
Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.Keywords: response time, query, consistency, bandwidth, storage capacity, CERN
Procedia PDF Downloads 27127095 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 4327094 The Association of IL-17 Serum Levels with Disease Severity and Onset of Symptoms in Rheumatoid Arthritis Patients
Authors: Fatemeh Keshavarz
Abstract:
Background: Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, often leading to joint damage and physical disability. This study aimed to investigate the relationship of serum levels of interleukin 17 and anti-CCP factor with disease severity in RA patients. Materials and Methods: Fifty-four patients with RA confirmed by clinical and laboratory criteria were recruited. A 5 ml venous blood sample was taken from every patient, its serum was separated. Based on clinical data and severity of symptoms, patients were classified into three groups of those with mild, moderate, and severe symptoms. Serum levels of IL-17 and anti-CCP in all samples were measured using ELISA. Results: Analysis of IL-17 serum levels in different groups showed that its amount was higher in the group with mild clinical symptoms than in other groups. Comparison of IL-17 serum levels between mild and moderate disease severity groups showed a statistically significant relationship. There was also a positive linear relationship between anti-CCP and serum IL-17 levels in different groups of the disease, and serum IL-17 levels were inversely related to the duration of exposure to the disease. Conclusion: Higher IL-17 serum levels in patients with mild symptom severity confirm that this highly specific marker is involved in the pathogenesis of RA and may be effective in initiating patients’ clinical symptoms.Keywords: IL-17, anti-CCP, rheumatoid arthritis, autoimmune
Procedia PDF Downloads 13927093 Fuzzy Logic-Based Approach to Predict Fault in Transformer Oil Based on Health Index Using Dissolved Gas Analysis
Authors: Kharisma Utomo Mulyodinoto, Suwarno, Ahmed Abu-Siada
Abstract:
Transformer insulating oil is a key component that can be utilized to detect incipient faults within operating transformers without taking them out of service. Dissolved gas-in-oil analysis has been widely accepted as a powerful technique to detect such incipient faults. While the measurement of dissolved gases within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straightforward as it depends on personnel expertise more than mathematical formulas. In analyzing such data, the generation rate of each dissolved gas is of more concern than the absolute value of the gas. As such, history of dissolved gases within a particular transformer should be archived for future comparison. Lack of such history may lead to misinterpretation of the obtained results. IEEE C57.104-2008 standards have classified the health condition of the transformer based on the absolute value of individual dissolved gases along with the total dissolved combustible gas (TDCG) within transformer oil into 4 conditions. While the technique is easy to implement, it is considered as a very conservative technique and is not widely accepted as a reliable interpretation tool. Moreover, measured gases for the same oil sample can be within various conditions limits and hence, misinterpretation of the data is expected. To overcome this limitation, this paper introduces a fuzzy logic approach to predict the health condition of the transformer oil based on IEEE C57.104-2008 standards along with Roger ratio and IEC ratio-based methods. DGA results of 31 chosen oil samples from 469 transformer oil samples of normal transformers and pre-known fault-type transformers that were collected from Indonesia Electrical Utility Company, PT. PLN (Persero), from different voltage rating: 500/150 kV, 150/20 kV, and 70/20 kV; different capacity: 500 MVA, 60 MVA, 50 MVA, 30 MVA, 20 MVA, 15 MVA, and 10 MVA; and different lifespan, are used to test and establish the fuzzy logic model. Results show that the proposed approach is of good accuracy and can be considered as a platform toward the standardization of the dissolved gas interpretation process.Keywords: dissolved gas analysis, fuzzy logic, health index, IEEE C57.104-2008, IEC ratio method, Roger ratio method
Procedia PDF Downloads 15727092 Digital Twin Smart Hospital: A Guide for Implementation and Improvements
Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar
Abstract:
This study investigates the application of Digital Twins (DT) in Smart Hospital Environments (SHE), through a bibliometric study and literature review, including comparison with the principles of Industry 4.0. It aims to analyze the current state of the implementation of digital twins in clinical and non-clinical operations in healthcare settings, identifying trends and challenges, comparing these practices with Industry 4.0 concepts and technologies, in order to present a basic framework including stages and maturity levels. The bibliometric methodology will allow mapping the existing scientific production on the theme, while the literature review will synthesize and critically analyze the relevant studies, highlighting pertinent methodologies and results, additionally the comparison with Industry 4.0 will provide insights on how the principles of automation, interconnectivity and digitalization can be applied in healthcare environments/operations, aiming at improvements in operational efficiency and quality of care. The results of this study will contribute to a deeper understanding of the potential of Digital Twins in Smart Hospitals, in addition to the future potential from the effective integration of Industry 4.0 concepts in this specific environment, presented through the practical framework, after all, the urgent need for changes addressed in this article is undeniable, as well as all their value contribution to human sustainability, designed in SDG3 – Health and well-being: ensuring that all citizens have a healthy life and well-being, at all ages and in all situations. We know that the validity of these relationships will be constantly discussed, and technology can always change the rules of the game.Keywords: digital twin, smart hospital, healthcare operations, industry 4.0, SDG3, technology
Procedia PDF Downloads 5427091 Milling Process of Rigid Flex Printed Circuit Board to Which Polyimide Covers the Whole Surface
Authors: Daniela Evtimovska, Ivana Srbinovska, Padraig O’Rourke
Abstract:
Kostal Macedonia has the challenge to mill a rigid-flex printed circuit board (PCB). The PCB elaborated in this paper is made of FR4 material covered with polyimide through the whole surface on the one side, including the tabs where PCBs need to be separated. After milling only 1.44 meters, the updraft routing tool isn’t effective and causes polyimide debris on all PCB cuts if it continues to mill with the same tool. Updraft routing tool is used for all another product in Kostal Macedonia, and it is changing after milling 60 meters. Changing the tool adds 80 seconds to the cycle time. One solution is using a laser-cut machine. Buying a laser-cut machine for cutting only one product doesn’t make financial sense. The focus is given to find an internal solution among the options under review to solve the issue with polyimide debris. In the paper, the design of the rigid-flex panel is described deeply. It is evaluated downdraft routing tool as a possible solution which could be used for the flex rigid panel as a specific product. It is done a comparison between updraft and down draft routing tools from a technical and financial aspect of view, taking into consideration the customer requirements for the rigid-flex PCB. The results show that using the downdraft routing tool is the best solution in this case. This tool is more expensive for 0.62 euros per piece than updraft. The downdraft routing tool needs to be changed after milling 43.44 meters in comparison with the updraft tool, which needs to be changed after milling only 1.44 meters. It is done analysis which actions should be taken in order further improvements and the possibility of maximum serving of downdraft routing tool.Keywords: Kostal Macedonia, rigid flex PCB, polyimide, debris, milling process, up/down draft routing tool
Procedia PDF Downloads 19327090 Customer Satisfaction and Effective HRM Policies: Customer and Employee Satisfaction
Authors: S. Anastasiou, C. Nathanailides
Abstract:
The purpose of this study is to examine the possible link between employee and customer satisfaction. The service provided by employees, help to build a good relationship with customers and can help at increasing their loyalty. Published data for job satisfaction and indicators of customer services were gathered from relevant published works which included data from five different countries. The reviewed data indicate a significant correlation between indicators of customer and employee satisfaction in the Banking sector. There was a significant correlation between the two parameters (Pearson correlation R2=0.52 P<0.05) The reviewed data provide evidence that there is some practical evidence which links these two parameters.Keywords: job satisfaction, job performance, customer’ service, banks, human resources management
Procedia PDF Downloads 32127089 Impact of Foliar Formulations of Macro and Micro Nutrients on the Tritrophic Association of Wheat Aphid and Entomophagous Insects
Authors: Muhammad Sufyan, Muhammad J. Arif, Muhammad Arshad, Usman Shoukat
Abstract:
In Pakistan, wheat (Triticum aestivum L.) is seriously attacked by the wheat aphid. Naturally, bio control agents play an important role in managing wheat aphid. However, association among pest, natural enemies and host plant is highly affected by food resource concentration and predator/parasitoid factor of any ecosystem. The present study was conducted to estimate the effect of different dose levels of macro and micronutrients on the aphid population and its entomophagous insect on wheat and their tri-trophic association. The experiment was laid out in RCBD with six different combinations of macro and micronutrients and a control treatment. The data was initiated from the second week of the February till the maturity of the crop. Data regarding aphid population and coccinellids counts were collected on weekly basis and subjected to analysis of variance and mean comparison. The data revealed that aphid population was at peak in the last week of March. Coccinellids population increased side by side with aphid population and declined after second week of April. Aphid parasitism was maximum 25% on recommended dose of Double and Flasher and minimum 8.67% on control treatment. Maximum aphid population was observed on first April with 687.2 specimens. However, this maximum population was shown against the application of Double + Flasher treatment. The minimum aphid population was recorded after the application of HiK Gold + Flasher recommended dose on 15th April. The coccinellids population was at peak level at on 8th April and against the treatment double recommended dose of HiK gold + Flasher. Amount of nitrogen, phosphorus and potassium percentage dry leaves components was maximum (2.33, 0.18 and 2.62 % dry leaves. respectively) in plots treated with recommended double dose mixture of Double + Flasher and Hi-K Gold + Flasher while it was minimum (1.43, 0.12 and 1.77 dry leaves respectively) in plots where no nutrients applied. The result revealed that maximum parasitism was at recommended level of micro and macro nutrients application. Maximum micro nutrients zinc, copper, manganese, iron and boron found with values 46.67 ppm, 21.81 ppm, 62.35 ppm, 152.69 ppm and 36.78 respectively. The result also showed that Over application of macro and micro nutrients should be avoided because it do not help in pest control, conversely it may cause stress on plant. The treatment Double and Flasher recommended dose ratio is almost comparable with recommended dose and present studies confirm its usefulness on wheat.Keywords: entomophagous insects, macro and micro nutrients, tri-trophic, wheat aphid
Procedia PDF Downloads 23027088 Endoscopic Pituitary Surgery: Learning Curve and Nasal Quality of Life
Authors: Martin Dupuy, Solange Grunenwald, Pierre-Louis Colombo, Laurence Mahieu, Pomone Richard, Philippe Bartoli
Abstract:
Endonasal endoscopic trans-sphenoidal surgery for pituitary tumours has become a mainstay of treatment over the last two decades. Although it is generally accepted that there is no significant difference between endoscopic versus microscopic approach for surgical outcomes (endocrine and ophthalmologic status), nasal morbidity seems to the benefit of endoscopic procedures. Minimally invasive endoscopic surgery needs an operative learning curve to achieve surgeon’s efficiency. This learning curve is now well known for surgical outcomes and complications rate, however, few data are available for nasal morbidity. The aim of our series is to document operative experience and nasal quality of life after (NQOL) endoscopic trans-sphenoidal surgery. The prospective pituitary surgical cohort consisted of 525 consecutives patients referred to our Skull Base Diseases Department. Endoscopic procedures were performed by a single neurosurgeon using an uninostril approach. NQOL was evaluated using the Sino-Nasal Test (SNOT-22), the Anterior Base Nasal Inventory (ASBNI) and the Skull Base Inventory Score (SBIS). Data were collected before surgery during hospital stay and 3 months after the surgery. The seventy first patients were compared to the latest 70 patients. There was no significant difference between comparison score before versus after surgery for SNOT-22, ASBNI and SBIS during the single surgeon’s learning curve. Our series demonstrates that in our institution there is no statistically significant learning curve for NQOL after uninostril endoscopic pituitary surgery. A careful progression through sinonasal structures with very limited mucosal incision is associated with minimal morbidity and preserves nasal function. Conservative and minimal invasive approach could be achieved early during learning curve.Keywords: pituitary surgery, quality of life, minimal invasive surgery, learning curve, pituitary tumours, skull base surgery, endoscopic surgery
Procedia PDF Downloads 124