Search results for: Anomaly Detection Model
18080 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices
Authors: Amani Abdallah, Isam Shahrour
Abstract:
The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.Keywords: distribution system, drinking water, refraction index, sensor, real-time
Procedia PDF Downloads 35318079 Virulence Factors and Drug Resistance of Enterococci Species Isolated from the Intensive Care Units of Assiut University Hospitals, Egypt
Authors: Nahla Elsherbiny, Ahmed Ahmed, Hamada Mohammed, Mohamed Ali
Abstract:
Background: The enterococci may be considered as opportunistic agents particularly in immunocompromised patients. It is one of the top three pathogens causing many healthcare associated infections (HAIs). Resistance to several commonly used antimicrobial agents is a remarkable characteristic of most species which may carry various genes contributing to virulence. Objectives: to determine the prevalence of enterococci species in different intensive care units (ICUs) causing health care-associated infections (HAIs), intestinal carriage and environmental contamination. Also, to study the antimicrobial susceptibility pattern of the isolates with special reference to vancomycin resistance. In addition to phenotypic and genotypic detection of gelatinase, cytolysin and biofilm formation among isolates. Patients and Methods: This study was carried out in the infection control laboratory at Assiut University Hospitals over a period of one year. Clinical samples were collected from 285 patients with various (HAIs) acquired after admission to different ICUs. Rectal swabs were taken from 14 cases for detection of enterococci carriage. In addition, 1377 environmental samples were collected from the surroundings of the patients. Identification was done by conventional bacteriological methods and confirmed by analytical profile index (API). Antimicrobial sensitivity testing was performed by Kirby Bauer disc diffusion method and detection of vancomycin resistance was done by agar screen method. For the isolates, phenotypic detection of cytolysin, gelatinase production and detection of biofilm by tube method, Congo red method and microtiter plate. We performed polymerase chain reaction (PCR) for detection of some virulence genes (gelE, cylA, vanA, vanB and esp). Results: Enterococci caused 10.5% of the HAIs. Respiratory tract infection was the predominant type (86.7%). The commonest species were E.gallinarum (36.7%), E.casseliflavus (30%), E.faecalis (30%), and E.durans (3.4 %). Vancomycin resistance was detected in a total of 40% (12/30) of those isolates. The risk factors associated with acquiring vancomycin resistant enterococci (VRE) were immune suppression (P= 0.031) and artificial feeding (P= 0.008). For the rectal swabs, enterococci species were detected in 71.4% of samples with the predominance of E. casseliflavus (50%). Most of the isolates were vancomycin resistant (70%). Out of a total 1377 environmental samples, 577 (42%) samples were contaminated with different microorganisms. Enterococci were detected in 1.7% (10/577) of total contaminated samples, 50% of which were vancomycin resistant. All isolates were resistant to penicillin, ampicillin, oxacillin, ciprofloxacin, amikacin, erythromycin, clindamycin and trimethoprim-sulfamethaxazole. For the remaining antibiotics, variable percentages of resistance were reported. Cytolysin and gelatinase were detected phenotypically in 16% and 48 % of the isolates respectively. The microtiter plate method showed the highest percentages of detection of biofilm among all isolated species (100%). The studied virulence genes gelE, esp, vanA and vanB were detected in 62%, 12%, 2% and 12% respectively, while cylA gene was not detected in any isolates. Conclusions: A significant percentage of enterococci was isolated from patients and environments in the ICUs. Many virulence factors were detected phenotypically and genotypically among isolates. The high percentage of resistance, coupled with the risk of cross transmission to other patients make enterococci infections a significant infection control issue in hospitals.Keywords: antimicrobial resistance, enterococci, ICUs, virulence factors
Procedia PDF Downloads 28318078 Study of the Protection of Induction Motors
Authors: Bencheikh Abdellah
Abstract:
In this paper, we present a mathematical model dedicated to the simulation breaks bars in a three-phase cage induction motor. This model is based on a mesh circuit representing the rotor cage. The tested simulation allowed us to demonstrate the effectiveness of this model to describe the behavior of the machine in a healthy state, failure.Keywords: AC motors, squirrel cage, diagnostics, MATLAB, SIMULINK
Procedia PDF Downloads 43518077 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy
Authors: Oleg Oborin
Abstract:
This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation
Procedia PDF Downloads 36618076 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 38818075 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 45918074 UWB Open Spectrum Access for a Smart Software Radio
Authors: Hemalatha Rallapalli, K. Lal Kishore
Abstract:
In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method.Keywords: cognitive radio, energy detection, software radio, spectrum sensing
Procedia PDF Downloads 42718073 Tracing Back the Bot Master
Authors: Sneha Leslie
Abstract:
The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.Keywords: bonet, DDoS attack, network security, detection system, metasploit framework
Procedia PDF Downloads 25218072 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples
Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes
Abstract:
One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.Keywords: airport ontology, knowledge management, ontology modeling, reasoning
Procedia PDF Downloads 53618071 Modelling Export Dynamics in the CSEE Countries Using GVAR Model
Abstract:
The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spill-over effects in the context of globalization and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution.Keywords: export, GFEVD, global VAR, international trade, weak exogeneity
Procedia PDF Downloads 30018070 Simplified 3R2C Building Thermal Network Model: A Case Study
Authors: S. M. Mahbobur Rahman
Abstract:
Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control. Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model
Procedia PDF Downloads 14318069 Maturity Model for Agro-Industrial Logistics
Authors: Erika Tatiana Ruiz, Wilson Adarme Jaimes
Abstract:
This abstract presents the methodology for improving the logistics processes of agricultural production units belonging to the coffee, cocoa, and fruit sectors, starting from the fundamental concepts and detailing each of the phases to carry out the diagnosis, which will be the basis for the formulation of its action plan and implementation of the maturity model. As a result of this work, the maturity model is formulated to improve logistics processes. This model seeks to: generate a progressive model that is useful for all productive units belonging to these sectors at the national level, regardless of their initial conditions, focus on the improvement of logistics processes as a strategy that contributes to improving the competitiveness of the agricultural sector in Colombia and spread the implementation of good logistics practices in postharvest in all departments of the country through autonomous tools. This model has been built through a series of steps that allow the evaluation and improvement of the logistics dimensions or indicators. The potential improvements for each dimension provide the foundation on which to advance to the next level. Within the maturity model, a methodology is indicated for the design and execution of strategies to improve its logistics processes, taking into account the current state of each production unit.Keywords: agroindustrial, characterization, logistics, maturity model, processes
Procedia PDF Downloads 13518068 Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model
Authors: Toby Li, Julian Zhu
Abstract:
In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment.Keywords: Starlink, collision probability, debris, geometry model
Procedia PDF Downloads 8018067 Sequence Component-Based Adaptive Protection for Microgrids Connected Power Systems
Authors: Isabelle Snyder
Abstract:
Microgrid protection presents challenges to conventional protection techniques due to the low induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected mode. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid connected or microgrid connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are the following: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR). The first two methods focus on identifying the islanded mode without communication by monitoring the current sequence component generated by the system (ACPS) or induced with inverter control during islanded mode (IUCPC) to identify the islanding condition without communication at the relay to adjust the settings. These two methods are used as a backup to the APSCC, which relies on a communication network to communicate the islanded configuration to the system components. The fourth method relies on a short circuit model inside the relay that is used in conjunction with communication to adjust the system configuration and computes the fault current and adjusts the settings accordingly.Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection, communication controlled protection, integrated short circuit model
Procedia PDF Downloads 9318066 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device
Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang
Abstract:
This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.Keywords: CFD modeling, validation, microsphere generation, modified T-junction
Procedia PDF Downloads 70218065 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.Keywords: Haraz basin, change detection, land-use, satellite data
Procedia PDF Downloads 41318064 Modeling User Context Using CEAR Diagram
Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni
Abstract:
Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability
Procedia PDF Downloads 34218063 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links
Authors: Alaa Abdullah Altaee
Abstract:
This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication
Procedia PDF Downloads 11618062 Spatially Downscaling Land Surface Temperature with a Non-Linear Model
Authors: Kai Liu
Abstract:
Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature
Procedia PDF Downloads 32918061 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 3518060 Forced Degradation Study of Rifaximin Formulated Tablets to Determine Stability Indicating Nature of High-Performance Liquid Chromatography Analytical Method
Authors: Abid Fida Masih
Abstract:
Forced degradation study of Rifaximin was conducted to determine the stability indicating potential of HPLC testing method for detection of Rifaximin in formulated tablets to be employed for quality control and stability testing. The questioned method applied with mobile phase methanol: water (70:30), 5µm, 250 x 4.6mm, C18 column, wavelength 293nm and flow rate of 1.0 ml/min. Forced degradation study was performed under oxidative, acidic, basic, thermal and photolytic conditions. The applied method successfully determined the degradation products after acidic and basic degradation without interfering with Rifaximin detection. Therefore, the method was said to be stability indicating and can be applied for quality control and stability testing of Rifaxmin tablets during its shelf life.Keywords: forced degradation, high-performance liquid chromatography, method validation, rifaximin, stability indicating method
Procedia PDF Downloads 31118059 Synthesis of Fullerene Nanorods for Detection of Ethylparaben an Endocrine Disruptor in Cosmetics
Authors: Jahangir Ahmad Rather, Emad A. Khudaish, Ahsanulhaq Qurashi, Palanisamy Kannan
Abstract:
Chemical modification and assembling of fullerenes are fundamentally important for the application of fullerenes as functional molecules and in molecular devices and organic electronic devices. We have synthesized fullerene nanorods C60NRs conjugate via liquid-liquid interface and the synthesized C60NRs was characterized by FTIR spectroscopy, field emission electron microscopy (FESEM) and X-ray diffraction techniques. The C60NRs were immobilized on glassy carbon electrode via surface bound diazonium salts as an impact strategy. This method involves electrografting of p–nitrophenyl to give GCE–Ph–NO2 and then the terminal nitro-group was chemically reduced to GCE–Ph–NH2 in a presence of sodium borohydride/gold–polyaniline nanocomposite (NaBH4/Au–PANI). The Au–PANI composite was synthesized and characterized by FTIR, UV-vis, SEM and EDX techniques. The C60NRs were immobilized on GCE–Ph–NH2 via amination reaction which involves N-H addition across a π-bond on [60] fullerene. The immobilized C60NRs/GCE was subjected to electrochemical reduction in 1.0 M KOH to yield ERC60NRs/GCE sensor. The developed sensor shows high electrocatalytic activity for the detection of ethylparaben (EP) over a concentration range from 0.01 to 0.52 µM with a detection limit (LOD) 3.8 nM. The amount of EP present in the nourishing repair cream (OlAY®) was determined by standard addition method at the developed ERC60NRs/GCE sensor. The total concentration of EP was found to be 0.011 µM (0.1%) and is within the permissible limit of 0.19 % EP in cosmetics according to the European scientific committee (SCCS) on consumer safety on 22 March 2011 (SCCS/1348/11).Keywords: diazonium salt reduction, ethylparaben (EP), endocrine disruptor, fullerene nanorods (C60NRs), gold–polyaniline nanocomposite (Au–PANI)
Procedia PDF Downloads 23218058 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal
Procedia PDF Downloads 16318057 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry
Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya
Abstract:
This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry
Procedia PDF Downloads 8418056 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis
Procedia PDF Downloads 8818055 A Strategic Partner Evaluation Model for the Project Based Enterprises
Authors: Woosik Jang, Seung H. Han
Abstract:
The optimal partner selection is one of the most important factors to pursue the project’s success. However, in practice, there is a gaps in perception of success depending on the role of the enterprises for the projects. This frequently makes a relations between the partner evaluation results and the project’s final performances, insufficiently. To meet this challenges, this study proposes a strategic partner evaluation model considering the perception gaps between enterprises. A total 3 times of survey was performed; factor selection, perception gap analysis, and case application. After then total 8 factors are extracted from independent sample t-test and Borich model to set-up the evaluation model. Finally, through the case applications, only 16 enterprises are re-evaluated to “Good” grade among the 22 “Good” grade from existing model. On the contrary, 12 enterprises are re-evaluated to “Good” grade among the 19 “Bad” grade from existing model. Consequently, the perception gaps based evaluation model is expected to improve the decision making quality and also enhance the probability of project’s success.Keywords: partner evaluation model, project based enterprise, decision making, perception gap, project performance
Procedia PDF Downloads 15618054 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 40618053 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.Keywords: DEA, super-efficiency, time lag, multi-periods input
Procedia PDF Downloads 47018052 The Social Model of Disability and Disability Rights: Defending a Conceptual Alignment between the Social Model’s Concept of Disability and the Nature of Rights and Duties
Authors: Adi Goldiner
Abstract:
Historically, the social model of disability has played a pivotal role in bringing rights discourse into the disability debate. Against this backdrop, the paper explores the conceptual alignment between the social model’s account of disability and the nature of rights. Specifically, the paper examines the possibility that the social model conceptualizes disability in a way that aligns with the nature of rights and thus motivates the invocation of disability rights. Methodologically, the paper juxtaposes the literature on the social model of disability, primarily the work of the Union of the Physically Impaired Against Segregation in the UK and related scholarship, with theories of moral rights. By focusing on the interplay between the social model of disability and rights, the paper provides a conceptual explanation for the rise of disability rights. In addition, the paper sheds light on the nature of rights, their function and limitations, in the context of disability rights. The paper concludes that the social model’s conceptualization of disability is hospitable to rights, because it opens up the possibility that there are duties that correlate with disability rights. Under the social model, disability is a condition that can be eliminated by the removal of social, structural, and attitudinal barriers. Accordingly, the social model dispels the idea that the actions of others towards disabled people will have a marginal impact on their interests in not being disabled. Equally important, the social model refutes the idea that in order to significantly serve people's interest in not being disabled, it is necessary to cure bodily impairments, which is not always possible. As rights correlate with duties that are possible to comply with, as well as those that significantly serve the interests of the right holders, the social model’s conceptualization of disability invites the reframing of problems related to disability in terms of infringements of disability rights. A possible objection to the paper’s argument is raised, according to which the social model is at odds with the invocation of disability rights because disability rights are ineffective in realizing the social model's goal of improving the lives of disabled by eliminating disability. The paper responds to this objection by drawing a distinction between ‘moral rights,’ which, conceptually, are not subject to criticism of ineffectiveness, and ‘legal rights’ which are.Keywords: disability rights, duties, moral rights, social model
Procedia PDF Downloads 40418051 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 367