Search results for: water resistance of materials
1271 Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure
Authors: Tassia Batista Pessato, Francielli Pires Ribeiro Morais, Fernanda Guimaraes Drummond Silva, Flavia Maria Netto
Abstract:
Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites.Keywords: bioactive properties, milk proteins, phenolic acids, protein-phenolic compounds complexation
Procedia PDF Downloads 5471270 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display
Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay
Abstract:
Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission
Procedia PDF Downloads 4991269 Computational Study of Composite Films
Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova
Abstract:
Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.Keywords: composite films, computer modelling, image analysis, nanocomposite films
Procedia PDF Downloads 3921268 Applying Risk Taking in Islamic Finance: A Fiqhī Viewpoint
Authors: Mohamed Fairooz Abdul Khir
Abstract:
The linkage between liability for risk and legitimacy of reward is a governing principle that must be fully observed in financial transactions. It is the cornerstone of any Islamic business or financial deal. The absence of risk taking principle may give rise to numerous prohibited elements such as ribā, gharar and gambling that violate the objectives of financial transactions. However, fiqhī domains from which it emanates have not been clearly spelled out by the scholars. In addition, the concept of risk taking in relation to contemporary risks associated with financial contracts, such as credit risk, liquidity risk, reputational risk and market risk, needs further scrutiny as regard their Sharīʿah bases. Hence, this study is imperatively significant to prove that absence of risk taking concept in Islamic financial instruments give rise to prohibited elements particularly ribā. This study is primarily intended to clarify the concept of risk in Islamic financial transactions from the fiqhī perspective and evaluate analytically the selected issues involving risk taking based on the established concept of risk taking from fiqhī viewpoint. The selected issues are amongst others charging cost of fund on defaulting customers, holding the lessee liable for total loss of leased asset under ijārah thumma al-bayʿ and capital guarantee under mushārakah based instruments. This is a library research in which data has been collected from various materials such as classical fiqh books, regulators’ policy guidelines and journal articles. This study employed deductive and inductive methods to analyze the data critically in search for conclusive findings. It suggests that business risks have to be evaluated based on their subjects namely (i) property (māl) and (ii) work (ʿamal) to ensure that Islamic financial instruments structured based on certain Sharīʿah principles are not diverted from the risk taking concept embedded in them. Analysis of the above selected cases substantiates that when risk taking principle is breached, the prohibited elements such as ribā, gharar and maysir do arise and that they impede the realization of the maqāṣid al-Sharīʿah intended from Islamic financial contracts.Keywords: Islamic finance, ownership risk, ribā, risk taking
Procedia PDF Downloads 3241267 Vapour Liquid Equilibrium Measurement of CO₂ Absorption in Aqueous 2-Aminoethylpiperazine (AEP)
Authors: Anirban Dey, Sukanta Kumar Dash, Bishnupada Mandal
Abstract:
Carbondioxide (CO2) is a major greenhouse gas responsible for global warming and fossil fuel power plants are the main emitting sources. Therefore the capture of CO2 is essential to maintain the emission levels according to the standards. Carbon capture and storage (CCS) is considered as an important option for stabilization of atmospheric greenhouse gases and minimizing global warming effects. There are three approaches towards CCS: Pre combustion capture where carbon is removed from the fuel prior to combustion, Oxy-fuel combustion, where coal is combusted with oxygen instead of air and Post combustion capture where the fossil fuel is combusted to produce energy and CO2 is removed from the flue gases left after the combustion process. Post combustion technology offers some advantage as existing combustion technologies can still be used without adopting major changes on them. A number of separation processes could be utilized part of post –combustion capture technology. These include (a) Physical absorption (b) Chemical absorption (c) Membrane separation (d) Adsorption. Chemical absorption is one of the most extensively used technologies for large scale CO2 capture systems. The industrially important solvents used are primary amines like Monoethanolamine (MEA) and Diglycolamine (DGA), secondary amines like diethanolamine (DEA) and Diisopropanolamine (DIPA) and tertiary amines like methyldiethanolamine (MDEA) and Triethanolamine (TEA). Primary and secondary amines react fast and directly with CO2 to form stable carbamates while Tertiary amines do not react directly with CO2 as in aqueous solution they catalyzes the hydrolysis of CO2 to form a bicarbonate ion and a protonated amine. Concentrated Piperazine (PZ) has been proposed as a better solvent as well as activator for CO2 capture from flue gas with a 10 % energy benefit compared to conventional amines such as MEA. However, the application of concentrated PZ is limited due to its low solubility in water at low temperature and lean CO2 loading. So following the performance of PZ its derivative 2-Aminoethyl piperazine (AEP) which is a cyclic amine can be explored as an activator towards the absorption of CO2. Vapour liquid equilibrium (VLE) in CO2 capture systems is an important factor for the design of separation equipment and gas treating processes. For proper thermodynamic modeling accurate equilibrium data for the solvent system over a wide range of temperatures, pressure and composition is essential. The present work focuses on the determination of VLE data for (AEP + H2O) system at 40 °C for various composition range.Keywords: absorption, aminoethyl piperazine, carbondioxide, vapour liquid equilibrium
Procedia PDF Downloads 2651266 Still Hepatocellular Carcinoma Risk Despite Proper Treatment of Chronic Viral Hepatitis
Authors: Sila Akhan, Muge Toygar, Murat Sayan, Simge Fidan
Abstract:
Chronic viral hepatitis B, C, and D can cause hepatocellular carcinoma (HCC), cirrhosis and death. The proper treatment reduce the risk of development of HCC importantly, but not to zero point. Materials and Methods: We analysed retrospectively our chronic viral hepatitis B, C and D patients who attended to our Infectious Diseases policlinic between 2004-2018. From 589 biopsy-proven chronic hepatitis patients 3 have hepatocellular carcinoma on our follow up. First case is 74 years old patient. His HCV infection diagnosis was made 8 years ago. First treatment was pegylated interferon plus ribavirin only 28 weeks, because of HCV RNA breakthrough under treatment. In 2013 he was retreated with telaprevir, pegylated interferon plus ribavirin 24 weeks. But at the end of the therapy HCV RNA was found 1.290.000 IU/mL. He has abdominal ultrasonography (US) controls and alpha-fetoprotein (AFP) at 6 months intervals. All seemed normal until 2015 then he has an abdominal magnetic resonance imaging (MRI) and found HCC by chance. His treatment began in Oncology Clinic after verified with biopsy of HCC. And then sofosbuvir/ledipasvir was given to him for HCV 24 weeks. Sustained virologic response (SVR) was obtained. He is on cure for HCV infection and under control of Oncology for HCC. Second patient is 36 years old man. He knows his HBV infection since 2008. HBsAg and HBeAg positive; HDV RNA negative. Liver biopsy revealed grade:4, stage 3-4 according modified Knodell scoring system. In 2010 tenofovir treatment was began. His abdominal US and AFP were normal. His controls took place at 6 months intervals and HBV DNA negative, US, and AFP were normal until 2016 continuously. AFP found 37 above the normal range and then HCC was found in MRI. Third patient is 57 years old man. As hepatitis B infection was first diagnosed; he has cirrhosis and was began tenofovir as treatment. In short time he has HCC despite normal AFP values. Conclusion: In Mediterranian countries including Turkey naturally occurring pre-S/S variants are more than 75% of all chronic hepatitis B patients. This variants may contribute to the development of progressive liver damage and hepatocarcinogenesis. HCV-induced development of HCC is a gradual process and is affected by the duration of disease and viral genotype. All the chronic viral hepatitis patients should be followed up in 6 months intervals not only with US and AFP for HCC. Despite they have proper treatment there is always the risk development of HCC. Chronic hepatitis patients cannot be dropped from follow up even treated well. Procedia PDF Downloads 1341265 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters
Authors: L. Vivet, L. Benabou, O. Simon
Abstract:
With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging
Procedia PDF Downloads 921264 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 971263 The Effectiveness and the Factors Affect Farmer’s Adoption of Technological Innovation Citrus Gerga Lebong in Bengkulu Indonesia
Authors: Umi Pudji Astuti, Dedi Sugandi
Abstract:
The effectiveness of agricultural extension is determined by the component in the agricultural extension system among others are agricultural extension methods. Effective methods should be selected and defined based on the characteristics of the target, the resources, the materials, and the objectives to be achieved. Citrus agribusiness development in Lebong is certainly supported by the role of stakeholders and citrus farmers, as well as the proper dissemination methods. Adoption in the extension process substantially can be interpreted as the changes of behavior process such as knowledge (cognitive), attitudes (affective), and skill (psycho-motoric) in a person after receiving "innovation" from extension submitted by target communities. Knowledge and perception are needed as a first step in adopting a innovation, especially of citrus agribusiness development in Lebong. The process of Specific technology adoption is influenced by internal factors and farmer perceptions of technological innovation. Internal factors such as formal education, experience trying to farm, owned land, production farm goods. The output of this study: 1) to analyze the effectiveness of field trial methods in improving cognitive and affective farmers; 2) Knowing the relationship of adoption level and knowledge of farmers; 3) to analyze the factors that influence farmers' adoption of citrus technology innovation. The method of this study is through the survey to 40 respondents in Rimbo Pengadang Sub District, Lebong District in 2014. Analyzing data is done by descriptive and statistical parametric (multiple linear functions). The results showed that: 1) Field trip method is effective to improve the farmer knowledge (23,17% ) and positively affect the farmer attitude; 2) the knowledge level of PTKJS innovation farmers "positively and very closely related".; 3) the factors that influence the level of farmers' adoption are internal factors (education, knowledge, and the intensity of training), and external factors respondents (distance from the house to the garden and from the house to production facilities shop).Keywords: affect, adoption technology, citrus gerga, effectiveness dissemination
Procedia PDF Downloads 1931262 Understanding Patterns of Hard Coral Demographics in Kenyan Reefs to Inform Restoration
Authors: Swaleh Aboud, Mishal Gudka, David Obura
Abstract:
Background: Coral reefs are becoming increasingly vulnerable due to several threats ranging from climate change to overfishing. This has resulted in increased management and conservation efforts to protect reefs from degradation and facilitate recovery. Recruitmentof new individuals are isimportant in the recovery process and critical for the persistence of coral reef ecosystems. Local coral community structure can be influenced by successful recruit settlement, survival, and growth Understanding coral recruitment patterns can help quantify reef resilience and connectivity, establish baselines and track changes and evaluate the effectiveness of reef restoration and conservation efforts. This study will examine the abundance and spatial pattern of coral recruits and how this relates to adult community structure, including the distribution of thermal resistance and sensitive genera and their distribution in different management regimes. Methods: Coral recruit and demography surveys were conducted from 2020 to 2022, covering 35 sites in 19coral reef locations along the Kenyan coast. These included marine parks, reserves, community conservation areas (CMAs), and open access areas from the north (Marereni) to the south (Kisite) coast of Kenya and across different reef habitats. The data was collected through the underwater visual census (UVC) technique. We counted adult corals (>10 cm diameter)of23 selected genera using belt transects (25 by 1 m) and sampling of 1 m2 quadrat (at an interval of 5m) for all coloniesless than 10 cm diameter. The benthic cover was collected using photo quadrats. The surveys were only done during the northeast monsoon season. The data wereanalyzed using the R program to see the distribution patterns and the Kruskal Wallis test to see whether there was a significant difference. Spearman correlation was also applied to assess the relationship between the distribution of coral genera in recruits and adults. Results: A total of 44 different coral genera were recorded for recruits, ranging from 3at Marereni to 30at Watamu Marine Reserve. Recruit densities ranged from 1.2±1.5recruit m-2 (mean±SD) at Likoni to 10.3± 8.4 recruit m-2 at Kisite Marine Park. The overall densityof recruitssignificantly differed between reef locations, with Kisite Marine Park and Reserve and Likonihaving significantly large differences from all the other locations, while Vuma, Watamu, Malindi, and Kilifi had significantly lower differences from all the other locations. The recruit generadensity along the Kenya coastwas divided into two clusters, one of which only included sites inKisite Marine Park. Adult colonies were dominated by Porites massive, Acropora, Platygyra, and Favites, whereas recruits were dominated by Porites branching, Porites massive, Galaxea, and Acropora. However, correlation analysis revealed a statistically significant positive correlation (r=0.81, p<0.05) between recruit and adult coral densities across the 23 coral genera. Marereni, which had the lowest densityof recruits, has only thermallyresistant coral genera, while Kisite Marine Park, with the highest recruit densities, has over 90% thermal sensitive coral genera. A weak positive correlation was found between recruit density and coralline algae, dead standing corals, and turf algae, whereas a weak negative correlation was found between recruit density and bare substrate and macroalgae. Between management regimes, marine reserves were found to have more recruits than no-take zones (marine parks and CMAs) and open access areas, although the difference was not significant. Conclusion: There was a statistically significant difference in the density of recruits between different reef locations along the Kenyan coast. Although the dominating genera of adults and recruits were different, there was a strong positive correlation between their coral communities, which could indicate self-recruitment processes or consistent distance seedings (of the same recruit genera). Sites such as Kisite Marine Park, with high recruit densities but dominated by thermally sensitive genera, will, on the other hand, be adversely affected by future thermal stress. This could imply that reducing the threats to coral reefs such as overfishingcould allow for their natural regeneration and recovery.Keywords: coral recruits, coral adult size-class, cora demography, resilience
Procedia PDF Downloads 1241261 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels
Authors: Virginia Martin Torrejon, Binjie Wu
Abstract:
Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels
Procedia PDF Downloads 991260 Replacement of the Distorted Dentition of the Cone Beam Computed Tomography Scan Models for Orthognathic Surgery Planning
Authors: T. Almutairi, K. Naudi, N. Nairn, X. Ju, B. Eng, J. Whitters, A. Ayoub
Abstract:
Purpose: At present Cone Beam Computed Tomography (CBCT) imaging does not record dental morphology accurately due to the scattering produced by metallic restorations and the reported magnification. The aim of this pilot study is the development and validation of a new method for the replacement of the distorted dentition of CBCT scans with the dental image captured by the digital intraoral camera. Materials and Method: Six dried skulls with orthodontics brackets on the teeth were used in this study. Three intra-oral markers made of dental stone were constructed which were attached to orthodontics brackets. The skulls were CBCT scanned, and occlusal surface was captured using TRIOS® 3D intraoral scanner. Marker based and surface based registrations were performed to fuse the digital intra-oral scan(IOS) into the CBCT models. This produced a new composite digital model of the skull and dentition. The skulls were scanned again using the commercially accurate Laser Faro® arm to produce the 'gold standard' model for the assessment of the accuracy of the developed method. The accuracy of the method was assessed by measuring the distance between the occlusal surfaces of the new composite model and the 'gold standard' 3D model of the skull and teeth. The procedure was repeated a week apart to measure the reproducibility of the method. Results: The results showed no statistically significant difference between the measurements on the first and second occasions. The absolute mean distance between the new composite model and the laser model ranged between 0.11 mm to 0.20 mm. Conclusion: The dentition of the CBCT can be accurately replaced with the dental image captured by the intra-oral scanner to create a composite model. This method will improve the accuracy of orthognathic surgical prediction planning, with the final goal of the fabrication of a physical occlusal wafer without to guide orthognathic surgery and eliminate the need for dental impression.Keywords: orthognathic surgery, superimposition, models, cone beam computed tomography
Procedia PDF Downloads 1951259 A Strategy Therapy for Retinitis Pigmentosa Induced by Argon Laser in Rabbits by High Dose Adult Stem Cells
Authors: Hager E. Amer, Hany El Saftawy, Laila Rashed, Ahmed M. Ata, Fatma Metwally, Hesham Mettawei, Hossam E. Sayed, Tamer Adel, Kareem M. El Sawah
Abstract:
Aim: The purpose of this study is to regenerate the damaged photoreceptor cells as a result of argon laser as a model of Retinitis Pigmentosa in rabbits' retina by using adult stem cells from rabbits' bone marrow. Background: Retinitis pigmentosa (RP) is a group of inherited disorders that primarily affect photoreceptor and pigment epithelium function. RP leads to loss of the rod outer segment and shorten the photoreceptor layer and expose the photoreceptor cell body to high-pressure levels in oxygen (oxidative stress) leads to apoptosis to the rod and cone cells. In particular, there is no specific treatment for retinitis pigmentosa. Materials and Methods: Forty Two Giant (Rex) rabbits were used in this experiment divided into 3 groups: Group 1: Control (6 rabbits), Group 2: Argon laser radiated as a model of retinitis pigmentosa (12 rabbits), Group 3: Laser radiated and treated by 6 million stem cells (12 rabbits). The last two groups are divided each into two subgroups each subgroup contains 6 rabbits, the ophthalmological examination was performed on rabbits, blood samples and retina samples were taken after 25 days and after 36 days from the laser radiation (10 days and 21 days after stem cells insertion in group 3) to perform the biochemical analysis. Results: Compared to control Group, a decrease of ERG wave amplitude and antioxidant substances (Glutathione) in blood and retina in group 2, and an increase of oxidative stress substances (Nitric oxide, Malonaldehyde, and carponyl protein) and apoptotic substances (Advanced glycation end product and M-metalloproteinase) in blood and retina. Compared to group 2, mostly increases of antioxidant substances and ERG wave amplitude in group 3, and mostly decreases in oxidative stress substances and apoptotic substances. Conclusion: Insertion of 6 million stem cells intravitreous gives good results in regeneration of the damaged photoreceptor cells after 21 days.Keywords: retinitis pigmentosa, stem cells, argon laser, oxidative stress, apoptosis
Procedia PDF Downloads 1961258 Neuropsychological Assessment and Rehabilitation Settings for Developmental Dyslexia in Children in Greece: The Use of Music at Intervention Protocols
Authors: Argyris B. Karapetsas, Rozi M. Laskaraki, Aikaterini A. Karapetsa, Maria Bampou, Valentini N. Vamvaka
Abstract:
The main aim of the current protocol is the contribution of neuropsychology in both assessment and rehabilitation settings for children with dyslexia. Objectives: The purpose of this study was to evaluate the significant role of neuropsychological assessment including both Psychometric and electrophysiological tests as well as to investigate the effectiveness of an Auditory Training program, designed via Music designed for children with Developmental Dyslexia (DD). Materials: In our study, participated 45 third-, and fourth-grade students with DD and a matched control group (n=45). Method: At the first phase of the protocol, children underwent a clinical assessment, including both electrophysiological, i.e. Event Related Potentials (ERPs) esp. P300 waveform, and psychometric tests, being conducted in Laboratory of Neuropsychology, at University of Thessaly, in Volos, Greece. Assessment’s results confirmed statistically significant lower performance for children with DD for all tests, compared to the typical readers of the control group. After evaluation, a subgroup of children with DD participated in a Rehabilitation Program including digitized musical auditory training activities. Results: The electrophysiological recordings after the intervention revealed shorter, almost similar, P300 latency values for children with DD to those of the control group, indicating the beneficial effects of the Intervention, thus enabling children develop reading skills and become successful readers. Discussion: Similar research data confirm the crucial role of neuropsychology in both diagnosis and treatment of common disorders, observed in children. Indeed, as for DD, there is growing evidence that brain activity dysfunction does occur, as it is confirmed by neuropsychological assessment and also musical auditory training may have remedial effects. Conclusions: The outcomes of the current study suggest that due to the neurobiological origin of DD, neuropsychology may give the means in both neuropsychological assessment and rehabilitation, enabling professionals to cope with cerebral dysfunction and recovery more efficiently.Keywords: diagnosis, dyslexia, ERPs, Music, neuropsychology, rehabilitation
Procedia PDF Downloads 1321257 Patient Understanding of Health Information: Implications for Organizational Health Literacy in Germany
Authors: Florian Tille, Heide Weishaar, Bernhard Gibis, Susanne Schnitzer
Abstract:
Introduction: The quality of patient-doctor communication and of written health information is central to organizational health literacy (HL). Whether patients understand their doctors’ explanations and textual material on health, however, is understudied. This study identifies the overall levels of patient understanding of health information and its associations with patients’ social characteristics in outpatient health care in Germany. Materials & Methods: This analysis draws on data collected via a 2017 national health survey with a sample of 6,105 adults. Quality of communication was measured for consultations with general practitioners (GPs) and specialists (SPs) via the Ask Me 3 program questions, and through a question on written health material. Correlations with social characteristics were explored employing bivariate and multivariate logistic regression analyses. Results: Over 90% of all respondents reported that they had understood their doctors’ explanations during the last consultation. Failed understanding was strongly correlated with patients’ very poor health (Odds Ratio [OR]: 5.19; 95% confidence interval [CI]: 2.23–12.10; ref. excellent/very good health), current health problem (OR: 6.54, CI: 1.70–25.12; ref. preventive examination) and age 65 years and above (OR: 2.97, CI: 1.10–8.00; ref. 18 to 34 years). Fewer patients answered they understood written material well (86.7% for las visit at GP, 89.7% at SP). Understanding written material poorly was highly associated with basic education (OR: 4.20, CI: 2.76–6.39; ref. higher education) and 65 years old and above (OR: 2.66, CI: 1.43–4.96). Discussion: Overall ratings of oral patient-doctor communication and written communication of health information are high. Yet, a considerable share of patients reports not-understanding their doctors and poor understanding of the written health-related material. Interventions that can contribute to improving organizational HL in outpatient care in Germany include HL training for doctors, reducing system barriers to easily-accessible health information for patients and combining oral and written health communication means. Conclusion: This work adds to the study of organizational HL in Germany. To increase patient understanding of health-relevant information and thereby possibly reduce health disparities, meeting the communication needs especially of persons in different age groups, with basic education and in very poor health is suggested.Keywords: health survey, organizational health literacy, patient-doctor communication, social characteristics, outpatient care, Ask Me 3
Procedia PDF Downloads 1661256 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties
Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm
Abstract:
Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.Keywords: phase change material, microencapsulation, adhesive bonding, thermal management
Procedia PDF Downloads 711255 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation
Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin
Abstract:
CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model
Procedia PDF Downloads 3061254 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution
Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary
Abstract:
The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.Keywords: chemical deposition, CdS, optical properties, surface, thin film
Procedia PDF Downloads 1611253 An Efficient and Low Cost Protocol for Rapid and Mass in vitro Propagation of Hyssopus officinalis L.
Authors: Ira V. Stancheva, Ely G. Zayova, Maria P. Geneva, Marieta G. Hristozkova, Lyudmila I. Dimitrova, Maria I. Petrova
Abstract:
The study describes a highly efficient and low-cost protocol for rapid and mass in vitro propagation of medicinal and aromatic plant species (Hyssopus officinalis L., Lamiaceae). Hyssop is an important aromatic herb used for its medicinal values because of its antioxidant, anti-inflammatory and antimicrobial properties. The protocol for large-scale multiplication of this aromatic plant was developed using young stem tips explants. The explants were sterilized with 0.04% mercuric chloride (HgCl₂) solution for 20 minutes and washing three times with sterile distilled water in 15 minutes. The cultural media was full and half strength Murashige and Skoog medium containing indole-3-butyric acid. Full and ½ Murashige and Skoog media without auxin were used as controls. For each variant 20 glass tubes with two plants were used. In each tube two tip and nodal explants were inoculated. Maximum shoot and root number were obtained on ½ Murashige and Skoog medium supplemented with 0.1 mg L-1 indole-3-butyric acid at the same time after four weeks of culture. The number of shoots per explant and shoot height were considered. The data on rooting percentage, the number of roots per plant and root length were collected after the same cultural period. The highest percentage of survival 85% for this medicinal plant was recorded in mixture of soil, sand and perlite (2:1:1 v/v/v). This mixture was most suitable for acclimatization of all propagated plants. Ex vitro acclimatization was carried out at 24±1 °C and 70% relative humidity under 16 h illuminations (50 μmol m⁻²s⁻¹). After adaptation period, the all plants were transferred to the field. The plants flowered within three months after transplantation. Phenotypic variations in the acclimatized plants were not observed. An average of 90% of the acclimatized plants survived after transferring into the field. All the in vitro propagated plants displayed normal development under the field conditions. Developed in vitro techniques could provide a promising alternative tool for large-scale propagation that increases the number of homologous plants for field cultivation. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.Keywords: Hyssopus officinalis L., in vitro culture, micro propagation, acclimatization
Procedia PDF Downloads 3101252 Transport Mode Selection under Lead Time Variability and Emissions Constraint
Authors: Chiranjit Das, Sanjay Jharkharia
Abstract:
This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection
Procedia PDF Downloads 4321251 Dietary Anion-Cation Balance of Grass and Net Acid-Base Excretion in Urine of Suckler Cows
Authors: H. Scholz, P. Kuehne, G. Heckenberger
Abstract:
Dietary Anion-Cation Balance (DCAB) in grazing systems under German conditions has a tendency to decrease from May until September and often are measured DCAB lower than 100 meq per kg dry matter. Lower DCAB in grass feeding system can change the metabolic status of suckler cows and often are results in acidotic metabolism. Measurement of acid-base excretion in dairy cows has been proved to a method to evaluate the acid-base status. The hypothesis was that metabolic imbalances could be identified by urine measurement in suckler cows. The farm study was conducted during the grazing seasons 2017 and 2018 and involved 7 suckler cow farms in Germany. Suckler cows were grazing during the whole time of the investigation and had no access to other feeding components. Cows had free access to water and salt block and free access to minerals (loose). The dry matter of the grass was determined at 60 °C and were then analysed for energy and nutrient content and for the Dietary Cation-Anion Balance (DCAB). Urine was collected in 50 ml-glasses and analysed for net acid-base excretion (NSBA) and the concentration of creatinine and urea in the laboratory. Statistical analysis took place with ANOVA with fixed effects of farms (1-7), month (May until September), and number of lactations (1, 2, and ≥ 3 lactations) using SPSS Version 25.0 for windows. An alpha of 0.05 was used for all statistical tests. During the grazing periods of years 2017 and 2018, an average DCAB was observed in the grass of 167 meq per kg DM. A very high mean variation could be determined from -42 meq/kg to +439 meq/kg. Reference values in relation to DCAB were described between 150 meq and 400 meq per kg DM. It was found the high chlorine content with reduced potassium level led to this reduction in DCAB at the end of the grazing period. Between the DCAB of the grass and the NSBA in urine of suckler cows was a correlation according to PEARSON of r = 0.478 (p ≤ 0.001) or after SPEARMAN of r = 0.601 (p ≤ 0.001) observed. For the control of urine values of grazing suckler cows, the wide spread of the values poses a challenge of the interpretation, especially since the DCAB is unknown. The influence of several feeding components such as chlorine, sulfur, potassium, and sodium (ions for the DCAB) and dry matter feed intake during the grazing period of suckler cows should be taken into account in further research. The results obtained show that up a decrease in the DCAB is related to a decrease in NSBA in urine of suckler cows. Monitoring of metabolic disturbances should include analysis of urine, blood, milk, and ruminal fluid.Keywords: dietary anion-cation balance, DCAB, net acid-base excretion, NSBA, suckler cow, grazing period
Procedia PDF Downloads 1501250 Health Information Needs and Utilization of Information and Communication Technologies by Medical Professionals in a Northern City of India
Authors: Sonika Raj, Amarjeet Singh, Vijay Lakshmi Sharma
Abstract:
Introduction: In 21st century, due to revolution in Information and Communication Technologies (ICTs), there has been phenomenal development in quality and quantity of knowledge in the field of medical science. So, the access to relevant information to physicians is critical to the delivery of effective healthcare services to patients. The study was conducted to assess the information needs and attitudes of the medical professionals; to determine the sources and channels of information used by them; to ascertain the current usage of ICTs and the barriers faced by them in utilization of ICTs in health information access. Methodology: This descriptive cross-sectional study was carried in 2015 on hundred medical professionals working in public and private sectors of Chandigarh. The study used both quantitative and qualitative method for data collection. A semi structured questionnaire and interview schedule was used to collect data on information seeking needs, access to ICTs and barriers to healthcare information access. Five Data analysis was done using SPSS-16 and qualitative data was analyzed using thematic approach. Results: The most preferred sources to access healthcare information were internet (85%), trainings (61%) and communication with colleagues (57%). They wanted information on new drug therapy and latest developments in respective fields. All had access to computer with but almost half assessed their computer knowledge as average and only 3% had received training regarding usage. Educational status (p=0.004), place of work (p=0.004), number of years in job (p=0.004) and sector of job (p=0.04) of doctors were found to be significantly associated with their active search for information. The major themes that emerged from in-views were need; types and sources of healthcare information; exchange of information among different levels of healthcare providers; usage of ICTs to obtain and share information; barriers to access of healthcare information and quality of health information materials and involvement in their development process Conclusion and Recommendations: The medical professionals need information in their in their due course of work. However, information needs of medical professionals were not being adequately met. There should be training of professional regarding internet skills and the course on bioinformatics should be incorporated in the curricula of medical students. The policy framework must be formulated that will encourage and promote the use of ICTs as tools for health information access and dissemination.Keywords: health information, ICTs, medical professionals, qualitative
Procedia PDF Downloads 3491249 Adaptive Strategies of Clonal Shrub to Sand Dune Environment in Desert-Oasis Transitional Zone
Authors: Weicheng Luo, Wenzhi Zhao
Abstract:
Plants growth in desert often suffered from stresses like water deficit, wind erosion and sand burial. Thus, plants in desert always have unique strategies to adapt these stresses. However, data regarding how clonal shrubs withstand wind erosion and sand burial in natural habitats remain relatively scarce. Therefore, we selected a common clonal shrub Calligonum arborescens to study the adaptive strategies of clonal plants to sand dune environment in a transitional zone of desert and Hexi Oasis of China. Our results show that sand burial is one of the essential prerequisites for the survival of C. arborescens rhizome fragments. Both the time and degrees of sand burial and wind erosion had significantly effects on clonal reproduction and growth of C. arborescens. With increasing burial depth, the number of ramets and biomass production significantly decreased. There is same change trend in severe erosion treatments. However, the number of ramets and biomass production significantly increased in moderate erosion treatments. Rhizome severed greatly decreased ramet number and biomass production under both sand burial and severe erosion treatments. That indicated that both sand burial and severe erosion had negative effects on the clonal growth of C. arborescens, but moderate wind erosion had positive effects. And rhizome connections alleviated the negative effects of sand burial and of severe erosion on the growth and performance of C. arborescens. Most fragments of C. arborescens grew in the directions of northeastern and southwestern. Ramet number and biomass, rhizome length and biomass in these two directions were significantly higher than those found in other directions. Interestingly, these directions were perpendicular to the prevailing wind direction. Distribution of C. arborescens differed in different habitats. The total number of individuals was significantly higher in inter-dune areas and on windward slopes than on the top and leeward slopes of dunes; more clonal ramets were produced on the top of dunes than elsewhere, and a few were found on leeward slopes. The mainly reason is that ramets on windward and top of dunes can easily suffered with moderated wind erosion which promoted clonal growth and reproduction of C. arborescens. These results indicated that C. arborescens adapted sand dune environment through directional growth and patchy distribution, and sand-burial and wind erosion were the key factors which led to the directional growth and patchiness of C. arborescens.Keywords: adaptive strategy, Calligonum arborescens Litv, clonal fragment, desert-oasis transitional zone, sand burial and wind erosion
Procedia PDF Downloads 2391248 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants
Authors: Zarina Chokparova, Ighor Uzhinsky
Abstract:
Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture
Procedia PDF Downloads 1401247 Flipped Classrooms 3.0: An Investigation of Students’ Speaking Performance and Learning Engagement
Authors: I Putu Indra Kusuma
Abstract:
The rapid development of Information and Communication Technology (ICT) tools has improved the implementation of flipped classrooms in English Language Teaching (ELT), especially in speaking course. Flipped classrooms have therefore evolved from the oldest version, which uses recorded videos to the newest one (3.0 version), which combines various materials and enables out-of-class interaction and learning engagement. However, how the latest version of flipped classrooms affects students’ speaking performance and influences students’ learning engagement remains unclear. This study therefore sought (1) to examine the effect of flipped classrooms 3.0 towards students’ speaking performance and (2) to explore the students’ learning engagement during the implementation of flipped classrooms in the speaking course. This study then employed explanatory sequential mixed-method design. This study conducted a quasi-experimental study by recruiting 164 twelfth grade students of a public senior high school in Indonesia as the sample. They were distributed into experimental (80 students) and control (84 students) groups. The experimental group was treated by implementing flipped classrooms with various use of ICT tools such as Schoology, Youtube, websites, and Flipgrid for eight weeks. Meanwhile, the control group implemented a conventional method. Furthermore, there were two variables examined in this study, such as the implementation of flipped classrooms 3.0 as the independent variable and students’ speaking performance as the dependent variable. The data of these two variables were then collected through administering a speaking test to both groups. The data from this experimental study were analyzed by using independent t-test analysis. Also, five students were invited to participate in semi-structured interviews to explore their learning engagement during the implementation of flipped classrooms. The findings revealed that there was a significant difference in students’ speaking performance between experimental where t (df = 162) = 5.810, p < 0.001, d = 0.91 in which experimental group performed better in speaking than the control group. Also, the results of interviews showed that the students had positive learning engagement during the implementation of flipped classrooms 3.0, especially on out-of-class interactions and face-to-face meetings. Some relevant implications to ELT, especially in speaking courses, are also drawn from the data findings. From the findings, it can be concluded that flipped classrooms 3.0 has a significant effect on students’ speaking performance and it promotes students’ learning engagement. Therefore, flipped classrooms 3.0 should be embraced as the newest version of flipped classrooms that promotes interaction outside the classrooms and learning engagement.Keywords: Flipped Classrooms 3.0, learning engagement, teaching speaking with technology, technology-enhanced language learning
Procedia PDF Downloads 1321246 [Keynote Talk]: Monitoring of Ultrafine Particle Number and Size Distribution at One Urban Background Site in Leicester
Authors: Sarkawt M. Hama, Paul S. Monks, Rebecca L. Cordell
Abstract:
Within the Joaquin project, ultrafine particles (UFP) are continuously measured at one urban background site in Leicester. The main aims are to examine the temporal and seasonal variations in UFP number concentration and size distribution in an urban environment, and to try to assess the added value of continuous UFP measurements. In addition, relations of UFP with more commonly monitored pollutants such as black carbon (BC), nitrogen oxides (NOX), particulate matter (PM2.5), and the lung deposited surface area(LDSA) were evaluated. The effects of meteorological conditions, particularly wind speed and direction, and also temperature on the observed distribution of ultrafine particles will be detailed. The study presents the results from an experimental investigation into the particle number concentration size distribution of UFP, BC, and NOX with measurements taken at the Automatic Urban and Rural Network (AURN) monitoring site in Leicester. The monitoring was performed as part of the EU project JOAQUIN (Joint Air Quality Initiative) supported by the INTERREG IVB NWE program. The total number concentrations (TNC) were measured by a water-based condensation particle counter (W-CPC) (TSI model 3783), the particle number concentrations (PNC) and size distributions were measured by an ultrafine particle monitor (UFP TSI model 3031), the BC by MAAP (Thermo-5012), the NOX by NO-NO2-NOx monitor (Thermos Scientific 42i), and a Nanoparticle Surface Area Monitor (NSAM, TSI 3550) was used to measure the LDSA (reported as μm2 cm−3) corresponding to the alveolar region of the lung between November 2013 and November 2015. The average concentrations of particle number concentrations were observed in summer with lower absolute values of PNC than in winter might be related mainly to particles directly emitted by traffic and to the more favorable conditions of atmospheric dispersion. Results showed a traffic-related diurnal variation of UFP, BC, NOX and LDSA with clear morning and evening rush hour peaks on weekdays, only an evening peak at the weekends. Correlation coefficients were calculated between UFP and other pollutants (BC and NOX). The highest correlation between them was found in winter months. Overall, the results support the notion that local traffic emissions were a major contributor of the atmospheric particles pollution and a clear seasonal pattern was found, with higher values during the cold season.Keywords: size distribution, traffic emissions, UFP, urban area
Procedia PDF Downloads 3291245 Family Medicine Residents in End-of-Life Care
Authors: Goldie Lynn Diaz, Ma. Teresa Tricia G. Bautista, Elisabeth Engeljakob, Mary Glaze Rosal
Abstract:
Introduction: Residents are expected to convey unfavorable news, discuss prognoses, and relieve suffering, and address do-not-resuscitate orders, yet some report a lack of competence in providing this type of care. Recognizing this need, Family Medicine residency programs are incorporating end-of-life care from symptom and pain control, counseling, and humanistic qualities as core proficiencies in training. Objective: This study determined the competency of Family Medicine Residents from various institutions in Metro Manila on rendering care for the dying. Materials and Methods: Trainees completed a Palliative Care Evaluation tool to assess their degree of confidence in patient and family interactions, patient management, and attitudes towards hospice care. Results: Remarkably, only a small fraction of participants were confident in performing independent management of terminal delirium and dyspnea. Fewer than 30% of residents can do the following without supervision: discuss medication effects and patient wishes after death, coping with pain, vomiting and constipation, and reacting to limited patient decision-making capacity. Half of the respondents had confidence in supporting the patient or family member when they become upset. Majority expressed confidence in many end-of-life care skills if supervision, coaching and consultation will be provided. Most trainees believed that pain medication should be given as needed to terminally ill patients. There was also uncertainty as to the most appropriate person to make end-of-life decisions. These attitudes may be influenced by personal beliefs rooted in cultural upbringing as well as by personal experiences with death in the family, which may also affect their participation and confidence in caring for the dying. Conclusion: Enhancing the quality and quantity of end-of-life care experiences during residency with sufficient supervision and role modeling may lead to knowledge and skill improvement to ensure quality of care. Fostering bedside learning opportunities during residency is an appropriate venue for teaching interventions in end-of-life care education.Keywords: end of life care, geriatrics, palliative care, residency training skill
Procedia PDF Downloads 2561244 A Static and Dynamic Slope Stability Analysis of Sonapur
Authors: Rupam Saikia, Ashim Kanti Dey
Abstract:
Sonapur is an intense hilly region on the border of Assam and Meghalaya lying in North-East India and is very near to a seismic fault named as Dauki besides which makes the region seismically active. Besides, these recently two earthquakes of magnitude 6.7 and 6.9 have struck North-East India in January and April 2016. Also, the slope concerned for this study is adjacent to NH 44 which for a long time has been a sole important connecting link to the states of Manipur and Mizoram along with some parts of Assam and so has been a cause of considerable loss to life and property since past decades as there has been several recorded incidents of landslide, road-blocks, etc. mostly during the rainy season which comes into news. Based on this issue this paper reports a static and dynamic slope stability analysis of Sonapur which has been carried out in MIDAS GTS NX. The slope being highly unreachable due to terrain and thick vegetation in-situ test was not feasible considering the current scope available so disturbed soil sample was collected from the site for the determination of strength parameters. The strength parameters were so determined for varying relative density with further variation in water content. The slopes were analyzed considering plane strain condition for three slope heights of 5 m, 10 m and 20 m which were then further categorized based on slope angles 30, 40, 50, 60, and 70 considering the possible extent of steepness. Initially static analysis under dry state was performed then considering the worst case that can develop during rainy season the slopes were analyzed for fully saturated condition along with partial degree of saturation with an increase in the waterfront. Furthermore, dynamic analysis was performed considering the El-Centro Earthquake which had a magnitude of 6.7 and peak ground acceleration of 0.3569g at 2.14 sec for the slope which were found to be safe during static analysis under both dry and fully saturated condition. Some of the conclusions were slopes with inclination above 40 onwards were found to be highly vulnerable for slopes of height 10 m and above even under dry static condition. Maximum horizontal displacement showed an exponential increase with an increase in inclination from 30 to 70. The vulnerability of the slopes was seen to be further increased during rainy season as even slopes of minimal steepness of 30 for height 20 m was seen to be on the verge of failure. Also, during dynamic analysis slopes safe during static analysis were found to be highly vulnerable. Lastly, as a part of the study a comparative study on Strength Reduction Method (SRM) versus Limit Equilibrium Method (LEM) was also carried out and some of the advantages and disadvantages were figured out.Keywords: dynamic analysis, factor of safety, slope stability, strength reduction method
Procedia PDF Downloads 2591243 Use of Geoinformatics and Mathematical Equations to Assess Erosion and Soil Fertility in Cassava Growing Areas in Maha Sarakham Province, Thailand
Authors: Sasirin Srisomkiew, Sireewan Ratsadornasai, Tanomkwan Tipvong, Isariya Meesing
Abstract:
Cassava is an important food source in the tropics and has recently gained attention as a potential source of biofuel that can replace limited fossil fuel sources. As a result, the demand for cassava production to support industries both within the country and abroad has increased. In Thailand, most farmers prefer to grow cassava in sandy and sandy loam areas where the soil has low natural fertility. Cassava is a tuber plant that has large roots to store food, resulting in the absorption of large amounts of nutrients from the soil, such as nitrogen, phosphorus, and potassium. Therefore, planting cassava in the same area for a long period causes soil erosion and decreases soil fertility. The loss of soil fertility affects the economy, society, and food and energy security of the country. Therefore, it is necessary to know the level of soil fertility and the amount of nutrients in the soil. To address this problem, this study applies geo-informatics technology and mathematical equations to assess erosion and soil fertility and to analyze factors affecting the amount of cassava production in Maha Sarakham Province. The results show that the area for cassava cultivation has increased in every district of Maha Sarakham Province between 2015-2022, with the total area increasing to 180,922 rai or 5.47% of the province’s total area during this period. Furthermore, it was found that it is possible to assess areas with soil erosion problems that had a moderate level of erosion in areas with high erosion rates ranging from 5-15 T/rai/year. Soil fertility assessment and information obtained from the soil nutrient map for 2015–2023 reveal that farmers in the area have improved the soil by adding chemical fertilizers along with organic fertilizers, such as manure and green manure, to increase the amount of nutrients in the soil. This is because the soil resources of Maha Sarakham Province mostly have relatively low agricultural potential due to the soil texture being sand and sandy loam. In this scenario, the ability to absorb nutrients is low, and the soil holds little water, so it is naturally low in fertility. Moreover, agricultural soil problems were found, including the presence of saline soil, sandy soil, and acidic soil, which is a serious restriction on land use because it affects the release of nutrients into the soil. The results of this study may be used as a guideline for managing soil resources and improving soil quality to prevent soil degradation problems that may occur in the future.Keywords: Cassava, geoinformatics, soil erosion, soil fertility, land use change
Procedia PDF Downloads 481242 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches
Authors: S. Sandri, G. M. Contessa, C. Poggi
Abstract:
An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection
Procedia PDF Downloads 350