Search results for: virus detection
2544 Water Monitoring Sentinel Cloud Platform: Water Monitoring Platform Based on Satellite Imagery and Modeling Data
Authors: Alberto Azevedo, Ricardo Martins, André B. Fortunato, Anabela Oliveira
Abstract:
Water is under severe threat today because of the rising population, increased agricultural and industrial needs, and the intensifying effects of climate change. Due to sea-level rise, erosion, and demographic pressure, the coastal regions are of significant concern to the scientific community. The Water Monitoring Sentinel Cloud platform (WORSICA) service is focused on providing new tools for monitoring water in coastal and inland areas, taking advantage of remote sensing, in situ and tidal modeling data. WORSICA is a service that can be used to determine the coastline, coastal inundation areas, and the limits of inland water bodies using remote sensing (satellite and Unmanned Aerial Vehicles - UAVs) and in situ data (from field surveys). It applies to various purposes, from determining flooded areas (from rainfall, storms, hurricanes, or tsunamis) to detecting large water leaks in major water distribution networks. This service was built on components developed in national and European projects, integrated to provide a one-stop-shop service for remote sensing information, integrating data from the Copernicus satellite and drone/unmanned aerial vehicles, validated by existing online in-situ data. Since WORSICA is operational using the European Open Science Cloud (EOSC) computational infrastructures, the service can be accessed via a web browser and is freely available to all European public research groups without additional costs. In addition, the private sector will be able to use the service, but some usage costs may be applied, depending on the type of computational resources needed by each application/user. Although the service has three main sub-services i) coastline detection; ii) inland water detection; iii) water leak detection in irrigation networks, in the present study, an application of the service to Óbidos lagoon in Portugal is shown, where the user can monitor the evolution of the lagoon inlet and estimate the topography of the intertidal areas without any additional costs. The service has several distinct methodologies implemented based on the computations of the water indexes (e.g., NDWI, MNDWI, AWEI, and AWEIsh) retrieved from the satellite image processing. In conjunction with the tidal data obtained from the FES model, the system can estimate a coastline with the corresponding level or even topography of the inter-tidal areas based on the Flood2Topo methodology. The outcomes of the WORSICA service can be helpful for several intervention areas such as i) emergency by providing fast access to inundated areas to support emergency rescue operations; ii) support of management decisions on hydraulic infrastructures operation to minimize damage downstream; iii) climate change mitigation by minimizing water losses and reduce water mains operation costs; iv) early detection of water leakages in difficult-to-access water irrigation networks, promoting their fast repair.Keywords: remote sensing, coastline detection, water detection, satellite data, sentinel, Copernicus, EOSC
Procedia PDF Downloads 1262543 Mixture statistical modeling for predecting mortality human immunodeficiency virus (HIV) and tuberculosis(TB) infection patients
Authors: Mohd Asrul Affendi Bi Abdullah, Nyi Nyi Naing
Abstract:
The purpose of this study was to identify comparable manner between negative binomial death rate (NBDR) and zero inflated negative binomial death rate (ZINBDR) with died patients with (HIV + T B+) and (HIV + T B−). HIV and TB is a serious world wide problem in the developing country. Data were analyzed with applying NBDR and ZINBDR to make comparison which a favorable model is better to used. The ZINBDR model is able to account for the disproportionately large number of zero within the data and is shown to be a consistently better fit than the NBDR model. Hence, as a results ZINBDR model is a superior fit to the data than the NBDR model and provides additional information regarding the died mechanisms HIV+TB. The ZINBDR model is shown to be a use tool for analysis death rate according age categorical.Keywords: zero inflated negative binomial death rate, HIV and TB, AIC and BIC, death rate
Procedia PDF Downloads 4322542 Optimal Pressure Control and Burst Detection for Sustainable Water Management
Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana
Abstract:
Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring
Procedia PDF Downloads 872541 Dengue Prevention and Control in Kaohsiung City
Authors: Chiu-Wen Chang, I-Yun Chang, Wei-Ting Chen, Hui-Ping Ho, Ruei-Hun Chang, Joh-Jong Huang
Abstract:
Kaohsiung City is located in the tropical region where has Aedes aegypti and Aedes albopictus distributed; once the virus invades, it’s can easily trigger local epidemic. Besides, Kaohsiung City has a world-class airport and harbor, trade and tourism are close and frequently with every country, especially with the Southeast Asian countries which also suffer from dengue. Therefore, Kaohsiung City faces the difficult challenge of dengue every year. The objectives of this study was to enhance dengue clinical care, border management and vector surveillance in Kaohsiung City by establishing an larger scale, innovatively and more coordinated dengue prevention and control strategies in 2016, including (1) Integrated medical programs: facilitated 657 contract medical institutions, widely set up NS1 rapid test in clinics, enhanced triage and referrals system, dengue case daily-monitoring management (2) Border quarantine: comprehensive NS1 screening for foreign workers and fisheries when immigration, hospitalization and isolation for suspected cases, health education for high risk groups (foreign students, other tourists) (3) Mosquito control: Widely use Gravitrap to monitor mosquito density in environment, use NS1 rapid screening test to detect community dengue virus (4) Health education: create a dengue app for people to immediately inquire the risk map and nearby medical resources, routine health education to all districts to strengthen public’s dengue knowledge, neighborhood cleaning awards program. The results showed that after new integration of dengue prevention and control strategies fully implemented in Kaohsiung City, the number of confirmed cases in 2016 declined to 342 cases, the majority of these cases are the continuation epidemic in 2015; in fact, only two cases confirmed after the 2016 summer. Besides, the dengue mortality rate successfully decreased to 0% in 2016. Moreover, according to the reporting rate from medical institutions in 2014 and 2016, it dropped from 27.07% to 19.45% from medical center, and it decreased from 36.55% to 29.79% from regional hospital; however, the reporting rate of district hospital increased from 11.88% to 15.87% and also increased from 24.51% to 34.89% in general practice clinics. Obviously, it showed that under the action of strengthening medical management, it reduced the medical center’s notification ratio and improved the notification ratio of general clinics which achieved the great effect of dengue clinical management and dengue control.Keywords: dengue control, integrated control strategies, clinical management, NS1
Procedia PDF Downloads 2692540 Cockpit Integration and Piloted Assessment of an Upset Detection and Recovery System
Authors: Hafid Smaili, Wilfred Rouwhorst, Paul Frost
Abstract:
The trend of recent accident and incident cases worldwide show that the state-of-the-art automation and operations, for current and future demanding operational environments, does not provide the desired level of operational safety under crew peak workload conditions, specifically in complex situations such as loss-of-control in-flight (LOC-I). Today, the short term focus is on preparing crews to recognise and handle LOC-I situations through upset recovery training. This paper describes the cockpit integration aspects and piloted assessment of both a manually assisted and automatic upset detection and recovery system that has been developed and demonstrated within the European Advanced Cockpit for Reduction Of StreSs and workload (ACROSS) programme. The proposed system is a function that continuously monitors and intervenes when the aircraft enters an upset and provides either manually pilot-assisted guidance or takes over full control of the aircraft to recover from an upset. In order to mitigate the highly physical and psychological impact during aircraft upset events, the system provides new cockpit functionalities to support the pilot in recovering from any upset both manually assisted and automatically. A piloted simulator assessment was made in Oct-Nov 2015 using ten pilots in a representative civil large transport fly-by-wire aircraft in terms of the preference of the tested upset detection and recovery system configurations to reduce pilot workload, increase situational awareness and safe interaction with the manually assisted or automated modes. The piloted simulator evaluation of the upset detection and recovery system showed that the functionalities of the system are able to support pilots during an upset. The experiment showed that pilots are willing to rely on the guidance provided by the system during an upset. Thereby, it is important for pilots to see and understand what the aircraft is doing and trying to do especially in automatic modes. Comparing the manually assisted and the automatic recovery modes, the pilot’s opinion was that an automatic recovery reduces the workload so that they could perform a proper screening of the primary flight display. The results further show that the manually assisted recoveries, with recovery guidance cues on the cockpit primary flight display, reduced workload for severe upsets compared to today’s situation. The level of situation awareness was improved for automatic upset recoveries where the pilot could monitor what the system was trying to accomplish compared to automatic recovery modes without any guidance. An improvement in situation awareness was also noticeable with the manually assisted upset recovery functionalities as compared to the current non-assisted recovery procedures. This study shows that automatic upset detection and recovery functionalities are likely to positively impact the operational safety by means of reduced workload, improved situation awareness and crew stress reduction. It is thus believed that future developments for upset recovery guidance and loss-of-control prevention should focus on automatic recovery solutions.Keywords: aircraft accidents, automatic flight control, loss-of-control, upset recovery
Procedia PDF Downloads 2102539 Towards an Adversary-Aware ML-Based Detector of Spam on Twitter Hashtags
Authors: Niddal Imam, Vassilios G. Vassilakis
Abstract:
After analysing messages posted by health-related spam campaigns in Twitter Arabic hashtags, we found that these campaigns use unique hijacked accounts (we call them adversarial hijacked accounts) as adversarial examples to fool deployed ML-based spam detectors. Existing ML-based models build a behaviour profile for each user to detect hijacked accounts. This approach is not applicable for detecting spam in Twitter hashtags since they are computationally expensive. Hence, we propose an adversary-aware ML-based detector, which includes a newly designed feature (avg posts) to improve the detection of spam tweets posted by the adversarial hijacked accounts at a tweet-level in trending hashtags. The proposed detector was designed considering three key points: robustness, adaptability, and interpretability. The new feature leverages the account’s temporal patterns (i.e., account age and number of posts). It is faster to compute compared to features discussed in the literature and improves the accuracy of detecting the identified hijacked accounts by 73%.Keywords: Twitter spam detection, adversarial examples, evasion attack, adversarial concept drift, account hijacking, trending hashtag
Procedia PDF Downloads 782538 Agile Succession Planning in the Post-Covid World
Authors: Ashneel Kumar Singh
Abstract:
The COVID-19 pandemic has dramatically transformed the global workforce, leading to significant challenges in staffing and employment. The shift to remote work, the health risks posed by the virus, and the phenomenon known as ‘The Great Termination’ have all contributed to the disruption of traditional succession planning methods. This paper explores how agile succession planning can be effectively implemented in the post-COVID world to retain top talent and ensure organizational resilience. Through a review of the literature and practical examples, the paper discusses the difficulties of succession planning in the current environment and the importance of adopting an agile approach and offers recommendations for businesses to navigate the complexities of succession planning in a rapidly changing landscape.Keywords: agile succession planning, adopt a culture of continuous learning, create a multi-successor planning approach, the great termination
Procedia PDF Downloads 332537 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 642536 High Throughput Virtual Screening against ns3 Helicase of Japanese Encephalitis Virus (JEV)
Authors: Soma Banerjee, Aamen Talukdar, Argha Mandal, Dipankar Chaudhuri
Abstract:
Japanese Encephalitis is a major infectious disease with nearly half the world’s population living in areas where it is prevalent. Currently, treatment for it involves only supportive care and symptom management through vaccination. Due to the lack of antiviral drugs against Japanese Encephalitis Virus (JEV), the quest for such agents remains a priority. For these reasons, simulation studies of drug targets against JEV are important. Towards this purpose, docking experiments of the kinase inhibitors were done against the chosen target NS3 helicase as it is a nucleoside binding protein. Previous efforts regarding computational drug design against JEV revealed some lead molecules by virtual screening using public domain software. To be more specific and accurate regarding finding leads, in this study a proprietary software Schrödinger-GLIDE has been used. Druggability of the pockets in the NS3 helicase crystal structure was first calculated by SITEMAP. Then the sites were screened according to compatibility with ATP. The site which is most compatible with ATP was selected as target. Virtual screening was performed by acquiring ligands from databases: KinaseSARfari, KinaseKnowledgebase and Published inhibitor Set using GLIDE. The 25 ligands with best docking scores from each database were re-docked in XP mode. Protein structure alignment of NS3 was performed using VAST against MMDB, and similar human proteins were docked to all the best scoring ligands. The low scoring ligands were chosen for further studies and the high scoring ligands were screened. Seventy-three ligands were listed as the best scoring ones after performing HTVS. Protein structure alignment of NS3 revealed 3 human proteins with RMSD values lesser than 2Å. Docking results with these three proteins revealed the inhibitors that can interfere and inhibit human proteins. Those inhibitors were screened. Among the ones left, those with docking scores worse than a threshold value were also removed to get the final hits. Analysis of the docked complexes through 2D interaction diagrams revealed the amino acid residues that are essential for ligand binding within the active site. Interaction analysis will help to find a strongly interacting scaffold among the hits. This experiment yielded 21 hits with the best docking scores which could be investigated further for their drug like properties. Aside from getting suitable leads, specific NS3 helicase-inhibitor interactions were identified. Selection of Target modification strategies complementing docking methodologies which can result in choosing better lead compounds are in progress. Those enhanced leads can lead to better in vitro testing.Keywords: antivirals, docking, glide, high-throughput virtual screening, Japanese encephalitis, ns3 helicase
Procedia PDF Downloads 2302535 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes
Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov
Abstract:
Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes
Procedia PDF Downloads 2382534 Environmental Radioactivity Analysis by a Sequential Approach
Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab
Abstract:
Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.Keywords: Bayesian approach, event mode sequence, gamma spectrometry, Monte Carlo method
Procedia PDF Downloads 4952533 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm
Authors: El Harraj Abdeslam, Raissouni Naoufal
Abstract:
The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes
Procedia PDF Downloads 2562532 DNA-Based Gold Nanoprobe Biosensor to Detect Pork Contaminant
Authors: Rizka Ardhiyana, Liesbetini Haditjaroko, Sri Mulijani, Reki Ashadi Wicaksono, Raafqi Ranasasmita
Abstract:
Designing a sensitive, specific and easy to use method to detect pork contamination in the food industry remains a major challenge. In the current study, we developed a sensitive thiol-bond AuNP-Probe biosensor that will change color when detecting pork DNA in the Cytochrome B region. The interaction between the biosensors and DNA sample is measured by spectrophotometer at 540 nm. The biosensor is made by reducing gold with trisodium citrate to produce gold nanoparticle with 39.05 nm diameter. The AuNP-Probe biosensor (gold nanoprobe) achieved 16.04 ng DNA/µl limit of detection and 53.48 ng DNA/µl limit of quantification. The linearity (R2) between color absorbance changes and DNA concentration is 0.9916. The biosensor has a good specificty as it does not cross-react with DNA of chicken and beef. To verify specificity towards the target sequence, PCR was tested to the target sequence and reacted to the PCR product with the biosensor. The PCR DNA isolate resulted in a 2.7 fold higher absorbance compared to pork-DNA isolate alone (without PCR). The sensitivity and specificity of the method show the promising application of the thiol-bond AuNP biosensor in pork-detection.Keywords: biosensor, DNA probe, gold nanoparticle (AuNP), pork meat, qPCR
Procedia PDF Downloads 3592531 Public Wi-Fi Security Threat Evil Twin Attack Detection Based on Signal Variant and Hop Count
Authors: Said Abdul Ahad Ahadi, Elyas Baray, Nitin Rakesh, Sudeep Varshney
Abstract:
Wi-Fi is a widely used internet source that is used to provide internet access in many areas such as Stores, Cafes, University campuses, Restaurants and so on. This technology brought more facilities in communication and networking. On the other hand, due to the transmission of data over the air, which makes the network vulnerable, so it becomes prone to various threats such as Evil Twin and etc. The Evil Twin is a kind of adversary which impersonates a legitimate access point (LAP) as it can happen by spoofing the name (SSID) and MAC address (BSSID) of a legitimate access point (LAP). And this attack can cause many threats such as MITM, Service Interruption, Access point service blocking. Various Evil Twin Attack Detection Techniques are proposed, but they require additional hardware, or they require protocol modification. In this paper, we proposed a new technique based on Access Point’s two fingerprints, Received Signal Strength Indicator (RSSI) and Hop Count, that is hard to copy by an adversary. And we implemented the technique in a system called “ETDetector,” which can detect and prevent the attack.Keywords: evil twin, LAP, SSID, Wi-Fi security, signal variation, ETAD, kali linux, scapy, python
Procedia PDF Downloads 1432530 Exploring Bidirectional Encoder Representations from the Transformers’ Capabilities to Detect English Preposition Errors
Authors: Dylan Elliott, Katya Pertsova
Abstract:
Preposition errors are some of the most common errors created by L2 speakers. In addition, improving error correction and detection methods remains an open issue in the realm of Natural Language Processing (NLP). This research investigates whether the bidirectional encoder representations from the transformers model (BERT) have the potential to correct preposition errors accurately enough to be useful in error correction software. This research finds that BERT performs strongly when the scope of its error correction is limited to preposition choice. The researchers used an open-source BERT model and over three hundred thousand edited sentences from Wikipedia, tagged for part of speech, where only a preposition edit had occurred. To test BERT’s ability to detect errors, a technique known as multi-level masking was used to generate suggestions based on sentence context for every prepositional environment in the test data. These suggestions were compared with the original errors in the data and their known corrections to evaluate BERT’s performance. The suggestions were further analyzed to determine if BERT more often agreed with the judgements of the Wikipedia editors. Both the untrained and fined-tuned models were compared. Finetuning led to a greater rate of error-detection which significantly improved recall, but lowered precision due to an increase in false positives or falsely flagged errors. However, in most cases, these false positives were not errors in preposition usage but merely cases where more than one preposition was possible. Furthermore, when BERT correctly identified an error, the model largely agreed with the Wikipedia editors, suggesting that BERT’s ability to detect misused prepositions is better than previously believed. To evaluate to what extent BERT’s false positives were grammatical suggestions, we plan to do a further crowd-sourcing study to test the grammaticality of BERT’s suggested sentence corrections against native speakers’ judgments.Keywords: BERT, grammatical error correction, preposition error detection, prepositions
Procedia PDF Downloads 1472529 Automatic Post Stroke Detection from Computed Tomography Images
Authors: C. Gopi Jinimole, A. Harsha
Abstract:
For detecting strokes, Computed Tomography (CT) scan is preferred for imaging the abnormalities or infarction in the brain. Because of the problems in the window settings used to evaluate brain CT images, they are very poor in the early stage infarction detection. This paper presents an automatic estimation method for the window settings of the CT images for proper contrast of the hyper infarction present in the brain. In the proposed work the window width is estimated automatically for each slice and the window centre is changed to a new value of 31HU, which is the average of the HU values of the grey matter and white matter in the brain. The automatic window width estimation is based on the average of median of statistical central moments. Thus with the new suggested window centre and estimated window width, the hyper infarction or post-stroke regions in CT brain images are properly detected. The proposed approach assists the radiologists in CT evaluation for early quantitative signs of delayed stroke, which leads to severe hemorrhage in the future can be prevented by providing timely medication to the patients.Keywords: computed tomography (CT), hyper infarction or post stroke region, Hounsefield Unit (HU), window centre (WC), window width (WW)
Procedia PDF Downloads 2032528 Microbial and SARS-CoV-2 Efficiency Analysis of Froumann HEPA Filter Air Cleaner Brand
Authors: Serap Gedikli, Hakan Çakmak, M. Buğra Güldiken, Duygu Yalnızoğlu
Abstract:
Air, which is necessary for living things to survive; while it carries some useful substances in it, it can also carry foreign particles of different sizes that may be harmful to the health. All airborne organic substances of biological origin, including bacteria, fungi, fungal spores, viruses, pollen, and their components, are called "bioaerosols". Nowadays, everyone spends most of their time in closed areas such as home, workplace, school, etc. Although it is known that outdoor air pollution affects health, it is not known that indoor air pollution has harmful effects in terms of health. In this study, indoor air microbial load and SARS-CoV-2 virus cleaning efficiency of Froumann brand air cleaners were studied. This work in 300 m³, 600 m³, and 1000 m³ completely closed areas without any air circulation with Froumann N80, N90, and N100 air-cleaning devices. Analyzes were performed for both areas at 60 minutes before and after the device was operated using a particle measuring device (Particles Plus 7302) and an air sampler (Mas-100 ECO). The measurements were taken by placing the test equipment 1.5-2 m away from the air cleaner. At the same time, the efficiency of the HEPA filter was evaluated by taking samples from the air outlet point of the HEPA filter using the air sampling device (Mas-100 ECO) after the device was started. Nutrient agar and malt agar are used as total mesophilic bacteria and total fungi. The number of colony-forming units per m³ (cfu/m³) was calculated by counting colonies in Petri dishes after incubation for 48 hours at 37°C for bacteria and 72 hours at 30°C for fungi. The change in the number of colonies and the decrease in the microbial load was calculated as a percentage value. SARS-CoV-2 activity analysis studies were carried out by İnönü University Microbiology Department in accordance with the World Health Organization regulations. Finally, the HEPA filter in the devices used was taken and kept under a certain temperature and humidity, and the change in the microbial load on it was monitored over a 6-month period. At the end of the studies, a 91%-94% reduction was determined in the total mesophilic bacteria count of Frouman brand N80, N90, and N100 model air cleaners. A decrease of 94%-96% was detected in the total number of yeast/molds. HEPA filter efficiency was evaluated, and at the end of the analysis, 98% of the bacterial load and approximately 100% of yeast/mold load at the HEPA filter air outlet point were decreased. According to the SARS- CoV-2 analysis results, when the device is operating at the medium airflow level 3, it can filter virus-carrying aerosols by 99%. As a result, it was determined that the Froumann model air cleaner was effective in controlling and reducing the microbial load in the indoor air.Keywords: HEPA filter, indoor air quality, microbial load, SARS-CoV-2
Procedia PDF Downloads 2042527 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles
Authors: Gopi Kandaswamy, P. Balamuralidhar
Abstract:
Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis
Procedia PDF Downloads 2622526 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone
Procedia PDF Downloads 4032525 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation
Authors: Simiao Ren, En Wei
Abstract:
Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN
Procedia PDF Downloads 1012524 Design of Parity-Preserving Reversible Logic Signed Array Multipliers
Authors: Mojtaba Valinataj
Abstract:
Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic
Procedia PDF Downloads 2592523 AI Applications in Accounting: Transforming Finance with Technology
Authors: Alireza Karimi
Abstract:
Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance
Procedia PDF Downloads 632522 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification
Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski
Abstract:
Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test
Procedia PDF Downloads 1292521 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India
Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander
Abstract:
Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.Keywords: salmonella, pefloxacin, surrogate marker, chloramphenicol
Procedia PDF Downloads 9882520 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.Keywords: temporal graph network, anomaly detection, cyber security, IDS
Procedia PDF Downloads 1032519 Risk Factors for Determining Anti-HBcore to Hepatitis B Virus Among Blood Donors
Authors: Tatyana Savchuk, Yelena Grinvald, Mohamed Ali, Ramune Sepetiene, Dinara Sadvakassova, Saniya Saussakova, Kuralay Zhangazieva, Dulat Imashpayev
Abstract:
Introduction. The problem of viral hepatitis B (HBV) takes a vital place in the global health system. The existing risk of HBV transmission through blood transfusions is associated with transfusion of blood taken from infected individuals during the “serological window” period or from patients with latent HBV infection, the marker of which is anti-HBcore. In the absence of information about other markers of hepatitis B, the presence of anti-HBcore suggests that a person may be actively infected or has suffered hepatitis B in the past and has immunity. Aim. To study the risk factors influencing the positive anti-HBcore indicators among the donor population. Materials and Methods. The study was conducted in 2021 in the Scientific and Production Center of Transfusiology of the Ministry of Healthcare in Kazakhstan. The samples taken from blood donors were tested for anti-HBcore, by CLIA on the Architect i2000SR (ABBOTT). A special questionnaire was developed for the blood donors’ socio-demographic characteristics. Statistical analysis was conducted by the R software (version 4.1.1, USA, 2021). Results.5709 people aged 18 to 66 years were included in the study, the proportion of men and women was 68.17% and 31.83%, respectively. The average age of the participants was 35.7 years. A weighted multivariable mixed effects logistic regression analysis showed that age (p<0.001), ethnicity (p<0.05), and marital status (p<0.05) were statistically associated with anti-HBcore positivity. In particular, analysis adjusting for gender, nationality, education, marital status, family history of hepatitis, blood transfusion, injections, and surgical interventions, with a one-year increase in age (adjOR=1.06, 95%CI:1.05-1.07), showed an 6% growth in odds of having anti-HBcore positive results. Those who were russian ethnicity (adjOR=0.65, 95%CI:0.46-0.93) and representatives of other nationality groups (adjOR=0.56, 95%CI:0.37-0.85) had lower odds of having anti-HBcore when compared to Kazakhs when controlling for other covariant variables. Among singles, the odds of having a positive anti-HBcore were lower by 29% (adjOR = 0.71, 95%CI:0.57-0.89) compared to married participants when adjusting for other variables. Conclusions.Kazakhstan is one of the countries with medium endemicity of HBV prevalence (2%-7%). Results of the study demonstrated the possibility to form a profile of risk factors (age, nationality, marital status). Taking into account the data, it is recommended to increase attention to donor questionnaires by adding leading questions and to improve preventive measures to prevent HBV. Funding. This research was supported by a grant from Abbott Laboratories.Keywords: anti-HBcore, blood donor, donation, hepatitis B virus, occult hepatitis
Procedia PDF Downloads 1082518 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model
Authors: Gholba Niranjan Dilip, Anil Kumar
Abstract:
Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector
Procedia PDF Downloads 1602517 Comparative Study of Mutations Associated with Second Line Drug Resistance and Genetic Background of Mycobacterium tuberculosis Strains
Authors: Syed Beenish Rufai, Sarman Singh
Abstract:
Background: Performance of Genotype MTBDRsl (Hain Life science GmbH Germany) for detection of mutations associated with second-line drug resistance is well known. However, less evidence regarding the association of mutations and genetic background of strains is known which, in the future, is essential for clinical management of anti-tuberculosis drugs in those settings where the probability of particular genotype is predominant. Material and Methods: During this retrospective study, a total of 259 MDR-TB isolates obtained from pulmonary TB patients were tested for second-line drug susceptibility testing (DST) using Genotype MTBDRsl VER 1.0 and compared with BACTEC MGIT-960 as a reference standard. All isolates were further characterized using spoligotyping. The spoligo patterns obtained were compared and analyzed using SITVIT_WEB. Results: Of total 259 MDR-TB isolates which were screened for second-line DST by Genotype MTBDRsl, mutations were found to be associated with gyrA, rrs and emb genes in 82 (31.6%), 2 (0.8%) and 90 (34.7%) isolates respectively. 16 (6.1%) isolates detected mutations associated with both FQ as well as to AG/CP drugs (XDR-TB). No mutations were detected in 159 (61.4%) isolates for corresponding gyrA and rrs genes. Genotype MTBDRsl showed a concordance of 96.4% for detection of sensitive isolates in comparison with second-line DST by BACTEC MGIT-960 and 94.1%, 93.5%, 60.5% and 50% for detection of XDR-TB, FQ, EMB, and AMK/CAP respectively. D94G was the most prevalent mutation found among (38 (46.4%)) OFXR isolates (37 FQ mono-resistant and 1 XDR-TB) followed by A90V (23 (28.1%)) (17 FQ mono-resistant and 6 XDR-TB). Among AG/CP resistant isolates A1401G was the most frequent mutation observed among (11 (61.1%)) isolates (2 AG/CP mono-resistant isolates and 9 XDR-TB isolates) followed by WT+A1401G (6 (33.3%)) and G1484T (1 (5.5%)) respectively. On spoligotyping analysis, Beijing strain (46%) was found to be the most predominant strain among pre-XDR and XDR TB isolates followed by CAS (30%), X (6%), Unique (5%), EAI and T each of 4%, Manu (3%) and Ural (2%) respectively. Beijing strain was found to be strongly associated with D94G (47.3%) and A90V mutations by (47.3%) and 34.8% followed by CAS strain by (31.6%) and 30.4% respectively. However, among AG/CP resistant isolates, only Beijing strain was found to be strongly associated with A1401G and WT+A1401G mutations by 54.5% and 50% respectively. Conclusion: Beijing strain was found to be strongly associated with the most prevalent mutations among pre-XDR and XDR TB isolates. Acknowledgments: Study was supported with Grant by All India Institute of Medical Sciences, New Delhi reference No. P-2012/12452.Keywords: tuberculosis, line probe assay, XDR TB, drug susceptibility
Procedia PDF Downloads 1402516 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces
Authors: Shih-Yu Lo
Abstract:
Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.Keywords: gender stereotype, object recognition, signal detection theory, weapon
Procedia PDF Downloads 2092515 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network
Authors: Muhammad R. Ahmed, Mohammed Aseeri
Abstract:
Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.Keywords: internal attack, wireless sensor network, network security, entropy
Procedia PDF Downloads 455