Search results for: vertical diffusion still
811 Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS
Authors: Athena Nguyen, Rojin Belganeh
Abstract:
In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method.Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS
Procedia PDF Downloads 193810 Phytochemical Screening, Anticancer, Antibacterial and Antioxidant Activities of the Leaf Extracts of Mabolo (Diospyros philippinensis A. DC.)
Authors: Jarel Elgin Tolentino, Arby Denise Nera, Mary Rose Roco, Angela Vianca Aspa, Nikko Beltran, Else Dapat
Abstract:
Drug resistance by cells has been the problem in the medical field for decades now. The use of medicinal plants as a source of creating powerful drugs has been nowadays recognized worldwide to treat such resistant diseases. In the present study, the potential for Diospyros philippinensis A. DC. to inhibit growth of both bacteria and cancer cell line was conducted. The leaf crude extracts were screened for the presence of phytochemicals and examined for potential bioactivities by employing several assays like Kirby-Bauer disc diffusion method, DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay for the antibacterial, antioxidant and cytotoxic activities of the extract, respectively. Phytochemical test results of the extracts revealed the presence of alkaloids, flavonoids, saponins, phenols, quinones, cardiac glycosides, phlobatannins, carbohydrate, cardenolides and proteins. The leaf extracts were found to exhibit antibacterial activity against gram-positive bacteria, high antioxidant activity (99.22% ± 0.005) but did not show any sign of cytotoxicity towards HCT116 (ATCC CCL-247). The study therefore concludes that D. philippinensis A. DC. leaf extract can be a source of antibacterial and chemopreventive agents. This claim may be used as basis for future investigation.Keywords: bioassay, medicinal plants, plant crude extracts, phytochemical screening
Procedia PDF Downloads 283809 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration
Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai
Abstract:
Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.Keywords: class v restoration, finite element analysis, loading situation, stress
Procedia PDF Downloads 243808 The Relationship between Procurement Strategies and Sustainability Outcomes: A Systematic Literature Review
Authors: Cathy T. Mpanga Kowet, Aghaegbuna Obinna U. Ozumba
Abstract:
This study examined and identified the inconsistencies, relationships, gaps and recurring themes in literature regarding the relationship between procurement strategies employed in the construction projects for sustainable buildings and realization of sustainability goals. A systematic literature review of studies on the relationship between various procurement strategies and attainment of sustainability outcomes was conducted. Using specific terms, papers published between 2002 and 2018 were identified and screened according to an inclusion and exclusion criteria. Current findings reveal that, although the attainment of sustainability goals is achievable with both traditional and contemporary procurement strategies, only projects delivered using modern procurement strategies are capable of meeting and exceeding targeted sustainability objectives. However, traditional procurement strategy remains the preferred method for most green building construction projects. The results suggest implications for decision makers in considering the impact of selected procurement strategies on targeted sustainability goals, in the early stages of sustainable building construction projects. The study shows that there is a gap between the reported appropriate procurement strategies and what is being practiced currently. Theoretically, the study expands on the literature on adoption and diffusion of contemporary procurement strategies, by consolidating existing studies to highlight the current gaps. While the study is at the literature review stage, deductions will serve as basis for field work involving empirical data.Keywords: green buildings construction, procurement method, procurement strategy, sustainability objectives, sustainability outcomes
Procedia PDF Downloads 172807 A Follow up Study on Indoor 222Rn, 220Rn and Their Decay Product Concentrations in a Mineralized Zone of Himachal Pradesh, India
Authors: B. S. Bajwa, Parminder Singh, Prabhjot Singh, Surinder Singh, B. K. Sahoo, B. K. Sapra
Abstract:
A follow up study was taken up in a mineralized zone situated in Hamirpur district, Himachal Pradesh, India to investigate high values of radon concentration reported in past studies as well to update the old radon data based on bare SSNTD technique. In the present investigation, indoor radon, thoron and their decay products concentrations have been measured using the newly developed Radon-Thoron discriminating diffusion chamber with single entry face, direct radon and thoron progeny sensors (DRPS/DTPS) respectively. The measurements have been carried out in seventy five dwellings of fourteen different villages. Houses were selected taking into consideration of the past data as well as the type of houses such as mud, concrete, brick etc. It was observed that high values of earlier reported radon concentrations were mainly because of thoron interference in the Solid State Nuclear Track Detector (LR-115 type II) exposed in bare mode. Now, the average concentration values and the estimated annual inhalation dose in these villages have been found to be within the reference level as recommended by the ICRP. The annual average indoor radon and thoron concentrations observed in these dwellings have been found to vary from 44±12-157±73 Bq m-3 and 44±11-240±125 Bq m-3 respectively. The equilibrium equivalent concentrations of radon and thoron decay products have been observed to be in the range of 10-63 Bq m-3 and 1-5 Bq m-3 respectively.Keywords: radon, thoron, progeny concentration, dosimeter
Procedia PDF Downloads 454806 Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot
Authors: H. Soltani, J. Hadfield, M. Redmond, D. S. Nobes
Abstract:
The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation.Keywords: rising droplet, rectangular orifice, particle shadow velocimetry, match refractive index
Procedia PDF Downloads 171805 Inhibitory Effect of Lactic Acid Bacteria on Uropathogenic Escherichia coli-Induced Urinary Tract Infections
Authors: Cheng-Chih Tsai, Yu-Hsuan Liu, Cheng-Ying Ho, Chun-Chin Huang
Abstract:
The aim of this study evaluated the in vitro and in vivo antimicrobial activity of selected lactic acid bacteria (LAB) against Uropathogenic Escherichia coli (UPEC) for prevention and amelioration of UTIs. We screened LAB strains with antimicrobial effects on UPEC using a well-diffusion assay, bacterial adherence to the uroepithelium cell line SV-HUC-1 (BCRC 60358), and a coculture inhibition assay. The results showed that the 7 LAB strains (Lactobacillus paracasei, L. salivarius, two Pediococcus pentosaceus strains, two L. plantarum strains, and L. crispatus) and the fermented probiotic products produced by these multi-LAB strains exhibited potent zones of inhibition against UPEC. Moreover, the LAB strains and probiotic products adhered strongly to the uroepithelium SV-HUC-1 cell line. The growth of UPEC strains was also markedly inhibited after co-culture with the LAB strains and probiotic products in human urine. In addition, the enhanced levels of IL-6, IL-8 and lactic acid dehydrogenase were significantly decreased by treatments with the LAB strains and probiotic products in UPEC-induced SV-HUC-1 cells. Furthermore, oral administration of probiotic products reduced the number of viable UPEC in the urine of UPEC-challenged BALB/c mice. Taken together, this study demonstrates that probiotic supplementation may be useful as an adjuvant therapy for the treatment of bacterial-induced urinary tract infections.Keywords: lactic acid bacterium, SV-HUC-1 uroepithelium, urinary tract infection, uropathogenic Escherichia coli, BALB/c mice
Procedia PDF Downloads 385804 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 236803 Nematicidal Activity of the Cell Extract from Penicillium Sp EU0013 and Its Metabolite Profile Using High Performance Liquid Chromatograpy
Authors: Zafar Iqbal, Sana Irshad Khan
Abstract:
Organic extract from newly isolated plant growth promoting fungus (PGPF) Penicillium sp EU0013 was subjected to bioassays including anti fungal (disc diffusion) cytotoxicity (brine shrimp lethality), herbicidal (Lemna minor) and nematicidal activities. Metabolite profile of the extract was also assessed using HPLC analysis with the aim to identify bioactive natural products in the extract as new drug candidate(s). The extract showed anti fungal potential against tested fungal pathogens. Growth of the Wilt pathogen Fusarium oxyosproum was inhibited up to 63% when compared to negative reference. Activity against brine shrimps was weak and mortality up to 10% was observed at concentration of 200 µg. mL-1. The extract exhibited no toxicity against Lemna minor frond at 200 µg. mL-1. Nematicidal activity was observed very potent against root knot nematode and LC50 value was calculated as 52.5 ug. mL-1 using probit analysis. Methodically assessment of metabolites profile by HPLC showed the presence of kojic acid (Rt 1.4 min) and aflatoxin B1 (Rt 5.9 min) in the mycellial extract as compared with standards. The major unidentified metabolite was eluted at Rt 8.6 along with other minor peaks. The observed high toxicity against root knot nematode was attributed to the unidentified compounds that make fungal extract worthy of further exploration for isolation and structural characterization studies for development of future commercial nematicidal compound(s).Keywords: penicillium, nematicidal activity, metabolites, HPLC
Procedia PDF Downloads 446802 Exploring Subjective Simultaneous Mixed Emotion Experiences in Middle Childhood
Authors: Esther Burkitt
Abstract:
Background: Evidence is mounting that mixed emotions can be experienced simultaneously in different ways across the lifespan. Four types of patterns of simultaneously mixed emotions (sequential, prevalent, highly parallel, and inverse types) have been identified in middle childhood and adolescence. Moreover, the recognition of these experiences tends to develop firstly when children consider peers rather than the self. This evidence from children and adolescents is based on examining the presence of experiences specified in adulthood. The present study, therefore, applied an exhaustive coding scheme to investigate whether children experience types of previously unidentified simultaneous mixed emotional experiences. Methodology: One hundred and twenty children (60 girls) aged 7 years 1 month - 9 years 2 months (X=8 years 1 month; SD = 10 months) were recruited from mainstream schools across the UK. Two age groups were formed (youngest, n = 61, 7 years 1 month- 8 years 1 months: oldest, n = 59, 8 years 2 months – 9 years 2 months) and allocated to one of two conditions hearing vignettes describing happy and sad mixed emotion events in age and gender-matched protagonist or themselves. Results: Loglinear analyses identified new types of flexuous, vertical, and other experiences along with established sequential, prevalent, highly parallel, and inverse types of experience. Older children recognised more complex experiences other than the self-condition. Conclusion: Several additional types of simultaneously mixed emotions are recognised in middle childhood. The theoretical relevance of simultaneous mixed emotion processing in childhood is considered, and the potential utility of the findings in emotion assessments is discussed.Keywords: emotion, childhood, self, other
Procedia PDF Downloads 78801 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing
Procedia PDF Downloads 420800 Cheiloscopy: A Study on Predominant Lip Print Patterns among the Gujarati Population
Authors: Pooja Ahuja, Tejal Bhutani, M. S. Dahiya
Abstract:
Cheiloscopy, the study of lip prints, is a tool in forensic investigation technique that deals with identification of individuals based on lips patterns. The objective of this study is to determine predominant lip print pattern found among the Gujarati population, to evaluate whether any sex difference exists and to study the permanence of the pattern over six months duration. The study comprised of 100 healthy individuals (50 males and 50 females), in the age group of 18 to 25 years of Gujarati population of the Gandhinagar region of the Gujarat state, India. By using Suzuki and Tsuchihashi classification, Lip prints were then divided into four quadrants and also classified on the basis of peripheral shape of the lips. Materials used to record the lip prints were dark brown colored lipstick, cellophane tape, and white bond paper. Lipstick was applied uniformly, and lip prints were taken on the glued portion of cellophane tape and then stuck on to a white bond paper. These lip prints were analyzed with magnifying lens and virtually with stereo microscope. On the analysis of the subject population, results showed Branched pattern Type II (29.57 percentage) to be most predominant in the Gujarati population. Branched pattern Type II (35.60 percentage) and long vertical Type I (28.28 percentage) were most prevalent in males and females respectively and large full lips were most predominantly present in both the sexes. The study concludes that lip prints in any form can be an effective tool for identification of an individual in a closed or open group forms.Keywords: cheiloscopy, lip pattern, predomianant, Gujarati population
Procedia PDF Downloads 298799 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption
Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout
Abstract:
The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob
Procedia PDF Downloads 277798 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room
Authors: Himanshu Dehra
Abstract:
An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation
Procedia PDF Downloads 395797 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints
Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache
Abstract:
The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy
Procedia PDF Downloads 129796 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump
Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir
Abstract:
The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.Keywords: bubble pump, drift flow model, instability, simulation
Procedia PDF Downloads 262795 Rain Dropsize Distribution from Individual Storms and Variability in Nigeria Topical Region
Authors: Akinyemi Tomiwa
Abstract:
The microstructure of rainfall is important for predicting and modeling various environmental processes, such as rainfall interception by vegetation, soil erosion, and radar signals in rainfall. This rain microstructure was studied with a vertically pointing Micro Rain Radar (MRR) located at a tropical location in Akure South West Nigeria (7o 15’ N, 5o 15’ E). This research utilizes two years of data (2018 and 2019), and the data obtained comprises rainfall parameters such as Rain rates, radar reflectivity, liquid water content, fall velocity and Drop Size Distribution (DSD) based on vertical profiles. The measurement and variations of rain microstructure of these parameters with heights for different rain types were presented from ground level up to the height of 4800 m at 160 m range gates. It has been found that the convective, stratiform and mixed, which are the three major rain types, have different rain microstructures at different heights and were evaluated in this research. The correlation coefficient and the regression line equation were computed for each rain event. The highest rain rate and liquid water content were observed within the height range of 160-4800. It was found that a good correlation exists between the measured parameters. Hence it shows that specific liquid water content increases with increasing rain rate for both stratiform and convective rain types in this part of the world. The results can be very useful for a better understanding of rain structure over tropical regions.Keywords: rain microstructure, drop size distribution, rain rates, stratiform, convective.
Procedia PDF Downloads 32794 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds
Authors: Qiming Wang
Abstract:
Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds
Procedia PDF Downloads 187793 Creating Sustainable Human Settlements: An Analysis of Planning Intervention in Addressing Informal Settlements in South Africa
Authors: Takudzwa C. Taruza, Carel B. Schoeman, Ilse M. Schoeman
Abstract:
The proliferation of informal settlements remains one of the major planning challenges in democratic South Africa. In spite of the various local, national and international initiatives to promote the creation of sustainable human settlements, informal settlements continue to exist as spatially marginalised societies characterised by poverty, unemployment, squalor conditions and disaster risks. It is argued that, in practice, intervention is mainly directed at achieving set quantitative targets and goals rather than improving the lives of the inhabitants. The relevant planning instruments do not adequately address the integration of informal settlements into the broader planning framework. This paper is based on the analysis of the informal settlement intervention within the North West Province. Financial constraints, bureaucracy in housing delivery and lack of horizontal and vertical integration in spatial planning and programme implementation are amongst the major factors that caused stagnation in some of the upgrading programmes which in turn hindered the attainment of the target set as part of the Outcome 8 Delivery Agreement. Moreover, the absence of distinct indicators for the assessment of the qualitative progress of upgrading programmes indicates shortcomings in the intervention policies and programmes to promote the creation of sustainable human settlements. Thus, this paper seeks to proffer an assessment toolkit as well as a framework for the implementation of a Sustainable Informal Settlement Programme.Keywords: formalization of informal settlements, planning intervention, sustainable formalization indicators, sustainable human settlements
Procedia PDF Downloads 254792 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles
Authors: Tobias Schramm, Günther Prokop
Abstract:
Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation
Procedia PDF Downloads 116791 Study on Heat Transfer Capacity Limits of Heat Pipe with Working Fluids Ammonia and Water
Authors: M. Heydari, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 400790 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 401789 India’s Energy System Transition, Survival of the Greenest
Authors: B. Sudhakara Reddy
Abstract:
The transition to a clean and green energy system is an economic and social transformation that is exciting as well as challenging. The world today faces a formidable challenge in transforming its economy from being driven primarily by fossil fuels, which are non-renewable and a major source of global pollution, to becoming an economy that can function effectively using renewable energy sources and by achieving high energy efficiency levels. In the present study, a green economy scenario is developed for India using a bottom-up approach. The results show that the penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. Improvements in energy efficiency (e.g. households, industrial and commercial sectors) will result in reduced demand to the tune of 318 MTOE. The volume of energy-related CO2 emissions decline to 2,218 Mt in 2030 from 3,440 under the BAU scenario and the per capita emissions will reduce by about 35% (from 2.22 to 1.45) under the GE scenario. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. total import bill (coal and oil) will amount to US$ 334 billion by 2030 (at 2010/11 prices), but as per the GE scenario, it would be US$ 194.2 billion, a saving of about US$ 140 billion. The building of a green energy economy can also serve another purpose: to develop new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. The differences between the baseline and green energy scenarios are not so much the consequence of the diffusion of various technologies. It is the result of the active roles of different actors and the drivers that become dominant.Keywords: emissions, green energy, fossil fuels, green jobs, renewables, scenario
Procedia PDF Downloads 532788 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations
Authors: N. Abbas, S. Lagomarsino, S. Cattari
Abstract:
Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.Keywords: foundation uplift, iso-uplift curves, resistance domain, soil yield
Procedia PDF Downloads 383787 Characteristics and Flight Test Analysis of a Fixed-Wing UAV with Hover Capability
Authors: Ferit Çakıcı, M. Kemal Leblebicioğlu
Abstract:
In this study, characteristics and flight test analysis of a fixed-wing unmanned aerial vehicle (UAV) with hover capability is analyzed. The base platform is chosen as a conventional airplane with throttle, ailerons, elevator and rudder control surfaces, that inherently allows level flight. Then this aircraft is mechanically modified by the integration of vertical propellers as in multi rotors in order to provide hover capability. The aircraft is modeled using basic aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. Flight characteristics are analyzed by benefiting from linear control theory’s state space approach. Distinctive features of the aircraft are discussed based on analysis results with comparison to conventional aircraft platform types. A hybrid control system is proposed in order to reveal unique flight characteristics. The main approach includes design of different controllers for different modes of operation and a hand-over logic that makes flight in an enlarged flight envelope viable. Simulation tests are performed on mathematical models that verify asserted algorithms. Flight tests conducted in real world revealed the applicability of the proposed methods in exploiting fixed-wing and rotary wing characteristics of the aircraft, which provide agility, survivability and functionality.Keywords: flight test, flight characteristics, hybrid aircraft, unmanned aerial vehicle
Procedia PDF Downloads 329786 Investigating the Combined Medicinal Effects of Withania Somnifera (Ashwaghandha) and Murraya Koenigii (Curry Pata) in Vitro
Authors: Sadia Roshan, Kulsoom Sughra, Shazia Shamas, Shamaila Irum, Haleema Sadia
Abstract:
To evaluate synergistic medicinal effects of Withania somnifera (Ashwaghandha) and Murraya koenigii (Curry pata) in vitro. Antimicrobial activity was determined using the disc diffusion method against five bacterial and two fungal strains. The antioxidant activity was evaluated by the DPPH assay. The antidiabetic activity was evaluated by alpha-glucosidase inhibition assay and alpha-amylase inhibition assay. Synergistic antibacterial activity was observed against all the strains of bacteria, either Gram-positive or Gram-negative and fungi under study conditions. The maximum antibacterial activity was displayed by combined extract against E. coli i.e. 26±0.4mm. Maximum antifungal activity was shown by combined extract against Aspergillus niger, i.e., 17.3±0.5mm. The antioxidant activity of the combined extract was also significant. Alpha-glucosidase inhibition and alpha-amylase inhibition assays also showed synergism. Results indicate that Withania somnifera and Murraya koengii have medicinal properties. The combined extract of both plants is more potent than their individual extracts, suggesting that these can work in synergism. The research suggests that different plant extracts could be used in combination to increase their medicinal activities by many folds, thus giving an insight into future use of herbal medication.Keywords: withania somnifera, murraya koenigii, antimicrobial activity, gram-positive bacetria, gram-negative bacteria
Procedia PDF Downloads 80785 An Optimal Path for Virtual Reality Education using Association Rules
Authors: Adam Patterson
Abstract:
This study analyzes the self-reported experiences of virtual reality users to develop insight into an optimal learning path for education within virtual reality. This research uses a sample of 1000 observations to statistically define factors influencing (i) immersion level and (ii) motion sickness rating for virtual reality experience respondents of college age. This paper recommends an efficient duration for each virtual reality session, to minimize sickness and maximize engagement, utilizing modern machine learning methods such as association rules. The goal of this research, in augmentation with previous literature, is to inform logistical decisions relating to implementation of pilot instruction for virtual reality at the collegiate level. Future research will include a Randomized Control Trial (RCT) to quantify the effect of virtual reality education on student learning outcomes and engagement measures. Current research aims to maximize the treatment effect within the RCT by optimizing the learning benefits of virtual reality. Results suggest significant gender heterogeneity amongst likelihood of reporting motion sickness. Females are 1.7 times more likely, than males, to report high levels of motion sickness resulting from a virtual reality experience. Regarding duration, respondents were 1.29 times more likely to select the lowest level of motion sickness after an engagement lasting between 24.3 and 42 minutes. Conversely, respondents between 42 to 60 minutes were 1.2 times more likely to select the higher levels of motion sickness.Keywords: applications and integration of e-education, practices and cases in e-education, systems and technologies in e-education, technology adoption and diffusion of e-learning
Procedia PDF Downloads 67784 Conditionality in the European Union as a New Instrument to Guarantee the Principle of Separation of Powers
Authors: Ana Neves
Abstract:
The European Union’s multi-level constitutionalism is grounded in an intricate network of vertical and horizontal legal relationships among different levels and types of public authorities. In a very significant way since the 2008 crisis, evolving institutional arrangements and institutional dynamics in the European Union have been progressively impacting Member States and the terms under which national public authorities are organised, interact and exercise their powers. This impact occurs in both macro and micro dimensions. Several examples are relevant here, such as the involvement of national Parliaments in the activities of the European Union, the enhanced integration of public administrations, the side effects of the Council framework decision on the European Arrest Warrant, the European Union Justice Scoreboard, the protection of whistle-blowers regulation, the enhanced cooperation on the establishment of the European Public Prosecutor’s Office, the regime for the protection of the Union budget and the European Rule of Law Mechanism. A common trend or denominator underlies the deepening of institutional interdependence and the increased interactions between the European Union, Member States, and public authorities at different levels. This seems to be conditionality as a general principle. The European multi-level constitutionalism must be considered in the light of this conditionality principle, which does not “imply a relationship of command and obedience”. Nevertheless, it might be more effective or be a very compelling principle. It is as if the extension of the shared rule is being accompanied by a contrapuntal dialogue. The different public authorities at various levels are being called to rethink and readjust themselves within a broader and more plural framework concerning understanding the limitation of power.Keywords: european union -, multi-level hierarchy, conditionality, separation of powers
Procedia PDF Downloads 107783 Alignment between Governance Structures and Food Safety Standards on the Shrimp Supply Chain in Indonesia
Authors: Maharani Yulisti, Amin Mugera, James Fogarty
Abstract:
Food safety standards have received significant attention in the fisheries global market due to health issues, free trade agreements, and increasing aquaculture production. Vertical coordination throughout the supply chain of fish producing and exporting countries is needed to meet food safety demands imposed by importing countries. However, the complexities of the supply chain governance structures and difficulties in standard implementation can generate safety uncertainty and high transaction costs. Using a Transaction Cost Economics framework, this paper examines the alignment between food safety standards and the governance structures in the shrimp supply chain in Indonesia. We find the supply chain is organized closer to the hierarchy-like governance structure where private standard (organic standard) are implemented and more towards a market-like governance structure where public standard (IndoGAP certification) are more prevalent. To verify the statements, two cases are examined from Sidoarjo district as a centre of shrimp production in Indonesia. The results show that public baseline FSS (Food Safety Standards) need additional mechanism to achieve a coordinated chain-wide response because uncertainty, asset specificity, and performance measurement problems are high in this chain. Organic standard as private chain-wide FSS is more efficient because it has been achieved by hierarchical-like type of governance structure.Keywords: governance structure, shrimp value chain, food safety standards, transaction costs economics
Procedia PDF Downloads 379782 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission
Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder
Abstract:
Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR
Procedia PDF Downloads 341