Search results for: vector error correction model (VECM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18866

Search results for: vector error correction model (VECM)

17366 The Grand Unified Theory of Everything as a Generalization to the Standard Model Called as the General Standard Model

Authors: Amir Deljoo

Abstract:

The endeavor to comprehend the existence have been the center of thought for human in form of different disciplines and now basically in physics as the theory of everything. Here, after a brief review of the basic frameworks of thought, and a history of thought since ancient up to present, a logical methodology is presented based on a core axiom after which a function, a proto-field and then a coordinates are explained. Afterwards a generalization to Standard Model is proposed as General Standard Model which is believed to be the base of the Unified Theory of Everything.

Keywords: general relativity, grand unified theory, quantum mechanics, standard model, theory of everything

Procedia PDF Downloads 102
17365 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 67
17364 The Effect of a Probiotic Diet on htauE14 in a Rodent Model of Alzheimer’s Disease

Authors: C. Flynn, Q. Yuan, C. Reinhardt

Abstract:

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder affecting broad areas of the cerebral cortex and hippocampus. More than 95% of AD cases are representative of sporadic AD, where both genetic and environmental risk factors play a role. The main pathological features of AD include the widespread deposition of amyloid-beta and neurofibrillary tau tangles in the brain. The earliest brain pathology related to AD has been defined as hyperphosphorylated soluble tau in the noradrenergic locus coeruleus (LC) neurons, characterized by Braak. However, the cause of this pathology and the ultimate progression of AD is not understood. Increasing research points to a connection between the gut microbiota and the brain, and mounting evidence has shown that there is a bidirectional interaction between the two, known as the gut-brain axis. This axis can allow for bidirectional movement of neuroinflammatory cytokines and pathogenic misfolded proteins, as seen in AD. Prebiotics and probiotics have been shown to have a beneficial effect on gut health and can strengthen the gut-barrier as well as the blood-brain barrier, preventing the spread of these pathogens across the gut-brain axis. Our laboratory has recently established a pretangle tau rat model, in which we selectively express pseudo-phosphorylated human tau (htauE14) in the LC neurons of TH-Cre rats. LC htauE14 produced pathological changes in rats resembling those of the preclinical AD pathology (reduced olfactory discrimination and LC degeneration). In this work, we will investigate the effects of pre/probiotic ingestion on AD behavioral deficits, blood inflammation/cytokines, and various brain markers in our experimental rat model of AD. Rats will be infused with an adeno-associated viral vector containing a human tau gene pseudophosphorylated at 14 sites (common in LC pretangles) into 2-3 month TH-Cre rats. Fecal and blood samples will be taken at pre-surgery, and various post-surgery time points. A collection of behavioral tests will be performed, and immunohistochemistry/western blotting techniques will be used to observe various biomarkers. This work aims to elucidate the relationship between gut health and AD progression by strengthening gut-brain relationship and aims to observe the overall effect on tau formation and tau pathology in AD brains.

Keywords: alzheimer’s disease, aging, gut microbiome, neurodegeneration

Procedia PDF Downloads 140
17363 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 55
17362 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow

Authors: Itissam Abuiziah

Abstract:

In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.

Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers

Procedia PDF Downloads 189
17361 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

Abstract:

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

Keywords: BNF Syntax, model driven architecture, model-view-controller, transformation, UML

Procedia PDF Downloads 395
17360 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 80
17359 1D Velocity Model for the Gobi-Altai Region from Local Earthquakes

Authors: Dolgormaa Munkhbaatar, Munkhsaikhan Adiya, Tseedulam Khuut

Abstract:

We performed an inversion method to determine the 1D-velocity model with station corrections of the Gobi-Altai area in the southern part of Mongolia using earthquake data collected in the National Data Center during the last 10 years. In this study, the concept of the new 1D model has been employed to minimize the average RMS of a set of well-located earthquakes, recorded at permanent (between 2006 and 2016) and temporary seismic stations (between 2014 and 2016), compute solutions for the coupled hypocenter and 1D velocity model. We selected 4800 events with RMS less than 0.5 seconds and with a maximum GAP of 170 degrees and determined velocity structures. Also, we relocated all possible events located in the Gobi-Altai area using the new 1D velocity model and achieved constrained hypocentral determinations for events within this area. We concluded that the estimated new 1D velocity model is a relatively low range compared to the previous velocity model in a significant improvement intend to, and the quality of the information basis for future research center locations to determine the earthquake epicenter area with this new transmission model.

Keywords: 1D velocity model, earthquake, relocation, Velest

Procedia PDF Downloads 169
17358 Electrocardiogram Signal Denoising Using a Hybrid Technique

Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim

Abstract:

This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.

Keywords: hybrid technique, ADTF, DWT, thresholding, ECG signal

Procedia PDF Downloads 325
17357 DNA Vaccine Study against Vaccinia Virus Using In vivo Electroporation

Authors: Jai Myung Yang, Na Young Kim, Sung Ho Shin

Abstract:

The adverse reactions of current live smallpox vaccines and potential use of smallpox as a bioterror weapon have heightened the development of new effective vaccine for this infectious disease. In the present study, DNA vaccine vector was produced which was optimized for expression of the vaccinia virus L1 antigen in the mouse model. A plasmid IgM-tL1R, which contains codon-optimized L1R gene, was constructed and fused with an IgM signal sequence under the regulation of a SV40 enhancer. The expression and secretion of recombinant L1 protein was confirmed in vitro 293 T cell. Mice were administered the DNA vaccine by electroporation and challenged with vaccinia virus. We observed that immunization with IgM-tL1R induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Isotyping studies reveal that immunoglobulin G2 (IgG2) antibody predominated after the immunization, indicative of a T helper type 1 response. Our results suggest that an optimized DNA vaccine, IgM-tL1R, can be effective in stimulating anti-vaccinia virus immune response and provide protection against lethal orthopoxvirus challenge.

Keywords: DNA vaccine, electroporation, L1R, vaccinia virus

Procedia PDF Downloads 268
17356 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.

Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control

Procedia PDF Downloads 163
17355 An Elbow Biomechanical Model and Its Coefficients Adjustment

Authors: Jie Bai, Yongsheng Gao, Shengxin Wang, Jie Zhao

Abstract:

Through the establishment of the elbow biomechanical model, it can provide theoretical guide for rehabilitation therapy on the upper limb of the human body. A biomechanical model of the elbow joint can be built by the connection of muscle force model and elbow dynamics. But there are many undetermined coefficients in the model like the optimal joint angle and optimal muscle force which are usually specified as the experimental parameters of other workers. Because of the individual differences, there is a certain deviation of the final result. To this end, the RMS value of the deviation between the actual angle and calculated angle is considered. A set of coefficients which lead to the minimum RMS value will be chosen to be the optimal parameters. The direct search method and the conjugacy search method are used to get the optimal parameters, thus the model can be more accurate and mode adaptability.

Keywords: elbow biomechanical model, RMS, direct search, conjugacy search

Procedia PDF Downloads 551
17354 Forecasting for Financial Stock Returns Using a Quantile Function Model

Authors: Yuzhi Cai

Abstract:

In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.

Keywords: DJIA, financial returns, predictive distribution, quantile function model

Procedia PDF Downloads 368
17353 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network

Authors: Yasaman Sanayei, Alireza Bahiraie

Abstract:

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.

Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis

Procedia PDF Downloads 415
17352 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 60
17351 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling

Authors: Mehdi Fuladipanah

Abstract:

Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.

Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution

Procedia PDF Downloads 373
17350 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 93
17349 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter

Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao

Abstract:

Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.

Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage

Procedia PDF Downloads 310
17348 Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry

Authors: S. Y. Cicekli

Abstract:

In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model.

Keywords: close- range photogrammetry, forest, tree, three-dimensional model

Procedia PDF Downloads 389
17347 A Mathematical-Based Formulation of EEG Fluctuations

Authors: Razi Khalafi

Abstract:

Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.

Keywords: Brain, stimuli, partial differential equation, response, eeg signal

Procedia PDF Downloads 435
17346 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: constrained integer problems, enumerative search algorithm, Heuristic algorithm, Tunneling algorithm

Procedia PDF Downloads 327
17345 Performance and Availability Analysis of 2N Redundancy Models

Authors: Yutae Lee

Abstract:

In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).

Keywords: availability, performance, stochastic reward net, 2N redundancy

Procedia PDF Downloads 422
17344 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept

Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua

Abstract:

River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.

Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel

Procedia PDF Downloads 128
17343 A Mathematical Equation to Calculate Stock Price of Different Growth Model

Authors: Weiping Liu

Abstract:

This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.

Keywords: stock price, multistage model, different growth model, discounted cash flow method

Procedia PDF Downloads 409
17342 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links

Authors: Ahmed Bakry, Moustafa Ahmed

Abstract:

We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.

Keywords: bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser

Procedia PDF Downloads 645
17341 Triple Diffusive Convection in a Vertically Oscillating Oldroyd-B Liquid

Authors: Sameena Tarannum, S. Pranesh

Abstract:

The effect of linear stability analysis of triple diffusive convection in a vertically oscillating viscoelastic liquid of Oldroyd-B type is studied. The correction Rayleigh number is obtained by using perturbation method which gives prospect to control the convection. The eigenvalue is obtained by using perturbation method by adopting Venezian approach. From the study, it is observed that gravity modulation advances the onset of triple diffusive convection.

Keywords: gravity modulation, Oldroyd-b liquid, triple diffusive convection, venezian approach

Procedia PDF Downloads 178
17340 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 317
17339 Spatial Variation of WRF Model Rainfall Prediction over Uganda

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo

Abstract:

Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.

Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model

Procedia PDF Downloads 312
17338 Numerical Solutions of Fractional Order Epidemic Model

Authors: Sadia Arshad, Ayesha Sohail, Sana Javed, Khadija Maqbool, Salma Kanwal

Abstract:

The dynamical study of the carriers play an essential role in the evolution and global transmission of infectious diseases and will be discussed in this study. To make this approach novel, we will consider the fractional order model which is generalization of integer order derivative to an arbitrary number. Since the integration involved is non local therefore this property of fractional operator is very useful to study epidemic model for infectious diseases. An extended numerical method (ODE solver) is implemented on the model equations and we will present the simulations of the model for different values of fractional order to study the effect of carriers on transmission dynamics. Global dynamics of fractional model are established by using the reproduction number.

Keywords: Fractional differential equation, Numerical simulations, epidemic model, transmission dynamics

Procedia PDF Downloads 603
17337 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 181