Search results for: training needs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3929

Search results for: training needs

2429 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 77
2428 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 534
2427 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 50
2426 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 116
2425 Combined Mindfulness and Exercise Intervention for Depressive and Insomnia Symptoms in Chinese Students: A Pilot Randomized Controlled Trial

Authors: Xinli Chi, Xiaoqi Wei

Abstract:

Background: Body-mind theory refers to the concept that the mind and body are interconnected; in this case, combining aerobic exercise and mindfulness-based training may be beneficial for mind-body health; however, there is limited evidence regarding their effects and potential mechanisms among Chinese university students. Therefore, the current study aims to examine the preliminary effects and feasibility of the combined intervention on depressive and insomnia symptoms, as well as to explore the underlying mechanisms. Methods: This is a two-arm pilot study of a randomized, controlled trial. Sixty-one Chinese university students were randomly allocated to 8-week combined intervention group (aerobic exercise plus mindfulness, N = 36) or control group (N = 36). In addition, 8 participants in combined intervention group were later volunteer to engage in semi-structured interview. The Self-Rating Depression Scale (SDS) and the Youth Self-Rating Insomnia Scales (YSIS) were used to measure depressive and insomnia symptoms, respectively. The intervention outcome and feasibility were tested by repeated-measures ANOVA, mediation model, and qualitative analysis. Results: The study included 31 participants in the intervention group and 30 participants in the control group, all of whom completed pre-test and post-test questionnaires. The results of the repeated-measures ANOVA showed that the combined intervention was effective in reducing depressive and insomnia symptoms among university students. Moreover, the mediation analysis suggested that improvement in insomnia symptoms might be a significant mechanism for the combined intervention. Qualitative analysis identified two main themes: “Helpful aspects of mind-body state” (including 7 sub-themes) and “Factors that influence the training effects” (including 3 sub-themes). Conclusions: The study confirmed the preliminary effect and feasibility of the combined intervention of mindfulness and aerobic exercise, while also exploring the potential mechanisms underlying this effect. Additionally, qualitative data provided valuable insights for optimizing future protocols.

Keywords: combined intervention, mindfulness, aerobic exercise, depressive symptoms, insomnia symptoms

Procedia PDF Downloads 102
2424 Use of Didactic Bibliographic Resources to Improve the Teaching and Learning Processes of Animal Reproduction in Veterinary Science

Authors: Yasser Y. Lenis, Amy Jo Montgomery, Diego F. Carrillo-Gonzalez

Abstract:

Introduction: The use of didactic instruments in different learning environments plays a pivotal role in enhancing the level of knowledge in veterinary science students. The direct instruction of basic animal reproduction concepts in students enrolled in veterinary medicine programs allows them to elucidate the biological and molecular mechanisms that perpetuate the animal species in an ecosystem. Therefore, universities must implement didactic strategies that facilitate the teaching and learning processes for students and, in turn, enrich learning environments. Objective: to evaluate the effect of the use of a didactic textbook on the level of theoretical knowledge in embryo-maternal recognition for veterinary medicine students. Methods: the participants (n=24) were divided into two experimental groups: control (Ctrl) and treatment (Treat). Both groups received 4 hours of theoretical training regarding the basic concepts in bovine embryo-maternal recognition. However, the Treat group was also exposed to a guided lecture and the activity play-to-learn from a cow reproduction didactic textbook. A pre-test and a post-test were applied to assess the prior and subsequent knowledge in the participants. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, a repeated measures model was applied where the effect of the intervention was considered. Results: no significant difference (p>0,05) was observed in the number of right answers for groups Ctrl (54,2%±12,7) and Treat (40,8%±16,8) in the pre-test. There was no difference (p>0,05) compering the number of right answers in Ctrl pre-test (54,2%±12,7) and post-test (60,8±18,8). However, the Treat group showed a significant (p>0,05) difference in the number of right answers when comparing pre-test (40,8%±16,8) and post-test (71,7%±14,7). Finally, after the theoretical training and the didactic activity in the Treat group, an increase of 10.9% (p<0,05) in the number of right answers was found when compared with the Ctrl group. Conclusion: the use of didactic tools that include guided lectures and activities like play-to-learn from a didactic textbook enhances the level of knowledge in an animal reproduction course for veterinary medicine students.

Keywords: animal reproduction, pedagogic, level of knowledge, learning environment

Procedia PDF Downloads 65
2423 Factors Associated with Peer Assessment of Writing Skills among Foreign Languages Students

Authors: Marian Lissett Olaya

Abstract:

This article examined the factors associated with incorporating peer assessment into English language classes in a public university in Colombia. This is done in the context of writing English class for 4th-semester students. The research instruments consisted of peer assessment questionnaires, student diaries, and interviews. Findings showed that among the factors, motivation, frustration, anxiety, and lack of confidence appeared. Data revealed that peer assessment enables students to write competencies through training, teachers' guidance, and the provision of a collaborative environment.

Keywords: writing skills, peer assessment, formative assessment, language acquisition

Procedia PDF Downloads 82
2422 Rubric in Vocational Education

Authors: Azmanirah Ab Rahman, Jamil Ahmad, Ruhizan Muhammad Yasin

Abstract:

Rubric is a very important tool for teachers and students for a variety of purposes. Teachers use the rubric for evaluating student work while students use rubrics for self-assessment. Therefore, this paper was emphasized scoring rubric as a scoring tool for teachers in an environment of Competency Based Education and Training (CBET) in Malaysia Vocational College. A total of three teachers in the fields of electrical and electronics engineering were interviewed to identify how the use of rubrics practiced since vocational transformation implemented in 2012. Overall holistic rubric used to determine the performance of students in the skills area.

Keywords: rubric, vocational education, teachers, CBET

Procedia PDF Downloads 506
2421 Investigating the Glass Ceiling Phenomenon: An Empirical Study of Glass Ceiling's Effects on Selection, Promotion and Female Effectiveness

Authors: Sharjeel Saleem

Abstract:

The glass ceiling has been a burning issue for many researchers. In this research, we examine gender of the BOD, training and development, workforce diversity, positive attitude towards women, and employee acts as antecedents of glass ceiling. Furthermore, we also look for effects of glass ceiling on likelihood of female selection and promotion and on female effectiveness. Multiple linear regression conducted on data drawn from different public and private sector organizations support our hypotheses. The research, however, is limited to Faisalabad city and only females from minority group are targeted here.

Keywords: glass ceiling, stereotype attitudes, female effectiveness

Procedia PDF Downloads 291
2420 The Effects of Absenteeism on Nurses That Remain at Work at the Mankweng Hospital in the Capricorn District, Limpopo Province in South Africa

Authors: Mokgadi Malatji, Tebogo Mothiba, Rambelani Malema

Abstract:

Absenteeism is a global problem in the working force and this is no exception in the nursing profession. A lot of attention has been drawn to factors that contribute to absenteeism however little attention has been placed on the effects of absenteeism on the remaining workers/nurses being left behind in the workplace by their colleagues. Nurses absent themselves leaving behind their colleagues to do their work. Nurses who are committed to their work often find themselves working under strenuous conditions due to inadequate staff. These may lead to poor patient care provision, nurses feeling overworked and sick due to the increased workload. The purpose of this study was to investigate the effects of absenteeism on nurses that remained at work at Mankweng Hospital in the Capricorn District, Limpopo Province. A descriptive cross-sectional quantitative research design was conducted to determine if there were any effects of absenteeism on nurses remaining at work. Data collection was done using structured questionnaires. The respondents (n=107), consisted of different categories of registered nurses (professional nurses (n=43), auxiliary nurses (n=40) and staff nurses (n=24)) who participated in this study. The findings indicated that most nurses (76, 6%) are demotivated and they struggle with completion of duties when their colleagues are absent. Patient care that nurses provided when their colleagues were absent was of poor quality as set standards and principles were not adhered to. Individualized patient care was not being implemented due to absenteeism. This simply implies that routine work is being done to cover basic duties. Most nurses (74, 8%) believed that favoritism and lack of appreciation of nurse’s skills and capabilities are being displayed by managers and that this contributes to absenteeism. Nurses who are loyal sacrifice their time and work overtime for absent colleagues and this led to fatigue and stress. From the study findings, it is recommended that nurses be trained frequently to upgrade their studies to motivate them to work. The government can provide this training to improve their skills as this will motivate nurses to work harder and be committed to their work. Training can be offered after a stipulated period. For example, after every five years, a nurse can be provided with a new skill. Team building events must be encouraged for the whole hospital to motivate staff. In conclusion, the study revealed that absenteeism poses detrimental effects on nurses, the hospital and patients. More and more nurses end up changing workplace due to these effects.

Keywords: absenteeism, effects, nurses, remaining at work

Procedia PDF Downloads 254
2419 The Implementation of Sexual and Reproductive Health Education Policy in Schools in Asia and Africa: A Scoping Review

Authors: Rhea Khosla, Victoria Tzortziou-Brown

Abstract:

Introduction: Adolescent SRH has been neglected since the start of the millennium. Adolescents comprise 16% of the global population, with the largest proportion living in Asia (650 million). By late adolescence, individuals in these regions are likely to become sexually active, and thus they must understand their SRH rights. Many lack knowledge of SRH, using unreliable sources for such information. Sex education is necessary to standardize and inform sexual knowledge, which empowers adolescents to make informed SRH decisions. School is an appropriate environment for this, however, SRH education requires effective policy to enforce. Nonetheless, this issue remains of low political priority in Asia and Africa. Current literature on sex education policy in schools in these regions is scarce and tends to have broad aims. Thus, a scoping review was necessary. Methods: Literature searches were conducted in February 2023 using six databases, including grey literature databases (PubMed, Scopus, Embase, Web of Science, Google Scholar, Global Index Medicus), returning a total of 1537 unique articles. After screening titles, abstracts and full text, 17 articles remained. References of included articles were additionally searched, producing a further 7 articles, which then underwent thematic analysis Results: Most countries in Africa and Asia did not have studies on this topic. Studies derived data from interviews with key stakeholders and quantitative methods quantified questionnaire responses. Barriers were: policy/curriculum issues, societal opinions, teaching discomfort, and lack of educator training. Limitations were insufficient timing, inconsistent implementation, insufficient hours dedicated to teaching, education received late into schooling, and discrepancies between teachers, schools, and students about whether policies were being implemented. Discussion: Based on the existing limited evidence, a cultural shift to reduce stigma seems necessary, alongside teacher and student involvement in policy formulation with effective implementation monitoring and educator training.

Keywords: adolescent, Africa, Asia, education, sexual and reproductive health, policy

Procedia PDF Downloads 45
2418 Nurse-Led Codes: Practical Application in the Emergency Department during a Global Pandemic

Authors: F. DelGaudio, H. Gill

Abstract:

Resuscitation during cardiopulmonary (CPA) arrest is dynamic, high stress, high acuity situation, which can easily lead to communication breakdown, and errors. The care of these high acuity patients has also been shown to increase physiologic stress and task saturation of providers, which can negatively impact the care being provided. These difficulties are further complicated during a global pandemic and pose a significant safety risk to bedside providers. Nurse-led codes are a relatively new concept that may be a potential solution for alleviating some of these difficulties. An experienced nurse who has completed advanced cardiac life support (ACLS), and additional training, assumed the responsibility of directing the mechanics of the appropriate ACLS algorithm. This was done in conjunction with a physician who also acted as a physician leader. The additional nurse-led code training included a multi-disciplinary in situ simulation of a CPA on a suspected COVID-19 patient. During the CPA, the nurse leader’s responsibilities include: ensuring adequate compression depth and rate, minimizing interruptions in chest compressions, the timing of rhythm/pulse checks, and appropriate medication administration. In addition, the nurse leader also functions as a last line safety check for appropriate personal protective equipment and limiting exposure of staff. The use of nurse-led codes for CPA has shown to decrease the cognitive overload and task saturation for the physician, as well as limiting the number of staff being exposed to a potentially infectious patient. The real-world application has allowed physicians to perform and oversee high-risk procedures such as intubation, line placement, and point of care ultrasound, without sacrificing the integrity of the resuscitation. Nurse-led codes have also given the physician the bandwidth to review pertinent medical history, advanced directives, determine reversible causes, and have the end of life conversations with family. While there is a paucity of research on the effectiveness of nurse-led codes, there are many potentially significant benefits. In addition to its value during a pandemic, it may also be beneficial during complex circumstances such as extracorporeal cardiopulmonary resuscitation.

Keywords: cardiopulmonary arrest, COVID-19, nurse-led code, task saturation

Procedia PDF Downloads 155
2417 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 309
2416 Transformational Leadership and Self-Efficacy of Academic Heads in the Implementation of a Customized English Language Curriculum

Authors: Sonia Arradaza-Pajaron

Abstract:

This study examined the relationship between transformational leadership (TL) and self-efficacy (SE) of academic heads in the implementation of a customized English language curriculum (CELC) among technological state universities and colleges in Leyte provinces and Biliran, Philippines. Results manifested that academic leaders practiced transformational leadership and are self-efficacious enough but with only moderate level in the effectiveness of CELC implementation. It was found out; further, that of the four identified transformational leadership components, except idealized influence, three of which demonstrated a significant relationship with CELC component variables, although in varying degree. Moreover, self-efficacy sources, especially vicarious experiences and verbal persuasion manifested moderate to high significant relationships with effective CELC curriculum implementation. Further, verbal persuasion and physiological/emotional condition manifested significant relationship with CELC-resource and CELC-contextual/community influence, respectively. Regression analysis showed that TL-individualized consideration component explained wider extent when correlated with CELC contextual/community components, while self-efficacy source-verbal persuasion demonstrated a wider extent with the three CELC components, namely; resource, process and physiological/emotional condition. Results further revealed that TL-individualized consideration manifested lesser influence with CELC implementation, while SE-verbal persuasion demonstrated stronger influence or effect on CELC-process, CELC-physiological/emotional, while lesser influence with CELC-resource. This implies that academic leaders, in order to carry out effective curriculum implementation, should provide more emphasis on school culture, its beliefs, practices and academic atmosphere but most of all empower human resources who are considered the backbone of the work place and can be directly affected by any curriculum shifts and challenges. To realize this, more values-skilled training programs must be designed for academic heads are needed to equip them with the necessary leadership skills, beliefs in their capacity to lead and their own enhance emotional well-being in leading subordinates and facilitating curriculum implementation.

Keywords: Customized English Language curriculum, CELC, self-efficacy, transformational leadership, values-skilled training

Procedia PDF Downloads 122
2415 Developing Learning in Organizations with Innovation Pedagogy Methods

Authors: T. Konst

Abstract:

Most jobs include training and communication tasks, but often the people in these jobs lack pedagogical competences to plan, implement and assess learning. This paper aims to discuss how a learning approach called innovation pedagogy developed in higher education can be utilized for learning development in various organizations. The methods presented how to implement innovation pedagogy such as process consultation and train the trainer model can provide added value to develop pedagogical knowhow in organizations and thus support their internal learning and development.

Keywords: innovation pedagogy, learning, organizational development, process consultation

Procedia PDF Downloads 367
2414 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djemeleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force

Procedia PDF Downloads 474
2413 New Approach in Sports Management of Great Sports Events

Authors: Taieb Kherafa Noureddine

Abstract:

The paper presents a new approach regarding the management in sports that is based on the principles of reengineering. Applying that modern and pure management system, called reengineering, in sports activity, we hope to get better and better results, in order to increase both the health state and the performances of trained athletes. The paper also presents the similarities between BPR (Business Process Reengineering) and sports managements, as well as the proposed solution for a proper implementation of such model of management. The five components of the basic BPR model are presented, together with their features for sports management.

Keywords: business process reengineering, great sports events, sports management, training activities

Procedia PDF Downloads 492
2412 The Impact of Temperamental Traits of Candidates for Aviation School on Their Strategies for Coping with Stress during Selection Exams in Physical Education

Authors: Robert Jedrys, Zdzislaw Kobos, Justyna Skrzynska, Zbigniew Wochynski

Abstract:

Professions connected to aviation require an assessment of the suitability of health, psychological and psychomotor skills and overall physical fitness of the organism, who applies. Assessment of the physical condition is conducted by the committees consisting of aero-medical specialists in clinical medicine and aviation. In addition, psychological predispositions should be evaluated by specialized psychologists familiar with the specifics of the tasks and requirements for the various positions in aviation. Both, physical abilities and general physical fitness of candidates for aviation shall be assessed during the selection exams, which also test the ability to deal with stress what is very important in aviation. Hence, the mentioned exams in physical education not only help to judge on the ranking in candidates in terms of their efficiency and performance, but also allows to evaluate the functioning under stress measured using psychological tests. Moreover, before-test stress is a predictors of successfulness in the next stages of education and practical training in the aviation. The aim of the study was to evaluate the influence of temperamental traits on strategies used for coping with stress during selection exams in physical education, deciding on admission to aviation school. The study involved 30 candidates for fighter pilot training in aviation school . To evaluate the temperament 'The Formal Characteristics of Behavior-Temperament Inventory' (FCB-TI) by B. Zawadzki and J.Strelau was used. To determine the pattern of coping with stress 'The Coping Inventory for Stressful Situations' (CISS) to N. S. Endler and J. D. A. Parker were engaged. Study of temperament and styles of coping with stress was conducted directly before the exam selection of physical education. The results were analyzed with 'Statistica 9' program. The studies showed that:-There is a negative correlation between such a temperament feature as 'perseverance' and preferred style of coping with stress concentrated on the task (r = -0.590; p < 0.004); -There is a positive correlation between such a feature of temperament as 'emotional reactivity,' and preference to deal with a stressful situation with ‘style centered on emotions’ (r = 0.520; p <0.011); -There is a negative correlation between such a feature of temperament as ‘strength’ and ‘style of coping with stress concentrated on emotions’ (r = -0.580; p < 0.004). Studies indicate that temperament traits determine the perception of stress and preferred coping styles used during the selection, as during the exams in physical education.

Keywords: aviation, physical education, stress, temperamental traits

Procedia PDF Downloads 257
2411 Comparative Analysis of Feature Extraction and Classification Techniques

Authors: R. L. Ujjwal, Abhishek Jain

Abstract:

In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.

Keywords: computer vision, age group, face detection

Procedia PDF Downloads 368
2410 Re-Engineering Management Process in IRAN’s Smart Schools

Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi

Abstract:

Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.

Keywords: re-engineering, management process, smart school, Iran's school

Procedia PDF Downloads 244
2409 An Adaptive Conversational AI Approach for Self-Learning

Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo

Abstract:

In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.

Keywords: conversational AI, chatbot, dialog management, semantic analysis

Procedia PDF Downloads 136
2408 Re-Victimization of Sex Trafficking Victims in Canada: Literature Review

Authors: Adrianna D. Hendricks

Abstract:

This paper examines the factors that contribute to the re-traumatization of victims of sex trafficking within the Canadian context. Sex trafficking occurring domestically in Canada is severely under-researched, stigmatized, and under-prosecuted, leading to the re-traumatization of victims by various levels of government. This is in part due to the Canadian criminal justice system unethically utilizing prostitution laws in cases of sex trafficking and partially due to the unaddressed stigmatization victims face within the justice system itself. Utilizing evidence from a current literature review, personal correspondence, and personal life experiences, this paper will demonstrate the need for victim involvement in policy reform. The current literature review was done through an academic database search using the terms: “Sex Trafficking, Exploitation, Canada”, with the limitation of articles written within the last 5 years and written within the Canadian context. Overall, from the results, only eight articles precisely matched the criteria. The current literature argues strongly and unanimously for more research and education of professionals who have close contact with high-risk populations (doctors, police officers, social workers, etc.) to protect both minors and adults from being sexually trafficked. Additionally, for women and girls who do not have Canadian citizenship, the fear of deportation becomes a barrier to disclosing exploitation experiences to professionals. There is a desperate need for more research done in tandem with survivors and victims to inform policymaking in a meaningful way. The researcher is a survivor of sex trafficking both as a youth and as an adult, giving the researcher a unique insight into the realities of the criminal justice system for victims of sex trafficking. There is a clear need for professionals in positions of power to be re-educated about the realities of sex-trafficking, and what it means for the victims. Congruent to the current research the author calls for: standardized professional training for people in healthcare, police officers, court officials, and victim services; with the additional layers of victim involvement in creation of professional education training, and victim involvement in research. Justice for victims/survivors can only be obtained if they have been consulted and believed. Without meaningful consultation with survivors, victims who are both minors and adults will continue to fall through the cracks in policy.

Keywords: Canadian policy, re-traumatization, sex-trafficking, stigmatization

Procedia PDF Downloads 66
2407 Educational Psychologists in Instructional and Mentoring Contexts: The Significance of Multicultural Competence

Authors: Yassir Semmar

Abstract:

During the past two decades, the topic of multicultural competence has gained much attention in the psychology field, most notably in the clinical and counseling specializations. While higher education institutions have been placing a premium on sensitizing their faculty, staff, and student bodies to various diversity and multicultural issues, little emphasis has been directed towards mandating multicultural training for graduate learners in the educational psychology specialty. Given the increasingly diverse student population, it is imperative for educational psychologists to become multiculturally competent particularly in instructional and mentoring contexts. Strategies and conditions for attaining multicultural competence are discussed.

Keywords: multicultural competence, instruction, pedagogical practices, mentoring

Procedia PDF Downloads 442
2406 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
2405 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 278
2404 The Need to Teach the Health Effects of Climate Change in Medical Schools

Authors: Ábrám Zoltán

Abstract:

Introduction: Climate change is now a major health risk, and its environmental and health effects have become frequently discussed topics. The consequences of climate change are clearly visible in natural disasters and excess deaths caused by extreme weather conditions. Global warming and the increasingly frequent extreme weather events have direct, immediate effects or long-term, indirect effects on health. For this reason, it is a need to teach the health effects of climate change in medical schools. Material and methods: We looked for various surveys, studies, and reports on the main pathways through which global warming affects health. Medical schools face the challenge of teaching the health implications of climate change and integrating knowledge about the health effects of climate change into medical training. For this purpose, there were organised World Café workshops for three target groups: medical students, academic staff, and practising medical doctors. Results: Among the goals of the research is the development of a detailed curriculum for medical students, which serves to expand their knowledge in basic education. At the same time, the project promotes the increase of teacher motivation and the development of methodological guidelines for university teachers; it also provides further training for practicing doctors. The planned teaching materials will be developed in a format suitable for traditional face-to-face teaching, as well as e-learning teaching materials. CLIMATEMED is a project based on the cooperation of six universities and institutions from four countries, the aim of which is to improve the curriculum and expand knowledge about the health effects of climate change at medical universities. Conclusions: In order to assess the needs, summarize the proposals, to develop the necessary strategy, World Café type, one-and-a-half to two-hour round table discussions will take place separately for medical students, academic staff, and practicing doctors. The CLIMATEMED project can facilitate the integration of knowledge about the health effects of climate change into curricula and can promote practical use. The avoidance of the unwanted effects of global warming and climate change is not only a public matter, but it is also a challenge to change our own lifestyle. It is the responsibility of all of us to protect the Earth's ecosystem and the physical and mental health of ourselves and future generations.

Keywords: climate change, health effects, medical schools, World Café, medical students

Procedia PDF Downloads 83
2403 Factors Influencing the Usage of ERP in Enterprise Systems

Authors: Mohammad Reza Babaei, Sanaz Kamrani

Abstract:

The main problems That arise In adopting most Enterprise resources planning (ERP) strategies come from organizational, complex information systems like the ERP integrate the data of all business areas within the organization. The implementation of ERP is a difficult process as it involves different types of end users. Based on literature, we proposed a conceptual framework and examined it to find the effect of some of the individual, organizational, and technological factors on the usage of ERP and its impact on the end user. The results of the analysis suggest that computer self-efficacy, organizational support, training, and compatibility have a positive influence on ERP usage which in turn has significant influence on panoptic empowerment and individual performance.

Keywords: factor, influencing, enterprise, system

Procedia PDF Downloads 367
2402 A Social Network Analysis for Formulating Construction Defect Generation Mechanisms

Authors: Hamad Aljassmi, Sangwon Han

Abstract:

Various solutions for preventing construction defects have been suggested. However, a construction company may have difficulties adopting all these suggestions due to financial and practical constraints. Based on this recognition, this paper aims to identify the most significant defect causes and formulate their defect generation mechanism in order to help a construction company to set priorities of its defect prevention strategies. For this goal, we conducted a questionnaire survey of 106 industry professionals and identified five most significant causes including: (1) organizational culture, (2) time pressure and constraints, (3) workplace quality system, (4) financial constraints upon operational expenses and (5) inadequate employee training or learning opportunities.

Keywords: defect, quality, failure, risk

Procedia PDF Downloads 627
2401 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61
2400 Dialysis Rehabilitation and Muscle Hypertrophy

Authors: Itsuo Yokoyama, Rika Kikuti, Naoko Watabe

Abstract:

Introduction: It has been known that chronic kidney disease (CKD) patients can benefit from physical exercise during dialysis therapy improving aerobic capacity, muscle function, cardiovascular function, and overall health-related quality of life. This study aimed to evaluate the effectiveness of dialysis rehabilitation. Materials and Methods: A total of 55 patients underwent two-hour resistance exercise training during each hemodialysis session for three consecutive months. Various routine clinical data were collected, including the calculation of the planar dimension of the muscle area in both upper legs at the level of the ischial bone. This area calculation was possible in 26 patients who had yearly plain abdominal computed tomography (CT) scans. DICOM files from the CT scans were used with 3D Slicer software for area calculation. An age and sex-matched group of 26 patients without dialysis rehabilitation also had yearly CT scans during the study period for comparison. Clinical data were compared between the two groups: Group A (rehabilitation) and Group B (non-rehabilitation). Results: There were no differences in basic laboratory data between the two groups. The average muscle area before and after rehabilitation in Group A was 212 cm² and 216 cm², respectively. In Group B, the average areas were 230.0 cm² and 225.8 cm². While there was no significant difference in absolute values, the average percentage increase in muscle area was +1.2% (ranging from -7.6% to 6.54%) for Group A and -2.0% (ranging from -12.1% to 4.9%) for Group B, which was statistically significant. In Group A, 9 of 26 were diabetic (DM), and 13 of 26 in Group B were non-DM. The increase in muscle area for DM patients was 4.9% compared to -0.7% for non-DM patients, which was significantly different. There were no significant differences between the two groups in terms of nutritional assessment, Kt/V, or incidence of clinical complications such as cardiovascular events. Considerations: Dialysis rehabilitation has been reported to prevent muscle atrophy by increasing muscle fibers and capillaries. This study demonstrated that muscle volume increased after dialysis exercise, as evidenced by the increased muscle area in the thighs. Notably, diabetic patients seemed to benefit more from dialysis exercise than non-diabetics. Although this study is preliminary due to its relatively small sample size, it suggests that intradialytic physical training may improve insulin utilization in muscle fiber cells, particularly in type II diabetic patients where insulin receptor function and signaling are altered. Further studies are needed to investigate the detailed mechanisms underlying the muscle hypertrophic effects of dialysis exercise.

Keywords: dialysis, excercise, muscle, hypertrophy, diabetes, insulin

Procedia PDF Downloads 19