Search results for: solar–climatic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26704

Search results for: solar–climatic data

25204 Effects of Drought and Anthropism on Vegetation and Soil Elements in the Steppe of Algeria: Case of the Station of Tadmit (Wilaya of Djelfa)

Authors: L. Benseghir, H. Kadi-Hanifi

Abstract:

Vegetation of the high steppic plains of southern Algiers region has ever been used by human occupation. The harsh climatic context characterized by long periods of drought and an ovine livestock in constant growth lead us to devote a particular attention to the biodiversity of those living environment. The diachronic study made in Tadmit (50 km south of the district of Djelfa) about the specific recording led us to notice that: The floristic recording of Tadmit is not reduced in time but fluctuate, depending on the pasture intensity, the annual rainfall and especially by the protection area of the following two years from January 2004. The forming specific recording of the station undergo significant changes from a period to another. Those changes in floristic list concern nearly 50% of the initial flora that could disappear or be replaced by new species. Finally, the alfa steppe is in a marked decline and is substituted by new facies that were privileged by the overgrazing, stranding or clearance.

Keywords: overgrazing, diachronic study, protection area, climate, desertification

Procedia PDF Downloads 269
25203 Data Access, AI Intensity, and Scale Advantages

Authors: Chuping Lo

Abstract:

This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.

Keywords: digital intensity, digital divide, international trade, scale of economics

Procedia PDF Downloads 68
25202 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data

Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju

Abstract:

Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.

Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding

Procedia PDF Downloads 412
25201 Impacts of Climate Change on Food Grain Yield and Its Variability across Seasons and Altitudes in Odisha

Authors: Dibakar Sahoo, Sridevi Gummadi

Abstract:

The focus of the study is to empirically analyse the climatic impacts on foodgrain yield and its variability across seasons and altitudes in Odisha, one of the most vulnerable states in India. The study uses Just-Pope Stochastic Production function by using two-step Feasible Generalized Least Square (FGLS): mean equation estimation and variance equation estimation. The study uses the panel data on foodgrain yield, rainfall and temperature for 13 districts during the period 1984-2013. The study considers four seasons: winter (December-February), summer (March-May), Rainy (June-September) and autumn (October-November). The districts under consideration have been categorized under three altitude regions such as low (< 70 masl), middle (153-305 masl) and high (>305 masl) altitudes. The results show that an increase in the standard deviations of monthly rainfall during rainy and autumn seasons have an adversely significant impact on the mean yield of foodgrains in Odisha. The summer temperature has beneficial effects by significantly increasing mean yield as the summer season is associated with harvesting stage of Rabi crops. The changing pattern of temperature has increasing effect on the yield variability of foodgrains during the summer season, whereas it has a decreasing effect on yield variability of foodgrains during the Rainy season. Moreover, the positive expected signs of trend variable in both mean and variance equation suggests that foodgrain yield and its variability increases with time. On the other hand, a change in mean levels of rainfall and temperature during different seasons has heterogeneous impacts either harmful or beneficial depending on the altitudes. These findings imply that adaptation strategies should be tailor-made to minimize the adverse impacts of climate change and variability for sustainable development across seasons and altitudes in Odisha agriculture.

Keywords: altitude, adaptation strategies, climate change, foodgrain

Procedia PDF Downloads 242
25200 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 258
25199 A Review on Intelligent Systems for Geoscience

Authors: R Palson Kennedy, P.Kiran Sai

Abstract:

This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.

Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science

Procedia PDF Downloads 135
25198 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context

Authors: Selin Guney, Andres Riquelme

Abstract:

The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.

Keywords: bio-economic, fisheries, GAM, production

Procedia PDF Downloads 252
25197 Investigation in Gassy Ozone Influence on Flaxes Made from Biologically Activated Whole Wheat Grains Quality Parameters

Authors: Tatjana Rakcejeva, Jelena Zagorska, Elina Zvezdina

Abstract:

The aim of the current research was to investigate the gassy ozone effect on quality parameters of flaxes made form whole biologically activated wheat grains. The research was accomplished on in year 2012 harvested wheat grains variety ′Zentos′. Grains were washed, wetted; grain biological activation was performed in the climatic chamber up to 24 hours. After biological activation grains was compressed; than flaxes was dried in convective drier till constant moisture content 9±1%. For grain treatment gassy ozone concentration as 0.0002% and treatment time – 6 min was used. In the processed flaxes the content of A and G tocopherol decrease by 23% and by 9%; content of B2 and B6 vitamins – by 11% and by 10%; elaidic acid – by 46%, oleic acid – by 29%; arginine (by 80%), glutamine (by 74%), asparagine and serine (by 68%), valine (by 62%), cysteine (by 54%) and tyrosine (by 47%).

Keywords: gassy ozone, flaxes, biologically activated grains, quality parameters, treatment

Procedia PDF Downloads 236
25196 Optimized Cropping Calendar and Land Suitability for Maize through GIS and Crop Modelling

Authors: Marilyn S. Painagan, Willie Jones B. Saliling

Abstract:

This paper reports an optimized cropping calendar and land suitability for maize in North Cotabato derived from modeling crop productivity over time and space. Using Quantum GIS, eight representative soil types and 0.3o x 0.3o climate grids shapefiles were intersected to form thirty two pedoclimatic zones within the boundaries of the province. Surveys were done to ascertain crop performance and phenological properties on field. Based on these surveys, crop parameters were calibrated specific for a variety of maize. Soil properties and climatic data (daily precipitation, maximum and minimum temperatures) from pedoclimatic zones were loaded to the FAO Aquacrop Water Productivity Model along with the crop properties from field surveys to simulate yield from 1980 to 2010. The average yield per month was computed to come up with the month of planting having the highest and lowest probable yield in a year assuming that all lands were planted with maize. The yield attributes were visualized in the Quantum GIS environment. The study revealed that optimal cropping patterns varied across North Cotabato. Highest probable yield (8000 kg/ha) can be obtained when maize is planted on May and September (sandy clay-loam soils) in the northern part of the province while the lowest probable yield (1000 kg/ha) can be obtained when maize is planted on January, February and March (clay loam soils) at the northern part of the province. Yields are simulated on the basis of varieties currently planted by farmers of North Cotabato. The resulting maps suggest where and when maize is most suitable to achieve high yields. There is a need to ground truth and validate the cropping calendar on field.

Keywords: aquacrop, quantum GIS, maize, cropping calendar, water productivity

Procedia PDF Downloads 255
25195 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 135
25194 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
25193 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 93
25192 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 157
25191 Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm

Authors: Latifa Sabri, Mohammed Benzirar, Mimoun Zazoui

Abstract:

The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon.

Keywords: PV, maximum efficiency, solar cell, genetic algorithm

Procedia PDF Downloads 424
25190 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 593
25189 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 354
25188 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 189
25187 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 246
25186 An Analysis on Fibre-Reinforced Composite Material Usage on Urban Furniture

Authors: Nilgun Becenen

Abstract:

In this study, the structural properties of composite materials with the plastic matrix, which are used in body parts of urban furniture were investigated. Surfaces of the specimens were observed by scanning electron microscopy (SEM: JSM-5200, JEOL) and Climatic environmental test analyses in laboratory conditions were used to analyze the performance of the composite samples. Climate conditions were determined as follow; 3 hour working under the conditions of -10 ºC heat and 20 % moisture, Heating until 45 ºC for 4 hours, 3 hour work at 45 ºC, 3 hour work under the conditions of 45 ºC heat and 80 % moisture, Cooling at -10 ºC for 4 hours. In this cycle, the atmospheric conditions that urban furniture would be exposed to in the open air were taken into consideration. Particularly, sudden heat changes and humidity effect were investigated. The climate conditions show that performance in Low Temperatures: The endurance isn’t affected, hardness does not change, tensile, bending and impact resistance does not change, the view isn’t affected. It has a high environmental performance.

Keywords: fibre-reinforced material, glass fiber, textile science, polymer composites

Procedia PDF Downloads 249
25185 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 143
25184 Tracking Maximum Power Point Utilizing Artificial Immunity System

Authors: Marwa Ahmed Abd El Hamied

Abstract:

In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.

Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods

Procedia PDF Downloads 427
25183 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks

Authors: Nicholas Aerne, John P. Parmigiani

Abstract:

There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.

Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply

Procedia PDF Downloads 204
25182 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques

Authors: Kishor T. Zingre, Seshadhri Srinivasan

Abstract:

Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.

Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates

Procedia PDF Downloads 114
25181 Apparent Ageing Mechanism of Polyurethane Coating in Typical Atmospheric Environment

Authors: Jin Gao, Jin Zhang, Xiaogang Li

Abstract:

Outdoor exposure experiments were conducted in three extreme environments, namely the Chinese plateau mountain environment (Lhasa), the cold–temperate environment (Mohe), and the marine atmospheric environment (Wanning), to track a new long-life environment-friendly polyurethane coating. The relationship between apparent properties, namely gloss and microstructural changes, was analyzed, and the influence of typical climatic environment on the aging mechanism of polyurethane coatings was discussed. Results show that the UV radiation in the Lhasa area causes photoaging degradation, micropores are formed on the coating surface, and the powdering phenomenon is obvious. Photodegradation occurs in the Wanning area, and a hydrolysis reaction is observed. The hydrolysis reaction catalyzes the photoaging, the coating surface becomes yellow, and the powdering becomes serious. Photoaging is also present in the Mohe area, but it is mainly due to temperature changes that in turn change the internal stress of the coating. Microcracks and bumps form on the coating surface.

Keywords: aging, atmospheric environment, outdoor exposure, polyurethane coating

Procedia PDF Downloads 126
25180 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 96
25179 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming

Authors: Milind Chaudhari, Suhail Balasinor

Abstract:

Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.

Keywords: big data, IoT, vertical farming, indoor farming

Procedia PDF Downloads 175
25178 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 200
25177 Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA

Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt

Abstract:

Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA.

Keywords: brown-spot needle blight, loblolly pine, needle defoliation, plantation forestry

Procedia PDF Downloads 152
25176 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt

Authors: A. Anis, W. Bekheet, A. El Hakim

Abstract:

Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.

Keywords: road safety management system, road crash, road fatality, road injury

Procedia PDF Downloads 147
25175 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE

Authors: Oualid Walid Ben Ali

Abstract:

Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.

Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE

Procedia PDF Downloads 490