Search results for: social network analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36641

Search results for: social network analysis

35141 Corporate Social Responsibility Disclosure, Tax Aggressiveness and Sustainability Report Assurance: Evidence from Thailand

Authors: Eko Budi Santoso, Kazia Laturette, Stanislaus Adnanto Mastan

Abstract:

This study aims to examine the association between disclosure of social responsibility and tax aggressiveness in developing countries, namely Thailand. This is due to the increasing trend of disclosure of social responsibility in developing countries, even though this disclosure of information is still voluntary. On the other hand, developing countries have low taxation rate and investor protection infrastructures that allow the disclosure of social responsibility to be used opportunistically as a tool to fool the attainment of interests. This study also examines the role of assurance on the association between corporate social responsibility disclosure and tax aggressiveness. The assurance aims to provide confidence that the disclosure of social responsibility by the company is valid. This research builds an index to measure the disclosure of social responsibility based on the rules issued by the innovative Global Reporting. The results of the study are based on a sample of publicly traded companies in Thailand, which showed a positive association between disclosure of corporate social responsibility and tax aggressiveness, but it was further discovered that these results were mitigated by the existence of assurance against disclosure of corporate social responsibility. The results of this study indicate that the disclosure of corporate social responsibility can show that the company cares about the issue of social responsibility but does not automatically make the company as one that holds ethical values ​​in its business practices.

Keywords: corporate social responsibility disclosure, tax aggressiveness, sustainability assurance, business ethics

Procedia PDF Downloads 148
35140 The Effects of Prolonged Social Media Use on Student Health: A Focus on Computer Vision Syndrome, Hand Pain, and Headaches and Mental Status

Authors: Augustine Ndudi Egere, Shehu Adamu, Esther Ishaya Solomon

Abstract:

As internet accessibility and smartphones continue to increase in Nigeria, Africa’s most populous country, social media platforms have become ubiquitous, causing students of 18-25 age brackets to spend more time on social media. The research investigated the impact of prolonged social media use on the physical health of students, with a specific focus on computer vision syndrome, hand pain, headaches and mental status. The study adopted a mixed-methods approach combining quantitative surveys to gather statistical data on usage patterns and symptoms, along with qualitative interviews into the experiences and perceptions of medical practitioners concerning cases under study within the geopolitical region. The result was analyzed using Regression analysis. It was observed that there is a significant correlation between social media usage by the students in the study age bracket concerning computer vision syndrome, hand pain, headache and general mental status. The research concluded by providing valuable insights into potential interventions and strategies to mitigate the adverse effects of excessive social media use on student well-being and recommends, among others, that educational institutions, parents, and students themselves collaborate to implement strategies aimed at promoting responsible and balanced use of social media.

Keywords: social media, student health, computer vision syndrome, hand pain, headaches, mental staus

Procedia PDF Downloads 45
35139 Intersection of Racial and Gender Microaggressions: Social Support as a Coping Strategy among Indigenous LGBTQ People in Taiwan

Authors: Ciwang Teyra, A. H. Y. Lai

Abstract:

Introduction: Indigenous LGBTQ individuals face with significant life stress such as racial and gender discrimination and microaggressions, which may lead to negative impacts of their mental health. Although studies relevant to Taiwanese indigenous LGBTQpeople gradually increase, most of them are primarily conceptual or qualitative in nature. This research aims to fulfill the gap by offering empirical quantitative evidence, especially investigating the impact of racial and gender microaggressions on mental health among Taiwanese indigenous LGBTQindividuals with an intersectional perspective, as well as examine whether social support can help them to cope with microaggressions. Methods: Participants were (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Standardised measurements was used, including Racial Microaggression Scale (10 items), Gender Microaggression Scale (9 items), Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender, and perceived economic hardships. Structural equation modelling (SEM) was employed using Mplus 8.0 with the latent variables of depression and anxiety as outcomes. A main effect SEM model was first established (Model1).To test the moderation effects of perceived social support, an interaction effect model (Model 2) was created with interaction terms entered into Model1. Numerical integration was used with maximum likelihood estimation to estimate the interaction model. Results: Model fit statistics of the Model 1:X2(df)=1308.1 (795), p<.05; CFI/TLI=0.92/0.91; RMSEA=0.06; SRMR=0.06. For Model, the AIC and BIC values of Model 2 improved slightly compared to Model 1(AIC =15631 (Model1) vs. 15629 (Model2); BIC=16098 (Model1) vs. 16103 (Model2)). Model 2 was adopted as the final model. In main effect model 1, racialmicroaggressionand perceived social support were associated with depression and anxiety, but not sexual orientation microaggression(Indigenous microaggression: b = 0.27 for depression; b=0.38 for anxiety; Social support: b=-0.37 for depression; b=-0.34 for anxiety). Thus, an interaction term between social support and indigenous microaggression was added in Model 2. In the final Model 2, indigenous microaggression and perceived social support continues to be statistically significant predictors of both depression and anxiety. Social support moderated the effect of indigenous microaggression of depression (b=-0.22), but not anxiety. All covariates were not statistically significant. Implications: Results indicated that racial microaggressions have a significant impact on indigenous LGBTQ people’s mental health. Social support plays as a crucial role to buffer the negative impact of racial microaggression. To promote indigenous LGBTQ people’s wellbeing, it is important to consider how to support them to develop social support network systems.

Keywords: microaggressions, intersectionality, indigenous population, mental health, social support

Procedia PDF Downloads 146
35138 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 381
35137 Software-Defined Networking: A New Approach to Fifth Generation Networks: Security Issues and Challenges Ahead

Authors: Behrooz Daneshmand

Abstract:

Software Defined Networking (SDN) is designed to meet the future needs of 5G mobile networks. The SDN architecture offers a new solution that involves separating the control plane from the data plane, which is usually paired together. Network functions traditionally performed on specific hardware can now be abstracted and virtualized on any device, and a centralized software-based administration approach is based on a central controller, facilitating the development of modern applications and services. These plan standards clear the way for a more adaptable, speedier, and more energetic network beneath computer program control compared with a conventional network. We accept SDN gives modern inquire about openings to security, and it can significantly affect network security research in numerous diverse ways. Subsequently, the SDN architecture engages systems to effectively screen activity and analyze threats to facilitate security approach modification and security benefit insertion. The segregation of the data planes and control and, be that as it may, opens security challenges, such as man-in-the-middle attacks (MIMA), denial of service (DoS) attacks, and immersion attacks. In this paper, we analyze security threats to each layer of SDN - application layer - southbound interfaces/northbound interfaces - controller layer and data layer. From a security point of see, the components that make up the SDN architecture have a few vulnerabilities, which may be abused by aggressors to perform noxious activities and hence influence the network and its administrations. Software-defined network assaults are shockingly a reality these days. In a nutshell, this paper highlights architectural weaknesses and develops attack vectors at each layer, which leads to conclusions about further progress in identifying the consequences of attacks and proposing mitigation strategies.

Keywords: software-defined networking, security, SDN, 5G/IMT-2020

Procedia PDF Downloads 100
35136 BlueVision: A Visual Tool for Exploring a Blockchain Network

Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin

Abstract:

Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.

Keywords: blockchain, visualization, consensus, distributed network

Procedia PDF Downloads 62
35135 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 135
35134 Invisible and Visible Helpers in Negotiating Child Parenting by Single Mothers: A Comparative Analysis of South Africa and Germany

Authors: Maud Mthembu, Tanusha Raniga, Michael Boecker

Abstract:

In South Africa and Germany, countless number of children are raised by single mothers with little or no support from the biological fathers. As evidenced in literature, having an involved father living at home can have a positive influence in the life of a child and the mother can be supported in her role. Often single parenting is seen as a causative factor in numerous psychological and social challenges which are faced by children from single-parent households, which is an indication of a pathological lens of viewing single parenting. The empirical data from our study reveals that single mothers in formal employment experience social, economic and emotional hardships of parenting. However, a sense of determination to raise healthy and well-balanced children using economic and social capital accessible to them was one of the key findings. The participants reported visible and invisible sources of support which creates an enabling environment for them to negotiate the challenges of parenting without support from non-residence fathers. Using a qualitative paradigm, a total of twenty professional single mothers were interviewed in Germany and South Africa. Four key themes emerged from the data analysis namely; internal locus of control, positive new experiences, access to economic capital and dependable social support. This study suggests that single mothers who are economically self-reliant and have access to bonding social capital are able to cope with the demands of single parenting. Understanding this multi-dimensional experience of parenting by single parents in formal employment is important to advocate for supportive working conditions for mothers.

Keywords: child parenting, child protection, single parenting, social capital

Procedia PDF Downloads 154
35133 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
35132 I Post Therefore I Am! Construction of Gendered Identities in Facebook Communication of Pakistani Male and Female Users

Authors: Rauha Salam

Abstract:

In Pakistan, over the past decade, the notion of what counts as a true ‘masculine and feminine’ behaviour has become more complicated with the inspection of social media. Given its strong religious and socio-cultural norms, patriarchal values are entrenched in the local and cultural traditions of the Pakistani society and regulate the social value of gender. However, the increasing use of internet among Pakistani men and women, especially in the form of social media uses by the youth, is increasingly becoming disruptive and challenging to the strict modes of behavioural monitoring and control both at familial and state level. Facebook, being the prime social media communication platform in Pakistan, provide its users a relatively ‘safe’ place to embrace how they want to be perceived by their audience. Moreover, the availability of an array of semiotic resources (e.g. the videos, audios, visuals and gifs) on Facebook makes it possible for the users to create a virtual identity that allows them to describe themselves in detail. By making use of Multimodal Discourse Analysis, I aimed to investigate how men and women in Pakistan construct their gendered identities multimodally (visually and linguistically) through their Facebook posts and how these semiotic modes are interconnected to communicate specific meanings. In case of the female data, the analysis showed an ambivalence as females were found to be conforming to the existing socio-cultural norms of the society and they were also employing social media platforms to deviate from traditional gendered patterns and to voice their opinions simultaneously. Similarly, the male data highlighted the reproduction of the prevalent cultural models of masculinity. However, there were instances in the data that showed a digression from the standard norms and there is a (re)negotiation of the traditional patriarchal representations.

Keywords: Facebook, Gendered Identities, Multimodal Discourse Analysis, Pakistan

Procedia PDF Downloads 117
35131 Influencer Endorsement: Consumer Purchase Intention in Social Media Marketing

Authors: Izian Idris, Melissa Ha, Mikkay Wong

Abstract:

Social media marketing, including influencer marketing, is an ongoing phenomenon, and most companies as well as industries, are finding it crucial to implement social media marketing in their marketing strategies. However, social media influencer marketing still needs to be explored, and further research on this area needs to be carried out to fully understand the importance of social media influencer marketing in impacting consumer purchase decisions. Influencer endorsement has become a trend to grab users’ attention these days. Thus, the aim of this research paper is to explore the attributes of social media influencers/influencer as the endorser that impact consumer purchase intentions. The attributes that will be investigated include attitude homophily, physical attractiveness, and social attractiveness. Following this, the elaboration likelihood model from the theory of persuasion is implemented in this research to further examine the influence of social media influencer attributes on consumer purchase intentions. This study will be able to help marketers, businesses, and researchers understand the attributes of social media influencers as endorsers that will impact consumer purchase intentions and allow businesses to enhance their strategies to better cater to their target market.

Keywords: influencer, endorsement, consumer purchase, social media

Procedia PDF Downloads 84
35130 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

Authors: Dai Zhimei, Hua Chen

Abstract:

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Keywords: block, space syntax and methodology, street, urban space, Yangzhou

Procedia PDF Downloads 181
35129 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders

Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe

Abstract:

The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.

Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults

Procedia PDF Downloads 543
35128 Educating for Acceptance or Action: Bachelor of Social Work Education in Canada

Authors: Elizabeth Radian

Abstract:

In a challenging era of neoliberalism and managerialism in social services, the status of Canadian social work education at the Bachelor of Social Work level (BSW) was examined to determine how prepared students were to practice in a time of resource cutbacks and insecurity. Curricula in BSW programs was the focus as this generalist degree results in the greatest number of social work graduates in Canada, most of whom work at the front lines in service delivery. The study reviewed the practice frameworks that students in BSW programs were exposed to. Traditionally, schools of social work have embraced two major practice frameworks. The person in environment framework is a well-established practice framework taught in most schools. The framework offers some focus on smaller scale social change, tweaking existing arrangements and is more accepting of the status quo. An alternate practice framework taught in fewer schools has been described as a structural, progressive or anti oppressive framework. This latter framework challenges the status quo, is focused on social justice and social transformation, often incorporating social action strategies to ensure marginalized voices are heard. Using a content analysis methodology of keywords and phrases to delineate framework orientation, practice frameworks articulated in the curricula were determined by reviewing the mission/mandate of schools offering a BSW degree, their core course outlines and core course textbooks. Social action, as one strategy for initiating social change and transformation was considered. Initial research for 28 schools was completed in 2000, with follow up replications of the initial study in 2005 and 2014. These earlier studies displayed that the dominant practice framework taught in BSW programs was the person in environment framework. A lesser number of schools were categorized as primarily offering a structural, progressive or anti oppressive framework. The findings from the current study of 39 Canadian schools of social work are considered to determine how prominent structural, progressive and anti oppressive frameworks exist in current BSW curricula. This study can assist in contemplating the question – are we educating future practitioners for acceptance or action.

Keywords: social work education and pedagogy, social change, social justice, social services

Procedia PDF Downloads 192
35127 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building

Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar

Abstract:

The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.

Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system

Procedia PDF Downloads 54
35126 Content Analysis of Depictions of Terrorism in U.S. Major Motion Pictures: A Social Constructionist Perspective

Authors: Raleigh Blasdell, Amanda M. Sharp Parker, Lauren Waldrop, Brigid Toney

Abstract:

It has been demonstrated that fictional media sources have persuasive effects on public beliefs; this study contributes to the social constructionist literature by conducting a content analysis of U.S. major motion pictures involving terrorism. Using the Unified Film Population Sampling Methodology, the top-grossing films were identified to examine the frequency and context of several constructs of terrorism, including terrorist demographics, type of terrorism, country of origin, organizational affiliation, crime typology, and victim demographics. Comparisons of these constructs, as depicted in the films, were then made with the extant academic literature on terrorism. The data provide notable information regarding the representation of terrorism by the film industry, as well the discrepancies between the scholarly literature and depictions in popular films. The results indicate vast differences between fiction and reality, emphasizing a 'Middle Eastern Islamic male' terrorist stereotype. Using the theoretical foundation of social constructionism, the findings provide insight into how inaccurate depictions in film can influence society’s beliefs about terrorism and terrorists, which subsequently can translate into public support for legislation and policies that are often fueled by misinformation.

Keywords: film, media, social constructionism, terrorism

Procedia PDF Downloads 169
35125 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 114
35124 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79
35123 Effects of People’s Participation in Adult Education Programmes for Social Change in Ondo State, Nigeria

Authors: Akinyemi Eyitayo Oufunmilayo

Abstract:

In every society, it is expected that adult education will help in meeting the needs of people in terms of economic and social lives and reveal their talents, culture, and political abilities. Participation in adult education programmes could be the ones offered by the Federal, state, and local governments or non-governmental organisations. This study, therefore, investigated how people’s participation in adult education programmes could change their social lives. A quantitative method was employed for the study. The study population consisted of 210 people randomly selected from the three Senatorial Districts in Ondo State. Data obtained was analysed using frequency counts and percentages and chi-square analysis. Findings revealed that members of the society responded to the benefits of adult education programmes made available, and there were positive changes to their social lives. It could be concluded that people’s participation in adult education programmes improved every aspect of their lives for better living. It is recommended that members of the society respond and make good use of any adult education programme made available in their community, while stakeholders and other opportune members of the society come to the aid of less privileged people in their society.

Keywords: adult education programmes, social change, participation, society

Procedia PDF Downloads 139
35122 Factors Influencing the Adoption of Social Media as a Medium of Public Service Broadcasting

Authors: Seyed Mohammadbagher Jafari, Izmeera Shiham, Masoud Arianfar

Abstract:

The increased usage of Social media for different uses in turn makes it important to develop an understanding of users and their attitudes toward these sites, and moreover, the uses of such sites in a broader perspective such as broadcasting. This quantitative study addressed the problem of factors influencing the adoption of social media as a medium of public service broadcasting in the Republic of Maldives. These powerful and increasingly usable tools, accompanied by large public social media datasets, are bringing in a golden age of social science by empowering researchers to measure social behavior on a scale never before possible. This was conducted by exploring social responses on the use of social media. Research model was developed based on the previous models such as TAM, DOI and Trust combined model. It evaluates the influence of perceived ease of use, perceived usefulness, trust, complexity, compatibility and relative advantage influence on the adoption of social Media. The model was tested on a sample of 365 Maldivian people using survey method via questionnaire. The result showed that perceived usefulness, trust, relative advantage and complexity would highly influence the adoption of social media.

Keywords: adoption, broadcasting, maldives, social media

Procedia PDF Downloads 483
35121 Forms of Social Provision for Housing Investments in Local Planning Acts for European Capitals: Comparative Study and Spatial References

Authors: Agata Twardoch

Abstract:

The processes of commodification of real estate and changes in housing markets have led to a situation where the prices of free market housing in European capitals are significantly higher than the purchasing value of average wages. This phenomenon has many negative social and spatial consequences. At the same time, the attractiveness of real estate as an asset makes these processes progress. Out of concern for sustainable social development, city authorities apply solutions to balance the burdensome effects of codification of housing. One of them is a social provision for housing investments. The article presents a comparative study of solutions applied in selected European capitals, on the example of Warsaw, Paris, London, Berlin, Copenhagen, and Vienna. The study was conducted along with works on expert report for the master plan for Warsaw. The forms of commissions applied in Local Planning Acts were compared, with particular reference to spatial solutions. The results of the analysis made it possible to determine common features of the solutions applied and to establish recommendations for further practice. Major findings of the study indicate that requirement of social provision is achievable in spatial planning documents. Study shows that application of social provision in private housing investments is a useful tool in housing policy against commodification.

Keywords: affordable housing, housing provision, spatial planning, sustainable social development

Procedia PDF Downloads 179
35120 How Influencers Influence: The Effects of Social Media Influencers Influence on Purchase Intention and the Differences among Generation X and Millennials

Authors: Samatha Ss Sutton, Kaouther Kooli

Abstract:

In recent years social media influences (SMI) have become integrated into many companies marketing strategies to create buzz, target new and younger markets and further expand social media coverage in business (Lim et al 2017). SMI’s can be defined as online personalities with a substantial number of followers, across one or more social media platforms, with influence on their followers (Lou and Yuan 2018). Recently expenditure on influencer marketing has increased exponentially becoming an important area for marketing opportunities and strategies in the future (Lou and Yuan 2018). In order to market products and brands effectively through SMI’s it is important for business to understand the attributes of SMI that effect purchase intention (Lim et al 2017) of their followers and whether or not these attributes vary across generations so to market effectively to their specific segment or target market. The present study involves quantitative research to understand the attributes by which influence differs across generations namely Generation X and Millennials and its effects on purchase intentions of these generational groups. A survey will be conducted using an online questionnaire. Structural Equation Modelling and Multi group analysis will be applied. The study provides insight to marketers/decision makers on how to use influencers accordingly with their target consumer.

Keywords: social media marketing, social media influencers, attitude towards social media influencers, intention to purchase

Procedia PDF Downloads 136
35119 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation

Authors: Ge Zheng, Jun Peng

Abstract:

Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.

Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient

Procedia PDF Downloads 169
35118 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework

Authors: Mayada Al Meghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance

Procedia PDF Downloads 119
35117 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 85
35116 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 293
35115 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 548
35114 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 89
35113 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 70
35112 Empowering Rangatahi: Amplifying Youth Voices on Smartphone and Social Media Use in Aotearoa New Zealand

Authors: Melissa L Gould

Abstract:

The uptick in social media users during the COVID-19 lockdowns has accelerated concerns about cellphone addiction, cyberbullying, and exposure to harmful content, particularly mis- and disinformation and extremist content. The validity of these concerns is synthesized for media technologists to expose the strategies behind social media and search platform technology and explain why they restrict their children from using it. Banning cell phones in schools, increasing age limits on social media accounts, and putting warning labels on social media are some of the solutions proposed to protect young people from smartphones and social media. Largely missing from these conversations are the voices of young people (rangatahi). Instead, their lived experiences are being told and managed by adults. This presentation will outline my research that amplified the voices and lived experiences of young people by positioning them as experts. Using The Social Dilemma as a discussion prompt, the focus groups of rangatahi in Aotearoa, New Zealand, provide a space for young people to articulate their own lived experiences and respond to the dominant narratives on their generation's use of smartphones and social media.

Keywords: social media, smart phones, young people, social dilemma

Procedia PDF Downloads 32