Search results for: pollutant load
1485 Bending and Shear Characteristics of Hollowcore Slab with Polystyrene Forms
Authors: Kang Kun Lee
Abstract:
New I-slab system with polystyrene forms and precast concrete deck is proposed to reduce the construction period and the self-weight of the slab. This paper presents experimental works on the bending and shear of the I-slabs. Five specimens were tested. The main parameters of experiments are diameters of the holes made by polystyrene form and the thickness of slab. Structural performance of I-slab is evaluated on the basis of failure mode, load-displacement curve, and ultimate strengths. Based on the test results, it is found that the critical punching shear sections are changed as the test variables are different, hence resulting in the varied punching shear strengths. Test results indicate that the developed I-slab is very effective to increase the strength due to self-weight reduction.Keywords: hollowcore slab, section force-deformation response, precast concrete deck
Procedia PDF Downloads 3901484 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: Almontas Vilutis, Vytenis Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.Keywords: friction, composite, carbide, factors
Procedia PDF Downloads 831483 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm
Authors: G. Bhushan, S. Dhingra, K. K. Dubey
Abstract:
This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.Keywords: genetic algorithm, rsm, biodiesel, karanja
Procedia PDF Downloads 3061482 To Study the Performance of FMS under Different Manufacturing Strategies
Authors: Mohammed Ali
Abstract:
A flexible manufacturing system has been studied under different manufacturing strategies. The aim of this paper is to test the impact of number of pallets and routing flexibility (design strategy) on system performance operating at different sequencing and dispatching rules (control strategies) at unbalanced load condition (planning strategies). A computer simulation model is developed to evaluate the effects of aforementioned strategies on the make-span time, which is taken as the system performance measure. The impact of number of pallets is shown with the different levels of routing flexibility. In this paper, the same manufacturing system is modeled under different combination of sequencing and dispatching rules. The result of the simulation shows that there is definite range of pallets for each level of routing flexibility at which the systems performs satisfactorily.Keywords: flexible manufacturing system, manufacturing, strategy, makespan
Procedia PDF Downloads 6681481 Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey
Authors: P. M. Keshtiban, M. Zadshakoyan
Abstract:
One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material.Keywords: experiment, FEM, friction coefficient, ring compression
Procedia PDF Downloads 4621480 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD
Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang
Abstract:
In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.Keywords: LTE-A, relay, TDD, power saving
Procedia PDF Downloads 5161479 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test
Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou
Abstract:
The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.Keywords: cement paste, interface, cohesive zone model, fracture, three-point flexural test bending
Procedia PDF Downloads 1501478 Stabilized Halogen Based Biocides for RO Membrane Application
Authors: Harshada Lohokare
Abstract:
Biofouling is major issue in Reverse Osmosis (RO) membranes operation. To address the biofouling issue in raw water as well as wastewater recycle / reuse application requires effective biofouling control program. Current biocides (2,2-dibromo-3-nitrilopropionamide, isothiazolinone) are costly and hence often under-dosed. The membrane compatibility, as well as the microbio efficiency of the RO membrane biocide was studied. Based on the biofouling potential, the biocide product and it’s dosage was studied. It was found that these products need to be dosed continuous as well as intermittent dosage based on the microbio load. This study shows that depending on the application and microbio fouling potential, products can be chosen to mitigate the biofouling issues and improve the RO membrane performance.Keywords: reverse osmosis membrane, biofouling, biocide, stabilized halogen
Procedia PDF Downloads 691477 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 2331476 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle
Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan
Abstract:
The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.Keywords: spring, mass, damper, knee joint
Procedia PDF Downloads 2711475 Multilayer System of Thermosetting Polymers and Specific Confining, Application to the Walls of the Hospital Unit
Authors: M. Bouzid, A. Djadi, C. Aribi, A. Irekti, B. Bezzazi, F. Halouene
Abstract:
The nature of materials structuring our health institutions promote the development of germs. The sustainability of nosocomial infections remains significant (12% and 15%). One of the major factors is the portland cement which is brittle and porous. As part of a national plan to fight nosocomial infections, led by the University Hospital of Blida, we opted for a composite coating, application by multilayer model, composed of epoxy-polyester resin as a binder and calcium carbonate as mineral fillers. The application of composite materials reinforce the wall coating of hospital units and eliminates the hospital infectious areas. The resistance to impact, chemicals, raising temperature and to a biologically active environment gives satisfactory results.Keywords: nosocomial infection, microbial load, composite materials, portland cement
Procedia PDF Downloads 3891474 Experimental Study of Vibration Isolators Made of Expanded Cork Agglomerate
Authors: S. Dias, A. Tadeu, J. Antonio, F. Pedro, C. Serra
Abstract:
The goal of the present work is to experimentally evaluate the feasibility of using vibration isolators made of expanded cork agglomerate. Even though this material, also known as insulation cork board (ICB), has mainly been studied for thermal and acoustic insulation purposes, it has strong potential for use in vibration isolation. However, the adequate design of expanded cork blocks vibration isolators will depend on several factors, such as excitation frequency, static load conditions and intrinsic dynamic behavior of the material. In this study, transmissibility tests for different static and dynamic loading conditions were performed in order to characterize the material. Since the material’s physical properties can influence the vibro-isolation performance of the blocks (in terms of density and thickness), this study covered four mass density ranges and four block thicknesses. A total of 72 expanded cork agglomerate specimens were tested. The test apparatus comprises a vibration exciter connected to an excitation mass that holds the test specimen. The test specimens under characterization were loaded successively with steel plates in order to obtain results for different masses. An accelerometer was placed at the top of these masses and at the base of the excitation mass. The test was performed for a defined frequency range, and the amplitude registered by the accelerometers was recorded in time domain. For each of the signals (signal 1- vibration of the excitation mass, signal 2- vibration of the loading mass) a fast Fourier transform (FFT) was applied in order to obtain the frequency domain response. For each of the frequency domain signals, the maximum amplitude reached was registered. The ratio between the amplitude (acceleration) of signal 2 and the amplitude of signal 1, allows the calculation of the transmissibility for each frequency. Repeating this procedure allowed us to plot a transmissibility curve for a certain frequency range. A number of transmissibility experiments were performed to assess the influence of changing the mass density and thickness of the expanded cork blocks and the experimental conditions (static load and frequency of excitation). The experimental transmissibility tests performed in this study showed that expanded cork agglomerate blocks are a good option for mitigating vibrations. It was concluded that specimens with lower mass density and larger thickness lead to better performance, with higher vibration isolation and a larger range of isolated frequencies. In conclusion, the study of the performance of expanded cork agglomerate blocks presented herein will allow for a more efficient application of expanded cork vibration isolators. This is particularly relevant since this material is a more sustainable alternative to other commonly used non-environmentally friendly products, such as rubber.Keywords: expanded cork agglomerate, insulation cork board, transmissibility tests, sustainable materials, vibration isolators
Procedia PDF Downloads 3321473 Non-Homogeneous Layered Fiber Reinforced Concrete
Authors: Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.Keywords: fiber reinforced concrete, 4-point bending, steel fiber, construction engineering
Procedia PDF Downloads 3671472 Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control
Authors: M. R. Bengourina, M. Rahli, L. Hassaine, S. Saadi
Abstract:
In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach.Keywords: shunt active power filter, VF-DPC, photovoltaic, MPPT
Procedia PDF Downloads 3231471 Factors Related to Teachers’ Analysis of Classroom Assessments
Authors: Hussain A. Alkharusi, Said S. Aldhafri, Hilal Z. Alnabhani, Muna Alkalbani
Abstract:
Analysing classroom assessments is one of the responsibilities of the teacher. It aims improving teacher’s instruction and assessment as well as student learning. The present study investigated factors that might explain variation in teachers’ practices regarding analysis of classroom assessments. The factors considered in the investigation included gender, in-service assessment training, teaching load, teaching experience, knowledge in assessment, attitude towards quantitative aspects of assessment, and self-perceived competence in analysing assessments. Participants were 246 in-service teachers in Oman. Results of a stepwise multiple linear regression analysis revealed that self-perceived competence was the only significant factor explaining the variance in teachers’ analysis of assessments. Implications for research and practice are discussed.Keywords: analysis of assessment, classroom assessment, in-service teachers, self-competence
Procedia PDF Downloads 3331470 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach
Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez
Abstract:
The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling
Procedia PDF Downloads 381469 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites
Authors: Mustafa Reşit Haboğlu, Ali Kurşun , Şafak Aksoy, Halil Aykul, Numan Behlül Bektaş
Abstract:
A thermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.Keywords: laminated composites, thermo elastic stress, finite element method.
Procedia PDF Downloads 4961468 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device
Authors: Won Jun Jo, Man Young Kim
Abstract:
To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics
Procedia PDF Downloads 2931467 Concept of Transforaminal Lumbar Interbody Fusion Cage Insertion Device
Authors: Sangram A. Sathe, Neha A. Madgulkar, Shruti S. Raut, S. P. Wadkar
Abstract:
Transforaminal lumbar interbody fusion (TLIF) surgeries have nowadays became popular for treatment of degenerated spinal disorders. The interbody fusion technique like TLIF maintains load bearing capacity of the spine and a suitable disc height. Currently many techniques have been introduced to cure Spondylolisthesis. This surgery provides greater rehabilitation of degenerative spines. While performing this TLIF surgery existing methods use guideway, which is a troublesome surgery technique as the use of two separate instruments is required to perform this surgery. This paper presents a concept which eliminates the use of guideway. This concept also eliminates problems that occur like reverting the cage. The concept discussed in this paper also gives high accuracy while performing surgery.Keywords: TLIF, spondylolisthesis, spine, instruments
Procedia PDF Downloads 3301466 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia
Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim
Abstract:
The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material
Procedia PDF Downloads 541465 Safety Conditions Analysis of Scaffolding on Construction Sites
Authors: M. Pieńko, A. Robak, E. Błazik-Borowa, J. Szer
Abstract:
This paper presents the results of analysis of 100 full-scale scaffolding structures in terms of compliance with legal acts and safety of use. In 2016 and 2017, authors examined scaffolds in Poland located at buildings which were at construction or renovation stage. The basic elements affecting the safety of scaffolding use such as anchors, supports, platforms, guardrails and toe-boards have been taken into account. All of these elements were checked in each of considered scaffolding. Based on the analyzed scaffoldings, the most common errors concerning assembly process and use of scaffolding were collected. Legal acts on the scaffoldings are not always clear, and this causes many issues. In practice, people realize how dangerous the use of incomplete scaffolds is only when the accident occurs. Despite the fact that the scaffolding should ensure the safety of its users, most accidents on construction sites are caused by fall from a height.Keywords: façade scaffolds, load capacity, practice, safety of people
Procedia PDF Downloads 4031464 Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System
Authors: Shiyun Liu
Abstract:
Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system.Keywords: radiant floor, all-air system, thermal comfort, simulation, heating system
Procedia PDF Downloads 1661463 Investigating the Indoor Air Quality of the Respiratory Care Wards
Authors: Yu-Wen Lin, Chin-Sheng Tang, Wan-Yi Chen
Abstract:
Various biological specimens, drugs, and chemicals exist in the hospital. The medical staffs and hypersensitive inpatients expose might expose to multiple hazards while they work or stay in the hospital. Therefore, the indoor air quality (IAQ) of the hospital should be paid more attention. Respiratory care wards (RCW) are responsible for caring the patients who cannot spontaneously breathe without the ventilators. The patients in RCW are easy to be infected. Compared to the bacteria concentrations of other hospital units, RCW came with higher values in other studies. This research monitored the IAQ of the RCW and checked the compliances of the indoor air quality standards of Taiwan Indoor Air Quality Act. Meanwhile, the influential factors of IAQ and the impacts of ventilator modules, with humidifier or with filter, were investigated. The IAQ of two five-bed wards and one nurse station of a RCW in a regional hospital were monitored. The monitoring was proceeded for 16 hours or 24 hours during the sampling days with a sampling frequency of 20 minutes per hour. The monitoring was performed for two days in a row and the AIQ of the RCW were measured for eight days in total. The concentrations of carbon dioxide (CO₂), carbon monoxide (CO), particulate matter (PM), nitrogen oxide (NOₓ), total volatile organic compounds (TVOCs), relative humidity (RH) and temperature were measured by direct reading instruments. The bioaerosol samples were taken hourly. The hourly air change rate (ACH) was calculated by measuring the air ventilation volume. Human activities were recorded during the sampling period. The linear mixed model (LMM) was applied to illustrate the impact factors of IAQ. The concentrations of CO, CO₂, PM, bacterial and fungi exceeded the Taiwan IAQ standards. The major factors affecting the concentrations of CO, PM₁ and PM₂.₅ were location and the number of inpatients. The significant factors to alter the CO₂ and TVOC concentrations were location and the numbers of in-and-out staff and inpatients. The number of in-and-out staff and the level of activity affected the PM₁₀ concentrations statistically. The level of activity and the numbers of in-and-out staff and inpatients are the significant factors in changing the bacteria and fungi concentrations. Different models of the patients’ ventilators did not affect the IAQ significantly. The results of LMM can be utilized to predict the pollutant concentrations under various environmental conditions. The results of this study would be a valuable reference for air quality management of RCW.Keywords: respiratory care ward, indoor air quality, linear mixed model, bioaerosol
Procedia PDF Downloads 1071462 A Photovoltaic Micro-Storage System for Residential Applications
Authors: Alia Al Nuaimi, Ayesha Al Aberi, Faiza Al Marzouqi, Shaikha Salem Ali Al Yahyaee, Ala Hussein
Abstract:
In this paper, a PV micro-storage system for residential applications is proposed. The term micro refers to the size of the PV storage system, which is in the range of few kilo-watts, compared to the grid size (~GWs). Usually, in a typical load profile of a residential unit, two peak demand periods exist: one at morning and the other at evening time. The morning peak can be partly covered by the PV energy directly, while the evening peak cannot be covered by the PV alone. Therefore, an energy storage system that stores solar energy during daytime and use this stored energy when the sun is absent is a must. A complete design procedure including theoretical analysis followed by simulation verification and economic feasibility evaluation is addressed in this paper.Keywords: battery, energy storage, photovoltaic, peak shaving, smart grid
Procedia PDF Downloads 3211461 Study of Deflection at Junction in the Precast on Cyclic Loading
Authors: Jongho Park, Ui-Cheol Shin, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park
Abstract:
While the numerous structures built the industrialization are aging, the effort for the maintenance is concentrated in many countries. However, the traffic jam, environmental damage, and enormous maintenance cost, and etc become a problem. So, in order to solve this, the modular bridge has been studied. This bridge is the structure which utilizes and assembles the standard precast member. Through this, the substitution of the existing bridge and advantage of the easy maintenance will be achieved. However, the reliability in the long-term behavior is insufficient due to the junction part between modular precast members. Therefore, in this research, the cyclic load loading experiment was performed on the junction and deflection was analyzed by long-term service in modular slab connection. The deflection of modular slab with junction was mostly generated when initial and final test.Keywords: modular bridge, deflection, cyclic loading, junction
Procedia PDF Downloads 5111460 Recent Studies on Strengthening of Reinforced Concrete Members by Ferrocement
Authors: E. Lam, Z. D. Yang, B. Li, I. Ho, T. Wong, V. Wong
Abstract:
This paper reports some of the recent studies on strengthening of reinforced concrete members by ferrocement. Using mortar in ferrocement with high tensile strength, tensile properties of (high performance) ferrocement can be enhanced. In the proposed strengthening strategy, defective concrete cover of structural members is replaced by ferrocement so as to increase the load carrying capacity. This has been successfully applied to strengthen columns and beam-column joints. To facilitate the ease of application of the proposed strengthening strategy, mortar in ferrocement is applied through dry spray shotcrete.Keywords: ferrocement, high performance ferrocement, dry, spray shotcrete, column, beam-column joint, strengthening
Procedia PDF Downloads 4431459 Behavior of Reinforced Concrete Structures Subjected to Multiple Floor Fire Loads
Authors: Suresh Narayana, Chaitanya Akkannavar
Abstract:
Assessment of behavior of reinforced concrete structures subjected to fire load, and its behavior for the multi-floor fire have been presented in this paper. This research is the part of the study to evaluate the performance of ten storied RC structure when it is subjected to fire loads at multiple floors and to evaluate the post-fire effects on structure such as deflection and stresses occurring due to combined effect of static and thermal loading. Thermal loading has been assigned to different floor levels to estimate the critical floors that initiate the collapse of the structure. The structure has been modeled and analyzed in Solid Works and commercially available Finite Element Software ABAQUS. Results are analyzed, and particular design solution has been suggested.Keywords: collapse mechanism, fire analysis, RC structure, stress vs temperature
Procedia PDF Downloads 4731458 Robust Diagnosis Efficiency by Bond-Graph Approach
Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi
Abstract:
This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR
Procedia PDF Downloads 3051457 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 5301456 Optimization Method of Dispersed Generation in Electrical Distribution Systems
Authors: Mahmoud Samkan
Abstract:
Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses
Procedia PDF Downloads 443