Search results for: neural regeneration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2307

Search results for: neural regeneration

807 The Principle of a Thought Formation: The Biological Base for a Thought

Authors: Ludmila Vucolova

Abstract:

The thought is a process that underlies consciousness and cognition and understanding its origin and processes is a longstanding goal of many academic disciplines. By integrating over twenty novel ideas and hypotheses of this theoretical proposal, we can speculate that thought is an emergent property of coded neural events, translating the electro-chemical interactions of the body with its environment—the objects of sensory stimulation, X, and Y. The latter is a self- generated feedback entity, resulting from the arbitrary pattern of the motion of a body’s motor repertory (M). A culmination of these neural events gives rise to a thought: a state of identity between an observed object X and a symbol Y. It manifests as a “state of awareness” or “state of knowing” and forms our perception of the physical world. The values of the variables of a construct—X (object), S1 (sense for the perception of X), Y (object), S2 (sense for perception of Y), and M (motor repertory that produces Y)—will specify the particular conscious percept at any given time. The proposed principle of interaction between the elements of a construct (X, Y, S1, S2, M) is universal and applies for all modes of communication (normal, deaf, blind, deaf and blind people) and for various language systems (Chinese, Italian, English, etc.). The particular arrangement of modalities of each of the three modules S1 (5 of 5), S2 (1 of 3), and M (3 of 3) defines a specific mode of communication. This multifaceted paradigm demonstrates a predetermined pattern of relationships between X, Y, and M that passes from generation to generation. The presented analysis of a cognitive experience encompasses the key elements of embodied cognition theories and unequivocally accords with the scientific interpretation of cognition as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses, and cognition means thinking and awareness. By assembling the novel ideas presented in twelve sections, we can reveal that in the invisible “chaos”, there is an order, a structure with landmarks and principles of operations and mental processes (thoughts) are physical and have a biological basis. This innovative proposal explains the phenomenon of mental imagery; give the first insight into the relationship between mental states and brain states, and support the notion that mind and body are inseparably connected. The findings of this theoretical proposal are supported by the current scientific data and are substantiated by the records of the evolution of language and human intelligence.

Keywords: agent, awareness, cognitive, element, experience, feedback, first person, imagery, language, mental, motor, object, sensory, symbol, thought

Procedia PDF Downloads 386
806 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 487
805 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control

Procedia PDF Downloads 481
804 Magnetic Silica Nanoparticles as Viable Support for the Immobilization of Oxidative Enzymes

Authors: Y. Moldes-Diz, M. Gamallo, G. Eibes, C. Vazquez-Vazquez, G. Feijoo, J. M. Lema, M. T. Moreira

Abstract:

Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are excellent biocatalysts for biotechnological and environmental applications because of their high activity, selectivity, and specificity. Specifically, these characteristics allow them to perform the oxidation of recalcitrant compounds with simple requirements for the catalysis (presence of molecular oxygen). Nevertheless, the low stability under unfavorable conditions (pH, inactivating agents or temperature) and high production costs still limits their use for practical applications. Immobilization of enzymes has proven particularly valuable to avoid some of the aforementioned drawbacks. Magnetic nanoparticles (MNPs) have received increasing attention as carriers for enzyme immobilization since they can potentially provide an easy recovery of the biocatalyst from the reaction medium under an external magnetic field. In the present work, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were prepared, characterized and used for laccase immobilization by covalent binding. The synthesis of Fe3O4@SiO2 was performed in a two-step procedure: co-precipitation and reverse microemulsion. The influence of immobilization conditions: concentrations of the functionalization agent (3-aminopropyl-triethoxy-silane) and the cross-linker (glutaraldehyde) as well as the influence of pH, T or inactivating agents were evaluated. In general, immobilized laccase showed superior stability compared to that of free enzyme. The reusability of the biocatalyst was demonstrated in successive batch reactions, where enzyme activity was maintained above 65% after 8 cycles of oxidation of the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate).

Keywords: silica-coated magnetic nanoparticles, laccase, immobilization, regeneration

Procedia PDF Downloads 220
803 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 657
802 Social Crises and Its Impact on the Environment: Case Study of Jos, Plateau State

Authors: A. B. Benshak, M. G. Yilkangnha, V. Y. Nanle

Abstract:

Social crises and violent conflict can inflict direct (short-term) impact on the environment like poisoning water bodies, climate change, deforestation, destroying the chemical component of the soil due to the chemical and biological weapons used. It can also impact the environment indirectly (long-term), e.g., the destruction of political and economic infrastructure to manage the environmental resources and breaking down traditional conservation practices, population displacement and refugee flows which puts pressure on the already inadequate resources, infrastructure, facilities, amenities, services etc. This study therefore examines the impact of social crises on the environment in Jos Plateau State with emphasis on the long-term impact, analyze the relationship between crises and the environment and assess the perception of people on social crises because much work have concentrated on other repercussions such as the economy, health etc that are more politically expedient. The data for this research were collected mostly through interviews, questionnaire, dailies and reports on the subject matter. The data and findings were presented in tables and results showed that the environment is directly and indirectly impacted by crises and that these impacts can in turn result to a continuous cycle of violent activities if not addressed because of the inadequacies in the supply of infrastructural facilities, resources and so on caused by the inflow of displaced population. Recommendations were made on providing security to minimize conflict occurrences in Jos and its environs, minimizing the impact of social crises on the environment, provision of adequate infrastructural facilities to carter for population rise, renewal and regeneration schemes, etc. which will go a long way in mitigating the impact of crises on the environment.

Keywords: environment, impact, long-term, social crises

Procedia PDF Downloads 346
801 Parallel Computing: Offloading Matrix Multiplication to GPU

Authors: Bharath R., Tharun Sai N., Bhuvan G.

Abstract:

This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.

Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks

Procedia PDF Downloads 61
800 Prototyping a Portable, Affordable Sign Language Glove

Authors: Vidhi Jain

Abstract:

Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.

Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition

Procedia PDF Downloads 64
799 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 13
798 A Review of Brain Implant Device: Current Developments and Applications

Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A

Abstract:

The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.

Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson

Procedia PDF Downloads 155
797 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 247
796 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 143
795 Synthesis, Characterization, and Application of Novel Trihexyltetradecyl Phosphonium Chloride for Extractive Desulfurization of Liquid Fuel

Authors: Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende

Abstract:

Owing to the stringent environmental regulations in many countries for production of ultra low sulfur petroleum fractions intending to reduce sulfur emissions results in enormous interest in this area among the scientific community. The requirement of zero sulfur emissions enhances the prominence for more advanced techniques in desulfurization. Desulfurization by extraction is a promising approach having several advantages over conventional hydrodesulphurization. Present work is dealt with various new approaches for desulfurization of ultra clean gasoline, diesel and other liquid fuels by extraction with ionic liquids. In present paper experimental data on extractive desulfurization of liquid fuel using trihexyl tetradecyl phosphonium chloride has been presented. The FTIR, 1H-NMR, and 13C-NMR have been discussed for the molecular confirmation of synthesized ionic liquid. Further, conductivity, solubility, and viscosity analysis of ionic liquids were carried out. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of ionic liquid without regeneration on removal of dibenzothiphene from liquid fuel were also investigated. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 84.5% for mass ratio of 1:1 in 30 min at 30OC under the mild reaction conditions. Phosphonium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of phosphonium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.

Keywords: ionic liquid, PPIL, desulfurization, liquid fuel, extraction

Procedia PDF Downloads 610
794 A Conceptual Approach for Evaluating the Urban Renewal Process

Authors: Muge Unal, Ahmet Cilek

Abstract:

Urban identity, having a dynamic characteristic spatial and semantic aspects, is a phenomenon in an ever-changing. Urban identity formation includes not only a process of physical nature but also development and change processes that take place in the political, economic, social and cultural values, whether national and international level. Although the concept of urban transformation is basically regarded as the spatial transformation; in fact, it reveals a holistic perspective and transformation based on dialectical relationship existing between the spatial and social relationship. For this reason, urban renewal needs to address as not only spatial but also the impact of spatial transformation on social, cultural and economic. Implementation tools used in the perception of urban transformation are varied concepts such as urban renewal, urban resettlement, urban rehabilitation, urban redevelopment, and urban revitalization. The phenomenon of urban transformation begins with the Industrial Revolution. Until the 1980s, it was interpreted as reconsidering physical fossil on urban environment factor like occurring in rapid urbanization, changing in the spatial structure of the city, concentrating of the population in urban areas. However, after the 1980s, it has resided in a conceptual structure which requires to be addressed physical, economic, social, technological and integrity of information. In conclusion, urban transformation, when it enter the literature as a practice of planning, has been up to date in terms of the conceptual structure and content and also hasn’t remained behind converting itself. Urban transformation still maintains its simplest expression, while it transforms so fast converts the contents. In this study, the relationship between urban design and components of urban transformation were discussed with strategies used as a place in the historical process of urban transformation besides a general evaluation of the concept of urban renewal.

Keywords: conceptual approach, urban identity, urban regeneration, urban renewal

Procedia PDF Downloads 432
793 Comparative Literature, Postcolonialism and the “African World” in Wole Soyinka’s Myth, Literature and the African World

Authors: Karen de Andrade

Abstract:

Literature is generally understood as an aesthetic creation, an artistic object that relates to the history and sociocultural paradigms of a given era. Moreover, through it, we can dwell on the deepest reflections on the human condition. It can also be used to propagate projects of domination, as Edward Said points out in his book Culture and Imperialism, connecting narrative, history and land conquest. Having said that, the aim of this paper is to analyse how Wole Soyinka elaborated his main theoretical work, Myth, Literature and African World, a collection of essays published in 1976, by comparing the philosophical, ideological and aesthetic practices of African, diasporic and European writers from the point of view of the Yoruba tradition, to which he belongs. Moreover, Soyinka believes that (literary) art has an important function in the formation of a people, in the construction of its political identity and in cultural regeneration, especially after the independence. The author's critical endeavour is that of attempting to construct a past. For him, the "African World" is not a mere allegory of the continent, and to understand it in this way would be to perpetuate a colonialist vision that would deny the subjectivities that cross black cultures, history and bodies. For him, comparative literature can be used not to "equate" local African texts with the European canon; but rather to recognise that they have aesthetic value and socio-cultural importance. Looking at the local, the particular and specific to each culture is, according to Soyinka, appropriate for dealing with African cultures, as opposed to abstractions of dialectical materialism or capitalist nationalism. In view of this, in his essays, the author creates a possibility for artistic and social reflection beyond the logic of Western politics.

Keywords: comparative literature, African Literature, Literary Theory, Yoruba Mythology, Wole Soyinka, Afrodiaspora

Procedia PDF Downloads 71
792 Bifunctional Electrospun Fibers Based on Poly(Lactic Acid)/Calcium Oxide Nanocomposites as a Potential Scaffold for Bone Tissue Engineering

Authors: Daniel Canales, Fabián Alvarez, Pablo Varela, Marcela Saavedra, Claudio García, Paula Zapata

Abstract:

Calcium oxide nanoparticles (n-CaO) ca. 8 nm were obtained from eggshell waste. The n-CaO was incorporated into Poly(lactic acid) PLA matrix in 10 and 20 wt.% of filler content by electrospinning process to obtain PLA/n-CaO nanocomposite fibers as a potential use in scaffold for bone tissue regeneration. The fibers morphology and diameter were homogeneity, the PLA had a diameter of 2.2 ± 0.8 µm and, with the nanoparticles incorporation (20wt.%), reached ca. 2.9 ± 0.9 µm. The PLA/n-CaO nanocomposites fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after 7 days in Simulated Body Solution (SBF). The biocidal and biological properties of PLA/n-Cao with 20 wt.% were evaluated, showing a 30% reduction in bacterial viability against S. aureus and 11% for E. coli after 6 hours of bacterial suspensions exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, permitting the cell adhesion and proliferation in Roswell Park Memorial Institute medium (RPMI). The PLA/n-CaO with 20 wt.% of nanoparticles showed a higher capacity to promote the osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after 7 days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of scaffolds prepared, the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material improve the healing process.

Keywords: electrospun scaffolds, PLA based nanocomposites, calcium oxide nanoparticles, bioactive materials, tissue engineering

Procedia PDF Downloads 95
791 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 60
790 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 165
789 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst

Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha

Abstract:

Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.

Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst

Procedia PDF Downloads 175
788 Community Forest Management and Ecological and Economic Sustainability: A Two-Way Street

Authors: Sony Baral, Harald Vacik

Abstract:

This study analyzes the sustainability of community forest management in two community forests in Terai and Hills of Nepal, representing four forest types: 1) Shorearobusta, 2) Terai hardwood, 3) Schima-Castanopsis, and 4) other Hills. The sustainability goals for this region include maintaining and enhancing the forest stocks. Considering this, we analysed changes in species composition, stand density, growing stock volume, and growth-to-removal ratio at 3-5 year intervals from 2005-2016 within 109 permanent forest plots (57 in the Terai and 52 in the Hills). To complement inventory data, forest users, forest committee members, and forest officials were consulted. The results indicate that the relative representation of economically valuable tree species has increased. Based on trends in stand density, both forests are being sustainably managed. Pole-sized trees dominated the diameter distribution, however, with a limited number of mature trees and declined regeneration. The forests were over-harvested until 2013 but under-harvested in the recent period in the Hills. In contrast, both forest types were under-harvested throughout the inventory period in the Terai. We found that the ecological dimension of sustainable forest management is strongly achieved while the economic dimension is lacking behind the current potential. Thus, we conclude that maintaining a large number of trees in the forest does not necessarily ensure both ecological and economical sustainability. Instead, priority should be given on a rational estimation of the annual harvest rates to enhance forest resource conditions together with regular benefits to the local communities.

Keywords: community forests, diversity, growing stock, forest management, sustainability, nepal

Procedia PDF Downloads 99
787 Understanding the Conflict Between Ecological Environment and Human Activities in the Process of Urbanization

Authors: Yazhou Zhou, Yong Huang, Guoqin Ge

Abstract:

In the process of human social development, the coupling and coordinated development among the ecological environment(E), production(P), and living functions(L) is of great significance for sustainable development. This study uses an improved coupling coordination degree model (CCDM) to discover the coordination conflict between E and human settlement environment. The main work of this study is as follows: (1) It is found that in the process of urbanization development of Ya 'an city from 2014 to 2018, the degree of coupling (DOC) value between E, P, and L is high, but the coupling coordination degree (CCD) of the three is low, especially the DOC value of E and the other two has the biggest decline. (2) A more objective weight value is obtained, which can avoid the analysis error caused by subjective judgment weight value.

Keywords: ecological environment, coupling coordination degree, neural network, sustainable development

Procedia PDF Downloads 84
786 Structure Clustering for Milestoning Applications of Complex Conformational Transitions

Authors: Amani Tahat, Serdal Kirmizialtin

Abstract:

Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.

Keywords: milestoning, self organizing map, single linkage, structure clustering

Procedia PDF Downloads 224
785 Biocellulose Template for 3D Mineral Scaffolds

Authors: C. Busuioc, G. Voicu, S. I. Jinga

Abstract:

The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications.

Keywords: bacterial cellulose, bone reconstruction, calcium phosphates, mineral scaffolds

Procedia PDF Downloads 196
784 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor

Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah

Abstract:

In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.

Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope

Procedia PDF Downloads 290
783 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 44
782 Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins

Authors: S. Jaramillo, Y. Montoya, W. Agudelo, J. Bustamante

Abstract:

Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.

Keywords: atherosclerosis, medium and high-intensity statins, microarchitecture, electrospun membrane

Procedia PDF Downloads 138
781 Integrated Gesture and Voice-Activated Mouse Control System

Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant

Procedia PDF Downloads 15
780 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 214
779 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 439
778 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials

Authors: Mohammad Nadeem, Haider Banka, R. Venugopal

Abstract:

Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.

Keywords: fine material, granulation, intelligent technique, modelling

Procedia PDF Downloads 375