Search results for: music genre classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2874

Search results for: music genre classification

1374 Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant

Authors: Y. Chiang, W. Y. Li, J. R. Wang, S. W. Chen, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih

Abstract:

In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.

Keywords: BWR, HABIT, habitability, Kuosheng

Procedia PDF Downloads 488
1373 The Menu Planning Problem: A Systematic Literature Review

Authors: Dorra Kallel, Ines Kanoun, Diala Dhouib

Abstract:

This paper elaborates a Systematic Literature Review SLR) to select the most outstanding studies that address the Menu Planning Problem (MPP) and to classify them according to the to the three following criteria: the used methods, types of patients and the required constraints. At first, a set of 4165 studies was selected. After applying the SLR’s guidelines, this collection was filtered to 13 studies using specific inclusion and exclusion criteria as well as an accurate analysis of each study. Second, the selected papers were invested to answer the proposed research questions. Finally, data synthesis and new perspectives for future works are incorporated in the closing section.

Keywords: Menu Planning Problem (MPP), Systematic Literature Review (SLR), classification, exact and approaches methods

Procedia PDF Downloads 279
1372 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving

Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco

Abstract:

Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.

Keywords: augmented reality, driving, physiological signals, test platform

Procedia PDF Downloads 140
1371 Potentials and Impediments in the Development of Ikeji Festival for Cultural Tourism

Authors: Ifegbo Lawrencia Ifegbo

Abstract:

Nigeria is a country with many ethnic groups and therefore endowed with festival of different types and nature, yet no concerted effort is committed towards their development for cultural tourism. This paper assessed the adequacy of tourism potential of the festivals, and most importantly investigated the impediments surrounding their non-development. Ikeji, a masquerade festival of the people of Arondizuogu clan in Imo State of Nigeria was selected for the study. Ethnographic research using observer-as-participant technique was used for conducting the study. This was supplemented by focused group discussion (FGD), key informant and unstructured interviews. The result revealed that there exist so much potentials like masquerading, cultural dances, native and highlife music, drumming, role reversals and traditional dishes in the festival. It was further deduced that poor supply of amenities and infrastructural facilities, insecurity of life, lack of trained indigenous experts in tourism, lack of awareness and publicity for the festival on the part of the host communities were responsible for the non-development into tourism destinations. The implication of this is that unless the government resolves to provide the needed resources for the development of the enormous festivals, and restores security and peace in the country, cultural tourism will rarely thrive in Nigeria.

Keywords: festivals, cultural tourism, tourism potential, cultural resources, tourism development

Procedia PDF Downloads 334
1370 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches

Authors: Mariam Matiashvili

Abstract:

Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.

Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon

Procedia PDF Downloads 69
1369 An Exploration of Gender Differences in Academic Writing in Science

Authors: Gayani Ranawake, Kate Wilson

Abstract:

Underrepresentation of women in academia, particularly in science, has been discussed by many scholars for decades. The causes of this underrepresentation are debated to this day. Publication is an important aspect of success in academia, and publication and citation rates are significant metrics in performance review, promotion, and employment. It has been established that men’s and women’s language use in general, both spoken and written, is different. However, no one, to our knowledge, has looked at whether men’s and women’s writing in science is different. If there are significant differences in the writing of men and women, then these differences may affect women’s ability to succeed in science. This study is part of a larger project to explore whether differences can be recognized in the academic science writing of men and women. Mono authored articles from high ranking physics, biology and psychology journals by men and women authors were compared in terms of readability statistics. In particular, the abstract and introduction sections were compared, as these are the first sections encountered by a reviewer, and so may have an important effect on their impression of the work. The Flesch Reading Ease, the percentage of passive sentences and the Flesch-Kincaid Reading Grade Level were calculated for each section of each article, along with counts of numbers of sentences, words per sentence and sentences per paragraph. Significance of differences was tested using the Behrens statistic. It was found that for both physics and biology papers there were no significant differences in the complexity or verbosity of the writing of men and women authors. However, there was a significant difference between the two disciplines, with physics articles being generally more readable (higher readability score) while also more passive (higher number of passive sentences). In contrast, the psychology articles showed a difference between men and women authors which may be significant. The average readability for introductions in women’s articles was 28 which was higher than for men’s articles, which was 19 (higher values indicate more readable). Women’s articles in psychology also had a greater proportion of passive sentences. It can be concluded that, at least in the more traditional sciences, men and women have adopted similar ways of writing, and that disciplinary differences are greater than gender differences. This may not be the case in psychology, which many consider to be more closely aligned with the humanities. Whether the lack of differences is because women have adapted to a masculine way of writing, or whether the genre itself is gender neutral needs further investigation.

Keywords: academic writing, gender differences, readability, science

Procedia PDF Downloads 194
1368 Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft

Authors: Arun Prasath Subramanian

Abstract:

The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness.

Keywords: gas turbine blade, cooling technologies, internal cooling, pin-fin cooling, jet impingement cooling, rib turbulated cooling, metallic foam cooling

Procedia PDF Downloads 317
1367 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 183
1366 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI

Procedia PDF Downloads 300
1365 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis

Authors: Elcin Timur Cakmak, Ayse Oguzlar

Abstract:

This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.

Keywords: classification algorithms, machine learning, sentiment analysis, Twitter

Procedia PDF Downloads 73
1364 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 284
1363 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)

Procedia PDF Downloads 391
1362 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan

Authors: Chingwen Yeh, Yu Ru Chen

Abstract:

This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.

Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic

Procedia PDF Downloads 296
1361 Fuzzy Set Approach to Study Appositives and Its Impact Due to Positional Alterations

Authors: E. Mike Dison, T. Pathinathan

Abstract:

Computing with Words (CWW) and Possibilistic Relational Universal Fuzzy (PRUF) are the two concepts which widely represent and measure the vaguely defined natural phenomenon. In this paper, we study the positional alteration of the phrases by which the impact of a natural language proposition gets affected and/or modified. We observe the gradations due to sensitivity/feeling of a statement towards the positional alterations. We derive the classification and modification of the meaning of words due to the positional alteration. We present the results with reference to set theoretic interpretations.

Keywords: appositive, computing with words, possibilistic relational universal fuzzy (PRUF), semantic sentiment analysis, set-theoretic interpretations

Procedia PDF Downloads 163
1360 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 290
1359 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry

Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak

Abstract:

Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.

Keywords: supply chain performance, performance measurement, data mining, automotive

Procedia PDF Downloads 512
1358 Evaluate the Changes in Stress Level Using Facial Thermal Imaging

Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian

Abstract:

This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.

Keywords: stress, thermal imaging, face, SVM, polygraph

Procedia PDF Downloads 484
1357 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation

Authors: Onur Ozveri, Korkut Karabag, Cagri Keles

Abstract:

It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.

Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance

Procedia PDF Downloads 193
1356 The Representation of Female Characters by Women Directors in Surveillance Spaces in Turkish Cinema

Authors: Berceste Gülçin Özdemir

Abstract:

The representation of women characters in cinema has been discussed for centuries. In cinema where dominant narrative codes prevail and scopophilic views exist over women characters, passive stereotypes of women are observed in the representation of women characters. In films shot from a woman’s point of view in Turkish Cinema and even in the films outside the main stream in which the stories of women characters are told, the fact that women characters are discussed on the basis of feminist film theories triggers the question: ‘Are feminist films produced in Turkish Cinema?’ The spaces that are used in the representation of women characters are observed to be used as spaces that convert characters into passive subjects on the basis of the space factor in the narrative. The representation of women characters in the possible surveillance spaces integrates the characters and compresses them in these spaces. In this study, narrative analysis was used to investigate women characters representation in the surveillance spaces. For the study framework, firstly a case study films are selected, and in the second level, women characters representations in surveillance spaces are argued by narrative analysis using feminist film theories. Two questions are argued with feminist film theories: ‘Why do especially women directors represent their female characters to viewers by representing them in surveillance spaces?’ and ‘Can this type of presentation contribute to the feminist film practice and become important with regard to feminist film theories?’ The representation of women characters in a passive and observed way in surveillance spaces of the narrative reveals the questioning of also the discourses of films outside of the main stream. As films that produce alternative discourses and reveal different cinematic languages, those outside the main stream are expected to bring other points of view also to the representation of women characters in spaces. These questionings are selected as the baseline and Turkish films such as Watch Tower and Mustang, directed by women, were examined. This examination paves the way for discussions regarding the women characters in surveillance spaces. Outcomes can be argued from the viewpoint of representation in the genre by feminist film theories. In the context of feminist film theories and feminist film practice, alternatives should be found that can corporally reveal the existence of women in both the representation of women characters in spaces and in the usage of the space factor.

Keywords: feminist film theory, representation, space, women directors

Procedia PDF Downloads 286
1355 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection

Procedia PDF Downloads 227
1354 Trends in Solving Assembly Job Shop Scheduling Problem: A Review

Authors: Midhun Paul, T. Radha Ramanan

Abstract:

The objective of this work is to present a state-of-the-art literature review highlighting the challenges in the research of the scheduling of assembly job shop problem and providing an insight on how the future directions of the research would be. The number of work has been substantial that it requires a review to enable one to understand the origin of the research and how it is getting evolved. This review paper presents a comprehensive review of the literature dealing with various studies carried on assembly job shop scheduling. The review details the evolution of the AJS from the perspective of other scheduling problems and also presents a classification scheme. The work also identifies the potential directions for future research, which we believe to be worthwhile considering.

Keywords: assembly job shop, future directions, manufacturing, scheduling

Procedia PDF Downloads 410
1353 The Contract for Educational Services: Civil and Administrative Aspects

Authors: Yuliya Leonidovna Kiva-Khamzina

Abstract:

The legal nature of the contract for educational services causes a lot of controversies. In particular, it raises the question about industry sector relationships, which require making a contract for educational services. The article describes the different types of contracts classifications for services provision from the perspective of civil law, deals with the specifics of the contract on rendering educational services; the author makes the conclusion that the contract for the provision of educational services is a complex institution that includes elements of the civil and administrative law. The following methods were used to conduct the study: dialectical method of cognition, the historical method, systemic analysis, classification.

Keywords: administrative aspect, civil aspect, educational service, industry, legal nature, services provision

Procedia PDF Downloads 323
1352 Enhancing Learning Ability among Deaf Students by Using Photographic Images

Authors: Aidah Alias, Mustaffa Halabi Azahari, Adzrool Idzwan Ismail, Salasiah Ahmad

Abstract:

Education is one of the most important elements in a human life. Educations help us in learning and achieve new things in life. The ability of hearing gave us chances to hear voices and it is important in our communication. Hearing stories told by others; hearing news and music to create our creative and sense; seeing and hearing make us understand directly the message trying to deliver. But, what will happen if we are born deaf or having hearing loss while growing up? The objectives of this paper are to identify the current practice in teaching and learning among deaf students and to analyse an appropriate method in enhancing learning process among deaf students. A case study method was employed by using methods of observation and interview to selected deaf students and teachers. The findings indicated that the suitable method of teaching for deaf students is by using pictures and body movement. In other words, by combining these two medium of images and body movement, the best medium that the study suggested is by using video or motion pictures. The study concluded and recommended that video or motion pictures is recommended medium to be used in teaching and learning for deaf students.

Keywords: deaf, photographic images, visual communication, education, learning ability

Procedia PDF Downloads 284
1351 Intensity Modulated Radiotherapy of Nasopharyngeal Carcinomas: Patterns of Loco Regional Relapse

Authors: Omar Nouri, Wafa Mnejja, Nejla Fourati, Fatma Dhouib, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Jamel Daoud

Abstract:

Background and objective: Induction chemotherapy (IC) followed by concomitant chemo radiotherapy with intensity modulated radiation (IMRT) technique is actually the recommended treatment modality for locally advanced nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the prognostic factors predicting loco regional relapse with this new treatment protocol. Patients and methods: A retrospective study of 52 patients with NPC treated between June 2016 and July 2019. All patients received IC according to the protocol of the Head and Neck Radiotherapy Oncology Group (Gortec) NPC 2006 (3 TPF courses) followed by concomitant chemo radiotherapy with weekly cisplatin (40 mg / m2). Patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. Median age was 49 years (19-69) with a sex ratio of 3.3. Forty five tumors (86.5%) were classified as stages III - IV according to the 2017 UICC TNM classification. Loco regional relapse (LRR) was defined as a local and/or regional progression that occurs at least 6 months after the end of treatment. Survival analysis was performed according to Kaplan-Meier method and Log-rank test was used to compare anatomy clinical and therapeutic factors that may influence loco regional free survival (LRFS). Results: After a median follow up of 42 months, 6 patients (11.5%) experienced LRR. A metastatic relapse was also noted for 3 of these patients (50%). Target volumes coverage was optimal for all patient with LRR. Four relapses (66.6%) were in high-risk target volume and two (33.3%) were borderline. Three years LRFS was 85,9%. Four factors predicted loco regional relapses: histologic type other than undifferentiated (UCNT) (p=0.027), a macroscopic pre chemotherapy tumor volume exceeding 100 cm³ (p=0.005), a reduction in IC doses exceeding 20% (p=0.016) and a total cumulative cisplatin dose less than 380 mg/m² (p=0.0.34). TNM classification and response to IC did not impact loco regional relapses. Conclusion: For nasopharyngeal carcinoma, tumors with initial high volume and/or histologic type other than UCNT, have a higher risk of loco regional relapse. Therefore, they require a more aggressive therapeutic approaches and a suitable monitoring protocol.

Keywords: loco regional relapse, modulation intensity radiotherapy, nasopharyngeal carcinoma, prognostic factors

Procedia PDF Downloads 124
1350 The Effect of Expressive Therapies on Children and Youth Impacted by Refugee Trauma: A Meta-Analysis

Authors: Brian Kristopher Cambra

Abstract:

Millions of displaced families are seeking refuge in countries that are not their own due to war, violence, persecution, political unrest, and natural disasters. This global crisis is forcing researchers and practitioners to consider how refugees are coping with the trauma associated with their migration process. Effective therapeutic approaches are needed in a global effort to address the traumatic impact of forced migration. This meta-analytical study investigates the effectiveness of expressive therapeutic modalities, including play, art, music, sandplay, theatre, and writing therapies, in helping children and adolescents cope with refugee trauma. Seventeen pre-post and between-group comparison studies were analyzed using a random-effects model. The combined effect size for pre-post comparisons was medium (g = 0.58), whereas the combined effect size for between-group comparisons was small (g = 0.32). Overall, art therapy was found to be most effective in treating stress symptoms. Heterogeneity tests, however, suggest effect sizes cannot be interpreted as meaningful due to substantial variance. Nevertheless, findings of this meta-analysis indicate that expressive therapies may be among beneficial modalities to integrate with other trauma-informed approaches.

Keywords: expressive therapies, forced migration, meta-analysis, refugees, trauma

Procedia PDF Downloads 143
1349 University Arabic/Foreign Language Teacher's Competences, Professionalism and the Challenges and Opportunities

Authors: Abeer Heider

Abstract:

The article considers the definitions of teacher’s competences and professionalism from different perspectives of Arab and foreign scientists. A special attention is paid to the definition, classification of the stages and components of University Arabic /foreign language teacher’s professionalism. The results of the survey are offered and recommendations are given. In this paper, only some of the problems of defining professional competence and professionalism of the university Arabic/ foreign language teacher have been mentioned. It needs much more analysis and discussion, because the quality of training today’s competitive and mobile students with a good knowledge of foreign languages depends directly on the teachers’ professional level.

Keywords: teacher’s professional competences, Arabic/ foreign language teacher’s professionalism, teacher evaluation, teacher quality

Procedia PDF Downloads 452
1348 The Oral Production of University EFL Students: An Analysis of Tasks, Format, and Quality in Foreign Language Development

Authors: Vera Lucia Teixeira da Silva, Sandra Regina Buttros Gattolin de Paula

Abstract:

The present study focuses on academic literacy and addresses the impact of semantic-discursive resources on the constitution of genres that are produced in such context. The research considers the development of writing in the academic context in Portuguese. Researches that address academic literacy and the characteristics of the texts produced in this context are rare, mainly with focus on the development of writing, considering three variables: the constitution of the writer, the perception of the reader/interlocutor and the organization of the informational text flow. The research aims to map the semantic-discursive resources of the written register in texts of several genres and produced by students in the first semester of the undergraduate course in Letters. The hypothesis raised is that writing in the academic environment is not a recurrent literacy practice for these learners and can be explained by the ontogenetic and phylogenetic nature of language development. Qualitative in nature, the present research has as empirical data texts produced in a half-yearly course of Reading and Textual Production; these data result from the proposition of four different writing proposals, in a total of 600 texts. The corpus is analyzed based on semantic-discursive resources, seeking to contemplate relevant aspects of language (grammar, discourse and social context) that reveal the choices made in the reader/writer interrelationship and the organizational flow of the Text. Among the semantic-discursive resources, the analysis includes three resources, including (a) appraisal and negotiation to understand the attitudes negotiated (roles of the participants of the discourse and their relationship with the other); (b) ideation to explain the construction of the experience (activities performed and participants); and (c) periodicity to outline the flow of information in the organization of the text according to the genre it instantiates. The results indicate the organizational difficulties of the flow of the text information. Cartography contributes to the understanding of the way writers use language in an effort to present themselves, evaluate someone else’s work, and communicate with readers.

Keywords: academic writing, Portuguese mother tongue, semantic-discursive resources, academic context

Procedia PDF Downloads 125
1347 Classification of Crisp Petri Nets

Authors: Riddhi Jangid, Gajendra Pratap Singh

Abstract:

Petri nets, a formalized modeling language that was introduced back around 50-60 years, have been widely used for modeling discrete event dynamic systems and simulating their behavior. Reachability analysis of Petri nets gives many insights into a modeled system. This idea leads us to study the reachability technique and use it in the reachability problem in the state space of reachable markings. With the same concept, Crisp Boolean Petri nets were defined in which the marking vectors that are boolean are distinct in the reachability analysis of the nets. We generalize the concept and define ‘Crisp’ Petri nets that generate the marking vectors exactly once in their reachability-based analysis, not necessarily Boolean.

Keywords: marking vector, n-vector, Petri nets, reachability

Procedia PDF Downloads 80
1346 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 74
1345 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 81