Search results for: microorganisms detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4083

Search results for: microorganisms detection

2583 Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach

Authors: Ghodbane Azeddine, Saad Maarouf, Boland Jean-Francois, Thibeault Claude

Abstract:

This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach.

Keywords: actuator faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, multiple time scale approximation, geometric approach for fault reconstruction, lyapunov stability

Procedia PDF Downloads 375
2582 Serological and Molecular Detection of Alfalfa Mosaic Virus in the Major Potato Growing Areas of Saudi Arabia

Authors: Khalid Alhudaib

Abstract:

Potato is considered as one of the most important and potential vegetable crops in Saudi Arabia. Alfalfa mosaic virus (AMV), genus Alfamovirus, family Bromoviridae is among the broad spread of viruses in potato. During spring and fall growing seasons of potato in 2015 and 2016, several field visits were conducted in the four major growing areas of potato cultivation (Riyadh-Qaseem-Hail-Hard). The presence of AMV was detected in samples using ELISA, dot blot hybridization and/or RT-PCR. The highest occurrence of AMV was observed as 18.6% in Qaseem followed by Riyadh with 15.2% while; the lowest infection rates were recorded in Hard and Hail, 8.3 and 10.4%, respectively. The sequences of seven isolates of AMV obtained in this study were determined and the sequences were aligned with the other sequences available in the GenBank database. Analyses confirmed the low variability among AMV isolated in this study, which means that all AMV isolates may originate from the same source. Due to high incidence of AMV, other economic susceptible crops may become affected by high incidence of this virus in potato crops. This requires accurate examination of potato seed tubers to prevent the spread of the virus in Saudi Arabia. The obtained results indicated that the hybridization and ELISA are suitable techniques in the routine detection of AMV in a large number of samples while RT-PCR is more sensitive and essential for molecular characterization of AMV.

Keywords: Alfamovirus, AMV, Alfalfa mosaic virus, PCR, potato

Procedia PDF Downloads 183
2581 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 70
2580 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: social networks, community detection, modularity optimization, geographically dispersed communities

Procedia PDF Downloads 239
2579 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos

Authors: Thilini M. Yatanwala

Abstract:

CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.

Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection

Procedia PDF Downloads 185
2578 Fast Detection of Local Fiber Shifts by X-Ray Scattering

Authors: Peter Modregger, Özgül Öztürk

Abstract:

Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.

Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination

Procedia PDF Downloads 66
2577 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 455
2576 Investigation of the Variables Affecting the Use of Charcoal to Delay Fermentation in Wet Beans Slurry Using Chemical and Physical Analysis

Authors: Anuoluwapo O. Adewole

Abstract:

Fermentation is the conversion of monomeric sugars into ethanol and carbondioxide in the presence of microorganisms under anaerobic conditions. In line with the aim and objective of this research project, which is to investigate into the variables affecting the use of charcoal to delay fermentation in wet beans slurry, some physical and chemical analysis were carried out on the wet beans slurry using a PH meter in which a thermometer is incorporated in it, and a measuring cylinder was used for the foam level test. About 250 grams of the ground beans slurry was divided into two portions for testing. The sample with charcoal was labeled sample 'A' while the second sample without charcoal was labeled sample 'B' subsequently. The experiment lasted for a period of 41.15 hours (i.e., forty-one hours and nine minutes). During the fourth process, both samples could not be tested as the laboratory had been saturated with foul odor and both samples were packed and sealed in polythene bag for disposal in the trash can. It was generally observed that the sample with the charcoal lasted for a longer time before that without charcoal before total spoilage occurred.

Keywords: fermentation, monomeric sugars, beans slurry, charcoal, anaerobic conditions

Procedia PDF Downloads 338
2575 Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to ‎an Environmentally Safe Product: Corrosion Inhibitor and Biocide

Authors: Mohamed A. Hegazy

Abstract:

Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in ‎aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community.

Keywords: PVC, surfactant, corrosion inhibitor, biocide, SRB

Procedia PDF Downloads 126
2574 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation

Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.

Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone

Procedia PDF Downloads 167
2573 The Involvement of Visual and Verbal Representations Within a Quantitative and Qualitative Visual Change Detection Paradigm

Authors: Laura Jenkins, Tim Eschle, Joanne Ciafone, Colin Hamilton

Abstract:

An original working memory model suggested the separation of visual and verbal systems in working memory architecture, in which only visual working memory components were used during visual working memory tasks. It was later suggested that the visuo spatial sketch pad was the only memory component at use during visual working memory tasks, and components such as the phonological loop were not considered. In more recent years, a contrasting approach has been developed with the use of an executive resource to incorporate both visual and verbal representations in visual working memory paradigms. This was supported using research demonstrating the use of verbal representations and an executive resource in a visual matrix patterns task. The aim of the current research is to investigate the working memory architecture during both a quantitative and a qualitative visual working memory task. A dual task method will be used. Three secondary tasks will be used which are designed to hit specific components within the working memory architecture – Dynamic Visual Noise (visual components), Visual Attention (spatial components) and Verbal Attention (verbal components). A comparison of the visual working memory tasks will be made to discover if verbal representations are at use, as the previous literature suggested. This direct comparison has not been made so far in the literature. Considerations will be made as to whether a domain specific approach should be employed when discussing visual working memory tasks, or whether a more domain general approach could be used instead.

Keywords: semantic organisation, visual memory, change detection

Procedia PDF Downloads 597
2572 Screening of New Antimicrobial Agents from Heterocyclic Derivatives

Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah

Abstract:

The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.

Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology

Procedia PDF Downloads 372
2571 Development of the Analysis and Pretreatment of Brown HT in Foods

Authors: Hee-Jae Suh, Mi-Na Hong, Min-Ji Kim, Yeon-Seong Jeong, Ok-Hwan Lee, Jae-Wook Shin, Hyang-Sook Chun, Chan Lee

Abstract:

Brown HT is a bis-azo dye which is permitted in EU as a food colorant. So far, many studies have focused on HPLC using diode array detection (DAD) analysis for detection of this food colorant with different columns and mobile phases. Even though these methods make it possible to detect Brown HT, low recovery, reproducibility, and linearity are still the major limitations for the application in foods. The purpose of this study was to compare various methods for the analysis of Brown HT and to develop an improved analytical methods including pretreatment. Among tested analysis methods, best resolution of Brown HT was observed when the following solvent was applied as a eluent; solvent A of mobile phase was 0.575g NH4H2PO4, and 0.7g Na2HPO4 in 500mL water added with 500mL methanol. The pH was adjusted using phosphoric acid to pH 6.9 and solvent B was methanol. Major peak for Brown HT appeared at the end of separation, 13.4min after injection. This method exhibited relatively high recovery and reproducibility compared with other methods. LOD (0.284 ppm), LOQ (0.861 ppm), resolution (6.143), and selectivity (1.3) of this method were better than those of ammonium acetate solution method which was most frequently used. Precision and accuracy were verified through inter-day test and intra-day test. Various methods for sample pretreatments were developed for different foods and relatively high recovery over 80% was observed in all case. This method exhibited high resolution and reproducibility of Brown HT compared with other previously reported official methods from FSA and, EU regulation.

Keywords: analytic method, Brown HT, food colorants, pretreatment method

Procedia PDF Downloads 482
2570 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 424
2569 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 604
2568 Antioxidant and Antimicrobial Properties of Twenty Medicinal Plants

Authors: S. Krimat, T. Dob, L. Lamari, H. Metidji

Abstract:

The aim of this study is to evaluate the antioxidant and antimicrobial activity of hydromethanolic extract of selected Algerian medicinal flora. The antioxidant activity of extract was evaluated in terms of radical scavenging potential (DPPH) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was tested against five microorganisms Pseu-domonas aeruginosa Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Candida albicans. The results showed that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50 = 4.60 μg/ml), while Populus trimula had the highest antioxidant activity in β-carotene/linolaic acid assay. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. The results indicate that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

Keywords: Algerian medicinal plants, antimicrobial activity, antioxidant activity, disc diffusion method

Procedia PDF Downloads 353
2567 Use of Nanosensors in Detection and Treatment of HIV

Authors: Sayed Obeidullah Abrar

Abstract:

Nanosensor is the combination of two terms nanoparticles and sensors. These are chemical or physical sensor constructed using nanoscale components, usually microscopic or submicroscopic in size. These sensors are very sensitive and can detect single virus particle or even very low concentrations of substances that could be potentially harmful. Nanosensors have a large scope of research especially in the field of medical sciences, military applications, pharmaceuticals etc.

Keywords: HIV/AIDS, nanosensors, DNA, RNA

Procedia PDF Downloads 301
2566 Antimicrobial Effect of Natamycin against Food Spoilage Fungi and Yeast Contaminated Fermented Foods

Authors: Pervin Basaran Akocak

Abstract:

Food antimicrobials are compounds that are incorporated into food matrixes in order to cause death or delay the growth of spoilage or pathogenic microorganisms. As a result, microbiological deterioration is prevented throughout storage and food distribution. In this study, the effect of natural antimycotic natamycin (C33H47NO13, with a molecular mass of 665.725), a GRAS (Generally Recognized As Safe) commercial compound produced by different strains of Streptomyces sp., was tested against various fermented food contamination fungi and yeast species. At the concentration of 100 µg/ml, natamycin exhibited stronger antifungal activity against fungi than yeast species tested. The exposure time of natamycin for complete inhibition of the species tested were found to be between 100-180 min at 300-750 µg/ml concentration. SEM observations of fungal species demonstrated that natamycin distorted and damaged the conidia and hyphae by inhibiting spore germination and mycelial growth. Natamycin can be considered as a potential candidate in hurdle food treatments for preventing fungal and yeast invasion and resulting deterioration of fermented products.

Keywords: natamycin, antifungal, fermented food, food spoilage fungi

Procedia PDF Downloads 517
2565 Antifungal Lactobacilli Affect Mycelium Morphology and Protect Apricot Juice against Mold Spoilage

Authors: Nora Laref, Bettache Guessas

Abstract:

Preservation of foods mainly depends on delaying or inhibiting the growth of spoilage microorganisms, and antifungal activity of lactic acid bacteria is one of the technological properties researched. The antifungal activity was screened with overlay method of six strains of lactic acid bacteria (Lactobacillus plantarum LB54, LB52, LB51, LB20, LB24 Lactobacillus farciminis LB53) isolated from silage, camel milk and carrot against Aspergillus sp. Lactobacillus plantarum and farciminis inhibit spore germination and mycelia growth of Aspergillus sp., the production of antifungal compounds by these strains was detectable after 4h of incubation at 30°C and show total inhibition after 24h in liquid media, but in solid media showed a good inhibition after 96h of incubation, these compounds cause malformations in the thalle, conidiophore and conidia. These strains could be used as agents of biopreservation since have the ability to retard Aspergillus sp., growth in apricot juice with and without sugar conserved in refrigerator but not in bread.

Keywords: lactobacillus, antifungal substances, aspergillus, biopreservation

Procedia PDF Downloads 350
2564 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors

Authors: João Madureira, Ricardo Lagido, Inês Sousa, Fraunhofer Portugal

Abstract:

Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU.

Keywords: inertial measurement unit (IMU), global positioning system (GPS), smartphone, surfing performance

Procedia PDF Downloads 404
2563 Characterization and Antimicrobial Properties of Functional Polypropylene Films Incorporated with AgSiO2, AgZn, and AgZ Useful as Returnable Packaging in Seafood Distribution

Authors: Suman Singh, Myungho Lee, Insik Park, Yangjai Shin, Youn Suk Lee

Abstract:

Active antimicrobial films prepared by incorporating AgSiO2, AgZn, and AgZ at 1%, 3%, 5%, 10% (w/w) into polypropylene (PP) matrix. Complete thermal, structural, mechanical and functional characterization were carried out of all formulations and determined the antimicrobial efficiency and returnable antimicrobial efficiency according to the Japanese Industrial Standard method. The morphology of the films showed agglomerates of particles in the composites. The active formulation had decreased elongation compared to the pure PP sample. Thermal analyses indicated that the active formulation compositions had increased thermal stability. The films showed 50% antimicrobial properties after the fifth wash against the tested microorganisms, presenting better activity against Gram negative organisms than Gram positive ones. These findings suggest that PP films with AgSiO2, AgZn, and AgZ particles could provide a significant contribution to the quality and safety of seafood in the distribution chain.

Keywords: antimicrobial film, properties and characterization, returnable packaging, sea food

Procedia PDF Downloads 368
2562 From Biowaste to Biobased Products: Life Cycle Assessment of VALUEWASTE Solution

Authors: Andrés Lara Guillén, José M. Soriano Disla, Gemma Castejón Martínez, David Fernández-Gutiérrez

Abstract:

The worldwide population is exponentially increasing, which causes a rising demand for food, energy and non-renewable resources. These demands must be attended to from a circular economy point of view. Under this approach, the obtention of strategic products from biowaste is crucial for the society to keep the current lifestyle reducing the environmental and social issues linked to the lineal economy. This is the main objective of the VALUEWASTE project. VALUEWASTE is about valorizing urban biowaste into proteins for food and feed and biofertilizers, closing the loop of this waste stream. In order to achieve this objective, the project validates three value chains, which begin with the anaerobic digestion of the biowaste. From the anaerobic digestion, three by-products are obtained: i) methane that is used by microorganisms, which will be transformed into microbial proteins; ii) digestate that is used by black soldier fly, producing insect proteins; and iii) a nutrient-rich effluent, which will be transformed into biofertilizers. VALUEWASTE is an innovative solution, which combines different technologies to valorize entirely the biowaste. However, it is also required to demonstrate that the solution is greener than other traditional technologies (baseline systems). On one hand, the proteins from microorganisms and insects will be compared with other reference protein production systems (gluten, whey and soybean). On the other hand, the biofertilizers will be compared to the production of mineral fertilizers (ammonium sulphate and synthetic struvite). Therefore, the aim of this study is to provide that biowaste valorization can reduce the environmental impacts linked to both traditional proteins manufacturing processes and mineral fertilizers, not only at a pilot-scale but also at an industrial one. In the present study, both baseline system and VALUEWASTE solution are evaluated through the Environmental Life Cycle Assessment (E-LCA). The E-LCA is based on the standards ISO 14040 and 14044. The Environmental Footprint methodology was the one used in this study to evaluate the environmental impacts. The results for the baseline cases show that the food proteins coming from whey have the highest environmental impact on ecosystems compared to the other proteins sources: 7.5 and 15.9 folds higher than soybean and gluten, respectively. Comparing feed soybean and gluten, soybean has an environmental impact on human health 195.1 folds higher. In the case of biofertilizers, synthetic struvite has higher impacts than ammonium sulfate: 15.3 (ecosystems) and 11.8 (human health) fold, respectively. The results shown in the present study will be used as a reference to demonstrate the better environmental performance of the bio-based products obtained through the VALUEWASTE solution. Other originalities that the E-LCA performed in the VALUEWASTE project provides are the diverse direct implications on investment and policies. On one hand, better environmental performance will serve to remove the barriers linked to these kinds of technologies, boosting the investment that is backed by the E-LCA. On the other hand, it will be a germ to design new policies fostering these types of solutions to achieve two of the key targets of the European Community: being self-sustainable and carbon neutral.

Keywords: anaerobic digestion, biofertilizers, circular economy, nutrients recovery

Procedia PDF Downloads 91
2561 Biological Treatment of Tannery Wastewater Using Pseudomonas Strains

Authors: A. Benhadji, R. Maachi

Abstract:

Environmental protection has become a major economic development issues. Indeed, the environment has become both market growth factor and element of competition. It is now an integral part of all industrial strategies. Ecosystem protection is based on the reduction of the pollution load in the treatment of liquid waste. The physicochemical techniques are commonly used which a transfer of pollution is generally found. Alternative to physicochemical methods is the use of microorganisms for cleaning up the waste waters. The objective of this research is the evaluation of the effects of exogenous added Pseudomonas strains on pollutants biodegradation. The influence of the critical parameters such as inoculums concentration and duration treatment are studied. The results show that Pseudomonas putida is found to give a maximum reduction in chemical organic demand (COD) in 4 days of incubation. However, toward to protect biological pollution of environment, the treatment is achieved by electro coagulation process using aluminium electrodes. The results indicate that this process allows disinfecting the water and improving the electro coagulated sludge quality.

Keywords: tannery, pseudomonas, biological treatment, electrocoagulation process, sludge quality

Procedia PDF Downloads 370
2560 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution

Authors: Qiang Zhang, Xiaojian Hu

Abstract:

In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.

Keywords: real-time, multi-vehicle tracking, feature selection, color attribution

Procedia PDF Downloads 167
2559 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 140
2558 Analysis of the Reasons behind the Deteriorated Standing of Engineering Companies during the Financial Crisis

Authors: Levan Sabauri

Abstract:

In this paper, we discuss the deteriorated standing of engineering companies, some of the reasons behind it and the problems facing engineering enterprises during the financial crisis. We show the part that financial analysis plays in the detection of the main factors affecting the standing of a company, classify internal problems and the reasons influencing efficiency thereof. The publication contains the analysis of municipal engineering companies in post-Soviet transitional economies. In the wake of the 2008 world financial crisis the issue became even more poignant. It should be said though that even before the problem had been no less acute for some post-Soviet states caught up in a lengthy transitional period. The paper highlights shortcomings in the management of transportation companies, with new, more appropriate methods suggested. In analyzing the financial stability of a company, three elements need to be considered: current assets, investment policy and structural management of the funding sources leveraging the stability, should be focused on. Inappropriate management of the three may create certain financial problems, with timely and accurate detection thereof being an issue in terms of improved standing of an enterprise. In this connection, the publication contains a diagram reflecting the reasons behind the deteriorated financial standing of a company, as well as a flow chart thereof. The main reasons behind low profitability are also discussed.

Keywords: efficiency, financial management, financial analysis funding structure, financial sustainability, investment policy, profitability, solvency, working capital

Procedia PDF Downloads 307
2557 The Production of B-Group Vitamin by Lactic Acid Bacteria and Its Importance in Food Industry

Authors: Goksen Arik, Mihriban Korukluoglu

Abstract:

Lactic acid bacteria (LAB) has been used commonly in the food industry. They can be used as natural preservatives because acidifying carried out in the medium can protect the last product against microbial spoilage. Besides, other metabolites produced by LAB during fermentation period have also an antimicrobial effect on pathogen and spoilage microorganisms in the food industry. LAB are responsible for the desirable and distinctive aroma and flavour which are observed in fermented food products such as pickle, kefir, yogurt, and cheese. Various LAB strains are able to produce B-group vitamins such as folate (B11), riboflavin (B2) and cobalamin (B12). Especially wild-type strains of LAB can produce B-group vitamins in high concentrations. These cultures may be used in food industry as a starter culture and also the microbial strains can be used in encapsulation technology for new and functional food product development. This review is based on the current applications of B-group vitamin producing LAB. Furthermore, the new technologies and innovative researches about B vitamin production in LAB have been demonstrated and discussed for determining their usage availability in various area in the food industry.

Keywords: B vitamin, food industry, lactic acid bacteria, starter culture, technology

Procedia PDF Downloads 392
2556 Detection the Ice Formation Processes Using Multiple High Order Ultrasonic Guided Wave Modes

Authors: Regina Rekuviene, Vykintas Samaitis, Liudas Mažeika, Audrius Jankauskas, Virginija Jankauskaitė, Laura Gegeckienė, Abdolali Sadaghiani, Shaghayegh Saeidiharzand

Abstract:

Icing brings significant damage to aviation and renewable energy installations. Air-conditioning, refrigeration, wind turbine blades, airplane and helicopter blades often suffer from icing phenomena, which cause severe energy losses and impair aerodynamic performance. The icing process is a complex phenomenon with many different causes and types. Icing mechanisms, distributions, and patterns are still relevant to research topics. The adhesion strength between ice and surfaces differs in different icing environments. This makes the task of anti-icing very challenging. The techniques for various icing environments must satisfy different demands and requirements (e.g., efficient, lightweight, low power consumption, low maintenance and manufacturing costs, reliable operation). It is noticeable that most methods are oriented toward a particular sector and adapting them to or suggesting them for other areas is quite problematic. These methods often use various technologies and have different specifications, sometimes with no clear indication of their efficiency. There are two major groups of anti-icing methods: passive and active. Active techniques have high efficiency but, at the same time, quite high energy consumption and require intervention in the structure’s design. It’s noticeable that vast majority of these methods require specific knowledge and personnel skills. The main effect of passive methods (ice-phobic, superhydrophobic surfaces) is to delay ice formation and growth or reduce the adhesion strength between the ice and the surface. These methods are time-consuming and depend on forecasting. They can be applied on small surfaces only for specific targets, and most are non-biodegradable (except for anti-freezing proteins). There is some quite promising information on ultrasonic ice mitigation methods that employ UGW (Ultrasonic Guided Wave). These methods are have the characteristics of low energy consumption, low cost, lightweight, and easy replacement and maintenance. However, fundamental knowledge of ultrasonic de-icing methodology is still limited. The objective of this work was to identify the ice formation processes and its progress by employing ultrasonic guided wave technique. Throughout this research, the universal set-up for acoustic measurement of ice formation in a real condition (temperature range from +240 C to -230 C) was developed. Ultrasonic measurements were performed by using high frequency 5 MHz transducers in a pitch-catch configuration. The selection of wave modes suitable for detection of ice formation phenomenon on copper metal surface was performed. Interaction between the selected wave modes and ice formation processes was investigated. It was found that selected wave modes are sensitive to temperature changes. It was demonstrated that proposed ultrasonic technique could be successfully used for the detection of ice layer formation on a metal surface.

Keywords: ice formation processes, ultrasonic GW, detection of ice formation, ultrasonic testing

Procedia PDF Downloads 67
2555 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 500
2554 Histopathological and Microbiological Studies on Subclinical Endometritis in Repeat Breeder Cow

Authors: Mehmet Akoz

Abstract:

In this study the clinical, mikrobiological and histopathological diagnoses of subclinic and nonspecific endometritis resulting in repeat breeder. Total of 36 cows, aging between 3-9 years having normal oestrous cycles with no pregnancy following at least 3 unsuccesful inseminations, were used. Biopsy specimens for histopathological and swab for bacteri microbiological cultures were obtanied from endometrium of repeat breeders showing no macroskopic evidence of any defectiveness of genital organs and based on anamneses. Eleven out of 36 cows have positive bacteriological results. While 19 cows have varying degrees of and endometritis, the other 17 cows did not have any pathologic lesions. A total of 19 biopsies in 4 of the I. degree in endometritis, 9 of them II. degree endometritis and 6 were also III. degree endometritis was evaluated. In the majority of cows by the histopathological evaluation results (78.9%) monitored by the second and third-degree endometritis shape, in 83.3% of the isolated microorganisms were identified similar results. Histopathological and microbiological evaluation, along with clinical examination are important for the diagnoses and treatment of repeat breeders, having no resistance with well dissipation to endometrium rifaximina foam formulation was found to be more effective than PGF2α.

Keywords: repeat breeder, dairy cattle, histopathology, PGF2α, rifaximina

Procedia PDF Downloads 290