Search results for: enterprise intelligence
613 The Effect of Artificial Intelligence on Decoration
Authors: Ashraf Fayz Bekhet Abaskron
Abstract:
This research is done to create new compositions for designs, finding inspiration from watercolor artworks displayed in SuanSunandha Palace. The researcher made a study in the history of the landmark, its importance, the paintings in the Palace, the types and characteristics of the flowers painted, as well as the artistic elements and principles of designs that went into the paintings. The information obtained led to the creation of six totally new designs. The designs incorporated standard international designs and artistic principles and still kept to the original style of the watercolor paintings in SuanSunandha Palace. Following the paintings, the designs are divided into three categories: Orchids, Roses, and Flowers from literature. The researcher used the components of the flowers including rounded-petal flowers, wavy-edged petals, flowers with pointed petals, leaves, vines, and branches. All of them are represented in the original paintings. Upon the original, the researcher switched these elements and their proportions around to create a more modern design. The original forms are used as references since they contain the characteristics of each flower species. The work created achieved an updated trait and simultaneously reflects the charms and timeless beauty of the watercolor paintings displayed in SuanSunandha Palace, which still exists in today’s world.Keywords: art, craft, design, Oman, weaving watercolor, painting, flower, Suan Sunandhagolden ratio, Fibonacci numbers, textile design, designs
Procedia PDF Downloads 34612 The Impact of Artificial Intelligence on Textiles Technology
Authors: Ramy Kamel Fekrey Gadelrab
Abstract:
Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design
Procedia PDF Downloads 49611 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content
Procedia PDF Downloads 299610 Happiness of Thai People: An Analysis by Socioeconomic Factors
Authors: Kalayanee Senasu
Abstract:
This research investigates Thai people’s happiness based on socioeconomic factors, i.e. region, municipality, gender, age, and occupation. The research data were collected from survey data using interviewed questionnaires. The primary data were from stratified multi-stage sampling in each region, province, district, and enumeration area; and simple random sampling in each enumeration area. These data were collected in 13 provinces: Bangkok and three provinces in each of all four regions. The data were collected over two consecutive years. There were 3,217 usable responses from the 2017 sampling, and 3,280 usable responses from the 2018 sampling. The Senasu’s Thai Happiness Index (THaI) was used to calculate the happiness level of Thai people in 2017 and 2018. This Thai Happiness Index comprises five dimensions: subjective well-being, quality of life, philosophy of living, governance, and standard of living. The result reveals that the 2017 happiness value is 0.506, while Thai people are happier in 2018 (THaI = 0.556). For 2017 happiness, people in the Central region have the highest happiness (THaI = 0.532), which is followed closely by people in the Bangkok Metropolitan Area (THaI = 0.530). People in the North have the lowest happiness (THaI = 0.476) which is close to the level for people in the Northeast (THaI = 0.479). Comparing age groups, it is found that people in the age range 25-29 years old are the happiest (THaI = 0.529), followed by people in the age range 55-59 and 35-39 years old (THaI = 0.526 and 0.523, respectively). Additionally, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.533 vs. 0.475). Males are happier than females (THaI = 0.530 vs. 0.482), and retired people, entrepreneurs, and government employees are all in the high happiness groups (THaI =0.614, 0.608, and 0.593, respectively). For 2018 happiness, people in the Northern region have the highest happiness (THaI = 0.590), which is followed closely by people in the South and Bangkok Metropolitan Area (THaI = 0.578 and 0.577, respectively). People in the Central have the lowest happiness (THaI = 0.530), which is close to the level for people in the Northeast (THaI = 0.533). Comparing age groups, it is found that people in the age range 35-39 years old are the happiest (THaI = 0.572), followed by people in the age range 40-44 and 60-64 years old (THaI = 0.569 and 0.568, respectively). Similar to 2017 happiness, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.567 vs. 0. 552). However, males and females are happy at about the same levels (THaI = 0.561 vs. 0.560), and government employees, retired people, and state enterprise employees are all in the high happiness groups (THaI =0.667, 0.639, and 0.661, respectively).Keywords: happiness, quality of life, Thai happiness index, socio-economic factors
Procedia PDF Downloads 114609 [Keynote Talk]: Swiss Scientific Society for Developing Countries: A Concept of Relationship
Authors: Jawad Alzeer
Abstract:
Cultural setup is varied from country to country and nation to nation, but the ability to adapt successfully to the new cultural setup may pave the way toward the development of cultural intelligence. Overcoming differences may require to build up our personality with the ability to learn, exchange thoughts, and have a constructive dream. Adaptation processes can be accelerated if we effectively utilize our cultural diversity. This can be done through a unified body or society; people with common goals can collectively work to satisfy their values. Narrowing the gap between developed and developing countries is of prime importance. Many international organizations are trying to resolve these issues by rational and peaceful means. Failing to understand the cultural differences, mentalities, strengths and weaknesses of developed and developing countries led to the collapse of many partnerships. Establishment of a neutral body influenced by developed countries intellectuality and developing countries personality may offer a better understanding and reasonable solutions, suggestions, advice that may assist in narrowing gaps and promote-strengthening relationship between developed and developing countries. The key issues, goals, and potential concepts associated with initiating Swiss scientific society for developing countries as a model to facilitate integration of highly skilled scientists are discussed.Keywords: cultural diversity, developing countries, integration, Switzerland
Procedia PDF Downloads 808608 Risk Mitigation of Data Causality Analysis Requirements AI Act
Authors: Raphaël Weuts, Mykyta Petik, Anton Vedder
Abstract:
Artificial Intelligence has the potential to create and already creates enormous value in healthcare. Prescriptive systems might be able to make the use of healthcare capacity more efficient. Such systems might entail interpretations that exclude the effect of confounders that brings risks with it. Those risks might be mitigated by regulation that prevents systems entailing such risks to come to market. One modality of regulation is that of legislation, and the European AI Act is an example of such a regulatory instrument that might mitigate these risks. To assess the risk mitigation potential of the AI Act for those risks, this research focusses on a case study of a hypothetical application of medical device software that entails the aforementioned risks. The AI Act refers to the harmonised norms for already existing legislation, here being the European medical device regulation. The issue at hand is a causal link between a confounder and the value the algorithm optimises for by proxy. The research identifies where the AI Act already looks at confounders (i.a. feedback loops in systems that continue to learn after being placed on the market). The research identifies where the current proposal by parliament leaves legal uncertainty on the necessity to check for confounders that do not influence the input of the system, when the system does not continue to learn after being placed on the market. The authors propose an amendment to article 15 of the AI Act that would require high-risk systems to be developed in such a way as to mitigate risks from those aforementioned confounders.Keywords: AI Act, healthcare, confounders, risks
Procedia PDF Downloads 259607 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 20606 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network
Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir
Abstract:
Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.
Procedia PDF Downloads 385605 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 63604 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique
Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.Keywords: earthquake prediction, ANN, seismic bumps
Procedia PDF Downloads 127603 Awareness in the Code of Ethics for Nurse Educators among Nurse Educators, Nursing Students and Professional Nurses at the Royal Thai Army, Thailand
Authors: Wallapa Boonrod
Abstract:
Thai National Education Act 1999 required all educational institutions received external quality evaluation at least once every five years. The purpose of this study was to compare the awareness in the code of ethics for nurse educators among nurse educators, professional nurses, and nursing students under The Royal Thai Army Nurse College. The sample consisted of 51 of nurse educators 200 nursing students and 340 professional nurses from Army nursing college and hospital by stratified random sampling techniques. The descriptive statistics indicated that the nurse educators, nursing students and professional nurses had different levels of awareness in the 9 roles of nurse educators: Nurse, Reliable Sacrifice, Intelligence, Giver, Nursing Skills, Teaching Responsibility, Unbiased Care, Tie to Organization, and Role Model. The code of ethics for nurse educators (CENE) measurement models from the awareness of nurse educators, professional nurses, and nursing students were well fitted with the empirical data. The CENE models from them were invariant in forms, but variant in factor loadings. Thai Army nurse educators strive to create a learning environment that nurtures the highest nursing potential and standards in their nursing students.Keywords: awareness of the code of ethics for nurse educators, nursing college and hospital under The Royal Thai Army, Thai Army nurse educators, professional nurses
Procedia PDF Downloads 450602 Design, Optimize the Damping System for Optical Scanning Equipment
Authors: Duy Nhat Tran, Van Tien Pham, Quang Trung Trinh, Tien Hai Tran, Van Cong Bui
Abstract:
In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation.Keywords: optical device, collision safety, collision absorption, precise mechanics
Procedia PDF Downloads 63601 Maintenance Work Order Management Tool (Desktop & Mobile Solution)
Authors: Haitham Al Rawahi
Abstract:
Oman Electricity Transmission Company (OETC) has implemented Computerized Maintenance Management System (CMMS), which is based on Oracle enterprise asset management model e-AM. This was implemented with cooperation of Nama Shared Services (NSS). CMMS is mainly used to create maintenance work orders with a preconfigured workflow of defined maintenance schedules/plans, required resources, and materials, obtaining shutdown approvals, completing maintenance activities, and closing the work orders. Furthermore, CMMS is also configured with asset failure classifications, asset hierarchy, asset maintenance activities, integration with spare inventories, etc. Since the year 2017, site engineer is working on CMMS by filling-in manually all related maintenance and inspection records on paper forms and then scanning and attaching it in CMMS for further analysis. Site engineer will finalize all paper works at site and then goes back to office to scan and attach it to work order in CMMS. This creates sub tasks for site engineer and makes it very difficult and lengthy process. Also, there is a significant risk for missing or deleted important fields on the paper due to usage of pen to fill the paper. In addition to that, site engineer may take time and days working outside of the office. therefore, OETC has decided to digitize these inspection and maintenance forms in one platform in CMMS, and it can be opened with both functionalities online and offline. The ArcGIS product formats or web-enabled solutions which has ability to access from mobile and desktop devices via arc map modules will be used too. The purpose of interlinking is to setup for maintenance and inspection forms to work orders in e-AM, which the site engineer has daily interactions with. This ArcGIS environment or tool is designed to link with e-AM, so when site engineer opens this application from the site and a window will take him through same ArcGIS. This window opens the maintenance forms and shows the required fields to fill-in and save the work through his mobile application. After saving his work with the availability of network (Off/In) line, notification will trigger to his line manager to review and take further actions (approve/reject/request more information). In this function, the user can see the assigned work orders to his departments as well as chart of all work orders with status. The approver has ability to see the statistics of all work.Keywords: e-AM, GIS, CMMS, integration
Procedia PDF Downloads 97600 Mailchimp AI Application For Marketing Employees
Authors: Alia El Akhrass, Raheed Al Jifri, Sara Babalghoum, Jana Bushnag
Abstract:
This project delves into exploring the functionalities of Mailchimp, an artificial intelligence application. The objective is to comprehend its operations through the AI tools it offers. To achieve this, a survey was conducted among peers, seeking insights into Mailchimp's functionality, accessibility, efficiency, and overall benefits. The survey aimed to gather valuable feedback for analysis. Subsequently, a thorough analysis of the collected data was performed to identify trends, patterns, and areas of improvement. Visual representations were then crafted to effectively summarize the findings, aiding in conveying the research outcomes clearly. Founded in 2001, Mailchimp initially provided email marketing services but has since expanded into a comprehensive marketing platform. Its focus on simplicity and accessibility has contributed to its success among businesses of all sizes. Alternative platforms such as Constant Contact, AWeber, and GetResponse offer similar services with their own unique strengths. Mailchimp's journey exemplifies the importance of vision and adaptability in the ever-evolving digital marketing landscape. By prioritizing innovation, user-centricity, and customer service, Mailchimp has established itself as a trusted partner in the field of digital marketing, enabling businesses to effectively connect with their customers and achieve their marketing goals.Keywords: email marketing, ai tool, connect, communicate, generate
Procedia PDF Downloads 40599 AI as a Tool Hindering Digital Education
Authors: Justyna Żywiołek, Marek Matulewski
Abstract:
The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.Keywords: AI, digital education, education tools, motivation and engagement
Procedia PDF Downloads 28598 Technology for Enhancing the Learning and Teaching Experience in Higher Education
Authors: Sara M. Ismael, Ali H. Al-Badi
Abstract:
The rapid development and growth of technology has changed the method of obtaining information for educators and learners. Technology has created a new world of collaboration and communication among people. Incorporating new technology into the teaching process can enhance learning outcomes. Billions of individuals across the world are now connected together, and are cooperating and contributing their knowledge and intelligence. Time is no longer wasted in waiting until the teacher is ready to share information as learners can go online and get it immediately. The objectives of this paper are to understand the reasons why changes in teaching and learning methods are necessary, to find ways of improving them, and to investigate the challenges that present themselves in the adoption of new ICT tools in higher education institutes. To achieve these objectives two primary research methods were used: questionnaires, which were distributed among students at higher educational institutes and multiple interviews with faculty members (teachers) from different colleges and universities, which were conducted to find out why teaching and learning methodology should change. The findings show that both learners and educators agree that educational technology plays a significant role in enhancing instructors’ teaching style and students’ overall learning experience; however, time constraints, privacy issues, and not being provided with enough up-to-date technology do create some challenges.Keywords: e-books, educational technology, educators, e-learning, learners, social media, Web 2.0, LMS
Procedia PDF Downloads 276597 Informal Economy: Case Study of Street Vendors in Bangkok
Authors: Kangrij Roeksiripat
Abstract:
Street vending is one of the informal economy activities which considered significance to Thai people in the economic and the day-to-day social life. It had been believed that the street vendor is a group of the poor and uneducated people. With the increasing numbers of the street vendor occupying space on public sidewalks especially in central business districts, it becomes unclear whether street vending continues as a solution to unemployment for access labors. This research attempts to study and analyze types of street vendors in Bangkok under the informal economy framework. The debate on the heterogeneous informal economy has categorized into four schools; the dualism, the structuralism, the legalism and the voluntarism. The examination also embodies with market concept with Porter’s Five Forces of Competitive Position Model analysis and the interviews with the street vendors in three case study areas: Inner zone (Pathumwan district - the sidewalk on the opposite side of Siam Paragon mall), Middle zone (Ramkhamhaeng district - the sidewalk on the opposite side of Ramkhamhaeng University) and Outer zone (Minburi district- the sidewalk of Sriburanukit Road). The result indicates that most of street vendors in Siam square are voluntarily choose to make a living in vending on a sidewalk and tend to take it as a long-term occupation even though they can be in formal wage employment. Moreover, average income and positive attitude towards self-employed are the important factors that drive them to operate street vending businesses. Meanwhile, street vending is often a family enterprise in Ramkhamhaeng area and most vendors do not wish to transform their businesses into the formal sectors. Whereas the survey conducted in Sriburankit Road reveals that almost all of street vendors migrated from other provinces and were previously paid as the unskilled workers in formal sectors. They moved to informal trades because of the uncertainty of employment in the mainstream sectors and the inconsistent income with knowledge support of friends and relatives from the same hometown. In particular, the result reveals a common pattern that street vending is the very first occupation of some group of vendors and they will continue to engage in this activity. Thus, it is important for the government to design optimal policy which not only integrating informal workers into the formal economy but also monitoring the enforcement of regulations on the modern informal economy.Keywords: informal economy, sidewalks, street vendors, occupation
Procedia PDF Downloads 285596 Bhumastra “Unmanned Ground Vehicle”
Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J
Abstract:
Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI
Procedia PDF Downloads 124595 A Web Application for Screening Dyslexia in Greek Students
Authors: Antonios Panagopoulos, Stamoulis Georgios
Abstract:
Dyslexia's diagnosis is made taking into account reading and writing skills and is carried out by qualified scientific staff. In addition, there are screening tests that are designed to give an indication of possible dyslexic difficulties. Their main advantage is that they create a pleasant environment for the user and reduce the stress that can lead to false results. An online application was created for the first time, as far as authors' knowledge, for screening Dyslexia in Greek high school students named «DyScreTe». Thus, a sample of 240 students between 16 and 18 years old in Greece was taken, of which 120 were diagnosed with dyslexia by an official authority in Greece, and 120 were typically developed. The main hypothesis that was examined is that students who were diagnosed with dyslexia by official authorities in Greece had significantly lower performance in the respective software tests. The results verified the hypothesis we made those children with dyslexia in each test had a lower performance com-pared to the type developed in successful responses, except for the intelligence test. After random sampling, it was shown that the new online application was a useful tool for screening dyslexia. However, computer evaluation cannot replace the diagnosis by a professional expert, but with the results of this application, the interdisciplinary team that deals with the differential diagnosis will create and evaluate, at a later time, the appropriate intervention program.Keywords: dyslexia, screening tests, deficits, application
Procedia PDF Downloads 85594 Perceptions of College Students on Whether an Intelligent Tutoring System Is a Tutor
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate the benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. Developments improving the ease of ITS creation have recently increased their proliferation, leading many K-12 schools and institutions of higher education in the United States to regularly use ITS within classrooms. We investigated how students perceive their experience using an ITS. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course and were subsequently asked for feedback on their experience. Results show that their perceptions were generally favorable of the ITS, and most would seek to use an ITS both for STEM and non-STEM courses in the future. Along with detailed transaction-level data, this feedback also provides insights on the design of user-friendly interfaces, guidance on accessibility for students with impairments, the sequencing of exercises, students’ expectation of achievement, and comparisons to other tutoring experiences. We discuss how these findings are important for the creation, implementation, and evaluation of ITS as a mode and method of teaching and learning.Keywords: college statistics course, intelligent tutoring systems, in vivo study, student perceptions of tutoring
Procedia PDF Downloads 101593 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 302592 The Impact of Artificial Intelligence on Rural Life
Authors: Triza Edwar Fawzi Deif
Abstract:
In the process of urbanization in China, new rural construction is on the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residences, Badie village, in Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.Keywords: steel slag, co-product, primary coating, steel aggregate capital, rural areas, rural planning, rural governance village, design strategy, new rural dwellings, regional context, regional expression
Procedia PDF Downloads 52591 The Effect of Artificial Intelligence on International Law, Legal Security and Privacy Issues
Authors: Akram Waheb Nasef Alzordoky
Abstract:
The wars and armed conflicts have frequently ended in violations of global humanitarian law and regularly devote the maximum severe global crimes, which include war crimes, crimes towards humanity, aggression and genocide. But, simplest inside the XX century, the guideline changed into an articulated idea of establishing a frame of worldwide criminal justice so that you can prosecute those crimes and their perpetrators. The first steps on this subject were made with the aid of setting up the worldwide army tribunals for warfare crimes at Nuremberg and Tokyo, and the formation of ad hoc tribunals for the former Yugoslavia and Rwanda. Ultimately, the global criminal courtroom was established in Rome in 1998 with the aim of justice and that allows you to give satisfaction to the sufferers of crimes and their families. The aim of the paper was to provide an ancient and comparative analysis of the establishments of worldwide criminal justice primarily based on which those establishments de lege lata fulfilled the goals of individual criminal responsibility and justice. Moreover, the authors endorse de lege ferenda that the everlasting global crook Tribunal, in addition to the potential case, additionally takes over the current ICTY and ICTR cases.Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures
Procedia PDF Downloads 21590 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 44589 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 111588 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 72587 The Impact of Artificial Intelligence on Food Nutrition
Authors: Antonyous Fawzy Boshra Girgis
Abstract:
Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 40586 Evaluation of Information Technology Governance Frameworks for Better Governance in South Africa
Authors: Memory Ranga, Phillip Pretorious
Abstract:
The South African Government has invested a lot of money in Information Technology Governance (ITG) within the Government departments. The ITG framework was spearheaded by the Department of Public Service and Administration (DPSA). This led to the development of a governing ITG DPSA framework and later the Government Wide Enterprise Architecture (GWEA) Framework for assisting the departments to implement ITG. In addition to this, the government departments have adopted the Information Systems Audit and Control Association (ISACA) Control Objectives for Information and Related Technology (COBIT) for ITG processes. Despite all these available frameworks, departments fail to fully capitalise and improve the ITG processes mainly as these are too generic and difficult to apply for specific governance needs. There has been less research done to evaluate the progress on ITG initiatives within the government departments. This paper aims to evaluate the existing ITG frameworks within selected government departments in South Africa. A quantitative research approach was used in this study. Data was collected through an online questionnaire targeting ICT Managers and Directors from government departments. The study is undertaken within a case study and only the Eastern Cape Province was selected for the research. Document review mainly on ITG framework and best practices was also used. Data was analysed using the Google Analytic tools and SPSS. A one–sample Chi-Squared Test was used to verity the evaluation findings. Findings show that there is evidence that the current guiding National governance framework (DPSA) is out dated and does not accommodate the new changes in other governance frameworks. The Eastern Cape Government Departments have spent huge amount of money on ITG but not yet able to identify the benefits of the ITG initiatives. The guiding framework is rigid and does to address some of the departmental needs making it difficult to be flexible and apply the DPSA framework. Furthermore, despite the large budget on ITG, the departments still find themselves with many challenges and unable to improve some of the processes and services. All the engaged Eastern Cape departments have adopted the COBIT framework, but none has been conducting COBIT maturity Assessment which is a functionality of COBIT. There is evidence of too many the ITG frameworks and underutilisation of these frameworks. The study provides a comprehensive evaluation of the ITG frameworks that have been adopted by the South African Government Departments in the Eastern Cape Province. The evaluation guides and recommends the government departments to rethink and adopt ITG frameworks that could be customised to accommodate their needs. The adoption and application of ITG by government departments should assist in better governance and service delivery to the citizens.Keywords: information technology governance, COBIT, evaluate, framework, governance, DPSA framework
Procedia PDF Downloads 123585 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures
Authors: James Forren
Abstract:
This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.Keywords: augmented reality, cementitious composites, computational form finding, textile structures
Procedia PDF Downloads 175584 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering
Procedia PDF Downloads 87