Search results for: covering machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3486

Search results for: covering machine

1986 Cyber-Med: Practical Detection Methodology of Cyber-Attacks Aimed at Medical Devices Eco-Systems

Authors: Nir Nissim, Erez Shalom, Tomer Lancewiki, Yuval Elovici, Yuval Shahar

Abstract:

Background: A Medical Device (MD) is an instrument, machine, implant, or similar device that includes a component intended for the purpose of the diagnosis, cure, treatment, or prevention of disease in humans or animals. Medical devices play increasingly important roles in health services eco-systems, including: (1) Patient Diagnostics and Monitoring; Medical Treatment and Surgery; and Patient Life Support Devices and Stabilizers. MDs are part of the medical device eco-system and are connected to the network, sending vital information to the internal medical information systems of medical centers that manage this data. Wireless components (e.g. Wi-Fi) are often embedded within medical devices, enabling doctors and technicians to control and configure them remotely. All these functionalities, roles, and uses of MDs make them attractive targets of cyber-attacks launched for many malicious goals; this trend is likely to significantly increase over the next several years, with increased awareness regarding MD vulnerabilities, the enhancement of potential attackers’ skills, and expanded use of medical devices. Significance: We propose to develop and implement Cyber-Med, a unique collaborative project of Ben-Gurion University of the Negev and the Clalit Health Services Health Maintenance Organization. Cyber-Med focuses on the development of a comprehensive detection framework that relies on a critical attack repository that we aim to create. Cyber-Med will allow researchers and companies to better understand the vulnerabilities and attacks associated with medical devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The Cyber-Med detection framework will consist of two independent, but complementary detection approaches: one for known attacks, and the other for unknown attacks. These modules incorporate novel ideas and algorithms inspired by our team's domains of expertise, including cyber security, biomedical informatics, and advanced machine learning, and temporal data mining techniques. The establishment and maintenance of Cyber-Med’s up-to-date attack repository will strengthen the capabilities of Cyber-Med’s detection framework. Major Findings: Based on our initial survey, we have already found more than 15 types of vulnerabilities and possible attacks aimed at MDs and their eco-system. Many of these attacks target individual patients who use devices such pacemakers and insulin pumps. In addition, such attacks are also aimed at MDs that are widely used by medical centers such as MRIs, CTs, and dialysis engines; the information systems that store patient information; protocols such as DICOM; standards such as HL7; and medical information systems such as PACS. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched against MDs. Very little research has been conducted in order to protect these devices from cyber-attacks, since most of the development and engineering efforts are aimed at the devices’ core medical functionality, the contribution to patients’ healthcare, and the business aspects associated with the medical device.

Keywords: medical device, cyber security, attack, detection, machine learning

Procedia PDF Downloads 357
1985 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 262
1984 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 204
1983 Multiracial Society and Oral Tradition: A Study through Secondary Data

Authors: Jesvin Puay-Hwa Yeo, Laavanya Kathiravelu, Sa’Eda Binte Buang

Abstract:

In the early days, myths and taboos were used by our ancestors to give explanations to the existence of nature and man, as well as to propitiate fortunes and to avoid unluckiness and harm. Myths and taboos are deeply rooted in our cultures and environment, and they form certain characteristics of any society, even in modern societies. With decades of the three main ethnic communities in Singapore – Malay, Indian and Chinese – living together, there has been intermingling and intermixing of traditions and practices. This may mean that what we think is a ‘Malay’ practice is actually one that is a hybrid of the Chinese and Malay. A good example would be the practice of covering all mirrors in a house of mourning. Therefore, the proposed seeks to explore and understand the underlying social influences of Singapore’s oral tradition. As part of a bigger cultural research project: Designing Cultures, the proposed paper focused on using secondary data to contribute to the overall cultural understanding of the integral connections between oral traditions, people and landscapes. The proposed paper will discuss in details the initials findings of the research project, including the two manners that contributed to the intermixing of myths and taboos. The first is the presence of social institutions such as religions, and the second is the presence of cross-cultural minorities such as the Straits Chinese. As well as other observations included the use and influence of Chinese oral traditions such as folklore among the early Chinese immigrants through social institutions.

Keywords: cultural belief, multiracial society, myths, oral tradition

Procedia PDF Downloads 264
1982 Ideological Stance in Political Discourse: A Transitivity Analysis of Nawaz Sharif's Address at 71st UN Assembly

Authors: A. Nawaz

Abstract:

The present study uses Halliday’s transitivity model to analyze and interpret ideological stance in PM Nawaz Sharif’s political discourse. His famous speech at the 71st UN assembly was analyzed qualitatively using clausal analysis approach to investigate the communicative functions of the linguistic choices made in the address. The study discovers that among the six process types under the transitivity model, material, relational and mental processes appear most frequently in the speech, making up almost 86% of the whole. Verbal processes rank 4th, whereas existential and behavioral are the least occurring processes covering only 2 and 1 percent respectively. The dominant use of material processes suggests that Nawaz Sharif and his government are the main actors working on several concrete projects to produce a sense of developmental progression and continuity. Using relational and mental processes the PM, along with establishing proximity with masses and especially Kashmiri, gives guarantees and promises. The linguistic analysis concludes Kashmir dispute as being the central theme of the address, since it covers more than half of the discourse. The address calls for a strong action instead of formal assurances and wishful thoughts. The study establishes that language structures can yield certain connotations and ideologies which are not overt for readers. This is in affirmation to the supposition that language form performs a communicative function and is not merely fortuitous.

Keywords: Hallidian perspective on language, implicit meanings, Nawaz Sharif, political ideologies, political speeches, transitivity, UN Assembly

Procedia PDF Downloads 211
1981 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 101
1980 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 129
1979 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 137
1978 Mitigating Climate Change Issues: International Students' Perceptions on Energy Conservation and Effective Transportation

Authors: Indrapriya Kularatne, Olufemi Omisakin

Abstract:

Climate change mitigation is one of the most complex challenges that humanity has ever faced in the context of global environmental protection. This a multifaceted challenge that needs immediate, targeted and concentrated actions at global, national and local levels. Individual actions play a crucial role in mitigating climate change. New Zealand attracts a significant number of international students annually for higher education. Therefore, it is critical to understand what international students are bringing into the country in terms of their practices for mitigating climate change challenges. This exploratory research aims to investigate international students' perceptions on mitigating climate change issues. The study focuses particularly on the areas of energy conservation and effective transportation. A specific questionnaire was developed covering the areas of energy conserving practices, use of energy efficient products, use of environmentally friendly transportation methods and practices to reduce vehicle usage. The quantitative data was collected from nearly 240 participants using the Qualtrics online system. The research findings provide valuable insights into international students' perceptions of sustainability and environmental protection actions, particularly in the areas of energy conservation and effective transportation. These insights can contribute to ongoing efforts to mitigate climate change issues and promote sustainable development practices in New Zealand.

Keywords: climate change, energy conservation, effective transportation, perceptions

Procedia PDF Downloads 67
1977 An Investigation on the Effect of Window Tinting on Thermal Comfort inside Office Buildings

Authors: S. El-Azzeh, A. Al-Aqqad, M. Salem, H. Al-Khaldi, S. Thaher

Abstract:

Thermal comfort studies are very important during the early stages of the building’s design. If this study was ignored, problems will start to occur for the occupants in the future. In hot climates, where solar radiations are entering buildings all year long, occupant’s thermal comfort in office buildings needs to be examined. This study aims to investigate the thermal comfort at an existing office building at the Australian College of Kuwait and test its validity and improve occupant’s thermal satisfaction by covering windows with a heat rejection tint material that enables sunlight to pass through the office while reflecting solar heat outside. Environmental variables were measured using thermal comfort data logger INNOVA 1221 to find the predicted mean vote (PMV) in the selected location. Also, subjective variables were measured to find the actual mean vote (AMV) through surveys distributed among occupants in the selected case study office. All the variables collected were analyzed and classified according to international standards ISO 7730 and ASHRAE55. The results of this study showed improvement in both PMV and AMV. The mean value of PMV based on the original design was 0.691 which dropped to 0.32 after installation and it still at comfort zone. Also, the mean value of the AMV has improved for the first occupant, where before it was -0.46 and it became -1 which is cooler. For the other occupant, it was slightly warm with a mean value of 0.9 and it was improved and became cooler with a -0.25 mean value based on American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) seven-point scale.

Keywords: thermal comfort, office buildings, indoor environments, predicted mean vote

Procedia PDF Downloads 199
1976 Embodying the Ecological Validity in Creating the Sustainable Public Policy: A Study in Strengthening the Green Economy in Indonesia

Authors: Gatot Dwi Hendro, Hayyan ul Haq

Abstract:

This work aims to explore the strategy in embodying the ecological validity in creating the sustainability of public policy, particularly in strengthening the green economy in Indonesia. This green economy plays an important role in supporting the national development in Indonesia, as it is a part of the national policy that posits the primary priority in Indonesian governance. The green economy refers to the national development covering strategic natural resources, such as mining, gold, oil, coal, forest, water, marine, and the other supporting infrastructure for products and distribution, such as fabrics, roads, bridges, and so forth. Thus, all activities in those national development should consider the sustainability. This sustainability requires the strong commitment of the national and regional government, as well as the local governments to put the ecology as the main requirement for issuing any policy, such as licence in mining production, and developing and building new production and supporting infrastructures for optimising the national resources. For that reason this work will focus on the strategy how to embody the ecological values and norms in the public policy. In detail, this work will offer the method, i.e. legal techniques, in visualising and embodying the norms and public policy that valid ecologically. This ecological validity is required in order to maintain and sustain our collective life.

Keywords: ecological validity, sustainable development, coherence, Indonesian Pancasila values, environment, marine

Procedia PDF Downloads 487
1975 The Analysis of Priority Flood Control Management Using Analysis Hierarchy Process

Authors: Pravira Rizki Suwarno, Fanny Aliza Savitri, Priseyola Ayunda Prima, Pipin Surahman, Mahelga Levina Amran, Khoirunisa Ulya Nur Utari, Nora Permatasari

Abstract:

The Bogowonto River or commonly called the Bhagawanta River, is one of the rivers on Java Island. It is located in Central Java, Indonesia. Its watershed area is 35 km² with 57 km long. This river covers three regencies, namely Wonosobo Regency and Magelang Regency in the upstream and Purworejo Regency in the south and downstream. The Bogowonto River experiences channel narrowing and silting. It is caused by garbage along the river that comes from livestock and household waste. The narrowing channel and siltation cause a capacity reduction of the river to drain flood discharge. Comprehensive and sustainable actions are needed in dealing with current and future floods. Based on these current conditions, a priority scale is required. Therefore, this study aims to determine the priority scale of flood management in Purworejo Regency using the Analytical Hierarchy Process (AHP) method. This method will determine the appropriate actions based on the rating. In addition, there will be field observations through distributing questionnaires to several parties, including the stakeholders and the community. The results of this study will be in 2 (two) forms of actions, both structurally covering water structures and non-structural, including social, environmental, and law enforcement.

Keywords: analytical hierarchy process, bogowonto, flood control, management

Procedia PDF Downloads 211
1974 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 327
1973 Effects of Fire on Vegetation of the Prairies and Black Oak Sand Savannas of Kankakee, Illinois

Authors: Megan Alkazoff, Charles Ruffner

Abstract:

Tallgrass prairies and sand savannas, once covering northern to central Illinois, are ecosystems in need of restoration and conservation in the Midwestern United States. The Nature Conservancy manages five sites containing fragments of remaining tallgrass prairies and sand savannas within the Kankakee Sands using techniques such as prescribed burning and invasive species removal. The objective of this study was to conduct a ten-year resampling of transects established on these five sites during previous studies to assess whether the management tools applied there are helping maintain the tallgrass prairie and sand savannas. During the summer of 2020, permanent transect lines were sampled using a quadrat to determine the % Cover Class of each species rooted in the quadrat. Data gathered was analyzed using linear regression to illustrate the relationship between fire occurrence and species composition on the landscape. The fire frequency had a highly significant effect (P= 0.0025) on the species richness of all sites. The frequency of fire had a non-significant effect (P>0.05) on the Floristic Quality Index, percent C value 4-10, and bare-ground percentage of a site. These results suggest that fire on the landscape, both wild and prescribed, have increased biodiversity on all five sites but has not affected the Floristic Quality Index, percent C value 4-10, and the percentage of bare-ground on the sites.

Keywords: fire, floristic quality assessment, sand savanna, species richness, tallgrass prairie

Procedia PDF Downloads 179
1972 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method

Authors: Temesgen Geremew

Abstract:

ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.

Keywords: SERS, sensor, Hg2+, water detection, polythiophene

Procedia PDF Downloads 67
1971 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)

Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida

Abstract:

Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.

Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences

Procedia PDF Downloads 57
1970 AI Features in Netflix

Authors: Dona Abdulwassi, Dhaee Dahlawi, Yara Zainy, Leen Joharji

Abstract:

The relationship between Netflix and artificial intelligence is discussed in this paper. Netflix uses the most effective and efficient approaches to apply artificial intelligence, machine learning, and data science. Netflix employs the personalization tool for their users, recommending or suggesting shows based on what those users have already watched. The researchers conducted an experiment to learn more about how Netflix is used and how AI affects the user experience. The main conclusions of this study are that Netflix has a wide range of AI features, most users are happy with their Netflix subscriptions, and the majority prefer Netflix to alternative apps.

Keywords: easy accessibility, recommends, accuracy, privacy

Procedia PDF Downloads 65
1969 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity

Authors: Marcin Baranski

Abstract:

This article presents a vibration diagnostic method designed for permanent magnets (PM) traction motors. Those machines are commonly used in traction drives of electrical vehicles. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. This work presents: field-circuit model, results of static tests, results of calculations and simulations.

Keywords: electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity

Procedia PDF Downloads 630
1968 Transition Pay vs. Liquidity Holdings: A Comparative Analysis on Consumption Smoothing using Bank Transaction Data

Authors: Nora Neuteboom

Abstract:

This study investigates household financial behaviors during unemployment spells in the Netherlands using high-frequency transaction data through a event study specification integrating propensity score matching. In our specification, we contrasted treated individuals, who underwent job loss, with non-treated individuals possessing comparable financial characteristics. The initial onset of unemployment triggers a substantial surge in income, primarily attributed to transition payments, but swiftly drops post-unemployment, with unemployment benefits covering slightly over half of former salary earnings. Despite a re-employment rate of around half within six months, the treatment group experiences a persistent average monthly earnings reduction of approximately 600 EUR by month. Spending patterns fluctuate significantly, surging before unemployment due to transition payments and declining below non-treated individuals post-unemployment, indicating challenges to fully smooth consumption after job loss. Furthermore, our study disentangles the effects of transition payments and liquidity holdings on spending, revealing that transition payments exert a more pronounced and prolonged impact on consumption smoothing than liquidity holdings. Transition payments significantly stimulate spending, particularly in pin and iDEAL categories, contrasting a much smaller relative spending impact of liquidity holdings.

Keywords: household consumption, transaction data, big data, propensity score matching

Procedia PDF Downloads 26
1967 Wear Resistance of 20MnCr5 Steel Nitrided by Plasma

Authors: Okba Belahssen, Said Benramache

Abstract:

This paper presents wear behavior of the plasma-nitrided 20MnCr5 steel. Untreated and plasma nitrided samples were tested. The morphology was observed by scanning electron microscopy (SEM). The plasma nitriding behaviors of 20MnCr5 steel have been assessed by evaluating tribological properties and surface hardness by using a pin-on-disk wear machine and microhardness tester. Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer improve the wear resistance.

Keywords: plasma-nitriding, alloy 20mncr5, steel, friction, wear

Procedia PDF Downloads 559
1966 Apollo Clinical Excellence Scorecard (ACE@25): An Initiative to Drive Quality Improvement in Hospitals

Authors: Anupam Sibal

Abstract:

Whatever is measured tends to improve. With a view to objectively measuring and improving clinical quality across the Apollo Group Hospitals, the initiative of ACE @ 25 (Apollo Clinical Excellence@25) was launched on Jan 09. ACE @ 25 is a clinically balanced scorecard incorporating 25 clinical quality parameters involving complication rates, mortality rates, one-year survival rates and average length of stay after major procedures like liver and renal transplant, CABG, TKR, THR, TURP, PTCA, endoscopy, large bowel resection and MRM covering all major specialties. Also included are hospital acquired infection rates, pain satisfaction and medication errors. Benchmarks have been chosen from the world’s best hospitals. There are weighted scores for outcomes color coded green, orange and red. The cumulative score is 100. Data is reported monthly by 43 Group Hospitals online on the Lighthouse platform. Action taken reports for parameters falling in red are submitted quarterly and reviewed by the board. An audit team audits the data at all locations every six months. Scores are linked to appraisal of the medical head and there is an “ACE @ 25” Champion Award for the highest scorer. Scores for different parameters were variable from green to red at the start of the initiative. Most hospitals showed an improvement in scores over the last four years for parameters where they had showed scores in red or orange at the start of the initiative. The overall scores for the group have shown an increase from 72 in 2010 to 81 in 2015.

Keywords: benchmarks, clinical quality, lighthouse, platform, scores

Procedia PDF Downloads 304
1965 Identification of Social Responsibility Factors within Mega Construction Projects

Authors: Ali Alotaibi, Francis Edum-Fotwe, Andrew Price /

Abstract:

Mega construction projects create buildings and major infrastructure to respond to work and life requirements while playing a vital role in promoting any nation’s economy. However, the industry is often criticised for not balancing economic, environmental and social dimensions of their projects, with emphasis typically on one aspect to the detriment of the others. This has resulted in many negative impacts including environmental pollution, waste throughout the project lifecycle, low productivity, and avoidable accidents. The identification of comprehensive Social Responsibility (SR) indicators, which combine social, environmental and economic aspects, is urgently needed. This is particularly the case in the context of the Kingdom of Saudi Arabia (KSA), which often has mega public construction projects. The aim of this paper is to develop a set of wide-ranging SR indicators which encompass social, economic and environmental aspects unique to the KSA. A qualitative approach was applied to explore relevant indicators through a review of the existing literature, international standards and reports. A list of appropriate indicators was developed, and its comprehensiveness was corroborated by interviews with experts on mega construction projects working with SR concepts in the KSA. The findings present 39 indicators and their metrics, covering 10 economic, 12 environmental and 17 social aspects of SR mapped against their references. These indicators are a valuable reference for decision-makers and academics in the KSA to understand factors related to SR in mega construction projects. The indicators are related to mega construction projects within the KSA and require validation in a real case scenario or within a different industry to demonstrate their generalisability.

Keywords: social responsibility, construction projects, economic, social, environmental, indicators

Procedia PDF Downloads 170
1964 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 59
1963 Choice Experiment Approach on Evaluation of Non-Market Farming System Outputs: First Results from Lithuanian Case Study

Authors: A. Novikova, L. Rocchi, G. Startiene

Abstract:

Market and non-market outputs are produced jointly in agriculture. Their supply depends on the intensity and type of production. The role of agriculture as an economic activity and its effects are important for the Lithuanian case study, as agricultural land covers more than a half of country. Positive and negative externalities, created in agriculture are not considered in the market. Therefore, specific techniques such as stated preferences methods, in particular choice experiments (CE) are used for evaluation of non-market outputs in agriculture. The main aim of this paper is to present construction of the research path for evaluation of non-market farming system outputs in Lithuania. The conventional and organic farming, covering crops (including both cereal and industrial crops) and livestock (including dairy and cattle) production has been selected. The CE method and nested logit (NL) model were selected as appropriate for evaluation of non-market outputs of different farming systems in Lithuania. A pilot survey was implemented between October–November 2018, in order to test and improve the CE questionnaire. The results of the survey showed that the questionnaire is accepted and well understood by the respondents. The econometric modelling showed that the selected NL model could be used for the main survey. The understanding of the differences between organic and conventional farming by residents was identified. It was revealed that they are more willing to choose organic farming in comparison to conventional farming.

Keywords: choice experiments, farming system, Lithuania market outputs, non-market outputs

Procedia PDF Downloads 130
1962 A Documentary Review of Theoretical and Practical Elements for a Genre Analysis of Thailand Travel Listicles

Authors: Pinyada Santisarun, Yaowaret Tharawoot, Songyut Akkakoson

Abstract:

This paper reports on a literature review sub-study of a larger research project which has been designed to identify the rhetorical organization of a travel writing genre, together with the use of lexical choices, syntactical structures, and graphological features, based on a randomly-selected corpus of Thailand travel listicles. Conducted as a library-based overview, this study aims to specify theoretical and practical elements for the said larger study. The materials for the review have been retrieved from various Internet sources, covering both public search engines and library databases. Generally, the article focuses on answering questions about the ‘what’ and the ‘how’ of such background elements widely discussed in the literature as the meaning of listicles, how the travel listicles’ patterns and regularities can be categorized to form a new genre, the effect of computer-mediated communication on the travel world, the travel language, and the current situation concerning the importance of travel listicles. The theoretical and practical data derived from this study provide valuable insights into the way in which the genre analysis and lexico-syntactical examination of Thailand travel listicles in the present authors’ larger research project can be properly conducted. The data gained can be added to the expanding body of knowledge in the field of the ESP genre.

Keywords: computer-mediated communication, digital writing, genre-based analysis, online travel writing, tourism language

Procedia PDF Downloads 146
1961 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 505
1960 Financial Management Skills of Supreme Student Government Officers in the Schools Division of Quezon: Basis for Project Financial Literacy Information Program

Authors: Edmond Jaro Malihan

Abstract:

This study aimed to develop and propose Project Financial Literacy Information Program (FLIP) for the Schools Division of Quezon to improve the financial management skills of Supreme Student Government (SSG) officers across different school sizes. This employed a descriptive research design covering the participation of 424 selected SSG officers using purposive sampling procedures from the SDO-Quezon. The consultation was held with DepEd officials, budget officers, and financial advisors to validate the design of the self-made questionnaires in which the computed mean was verbally interpreted using the four-point Likert scale. The data gathered were presented and analyzed using weighted arithmetic mean and ANOVA test. Based on the findings, generally, SSG officers in the SDO-Quezon possess high financial management skills in terms of budget preparation, resource mobilization, and auditing and evaluation. The size of schools has no significant difference and does not contribute to the financial management skills of SSG officers, which they apply in implementing their mandated programs, projects, and activities (PPAs). The Project Financial Literacy Information Program (FLIP) was developed considering their general level of financial management skills and the launched PPAs by the organization. The project covered the suggested training program vital in conducting the Virtual Division Training on Financial Management Skills of the SSG officers.

Keywords: financial management skills, SSG officers, school size, financial literacy information program

Procedia PDF Downloads 75
1959 Effects of AI-driven Applications on Bank Performance in West Africa

Authors: Ani Wilson Uchenna, Ogbonna Chikodi

Abstract:

This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.

Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)

Procedia PDF Downloads 16
1958 Flexible Work Arrangements for Managers-Gender Diversity and Organizational Development in German Firms

Authors: Marc Gärtner, Monika Huesmann, Katharina Schiederig

Abstract:

While workplace flexibility provides opportunities to better balance work and family care, careers in management are still predominantly based on physical presence, blurred boundaries and a culture of availability at the workplace. Thus, carers (mostly women) still experience disadvantages and stalled careers. In a multi-case study, funded by the German Federal Ministry of Education and Research, success factors and barriers of flexible work arrangements in five big organizations, including three of the largest German companies, have been identified. Using qualitative interview methods, the working models of 10 female and male users of flexible work arrangements like part time, home office and job sharing have been studied. The study group applied a 360-degree approach with focus groups, covering the users’ themselves, their superiors, colleagues and staff as well as in-house human resource managers. The group interviews reveal that success of flexible models is mainly built on three factors: (a) the inclusiveness of the organizational culture, (b) the commitment of leaders and especially the supervisors, and (c) the fitting of the model and the user(s). Flexibilization of time and space can indeed contribute to a better work-life balance. This is, however, not a necessary outcome, as the interviews suggest, but depends on the right implementation of the right model in the particular work environment. Beyond the actual study results, the presentation will also assess the methodological approach.

Keywords: flexible work, leadership, organizational culture, work-life balance

Procedia PDF Downloads 357
1957 Healthcare in COVID-19 and It’s Impact on Children with Cochlear Implants

Authors: Amirreza Razzaghipour, Mahdi Khalili

Abstract:

References from the World Health Organization and the Center for Disease Control for deceleration the spread of the Novel COVID-19, comprises social estrangement, frequent handwashing, and covering your mouth when around others. As hearing healthcare specialists, the influence of existenceinvoluntary to boundary social interactions on persons with hearing impairment was significant for us to understand. We found ourselves delaying cochlear implant (CI) surgeries. All children, and chiefly those with hearing loss, are susceptible to reductions in spoken communication. Hearing plans, such as cochlear implants, provide children with hearing loss access to spoken communication and provision language development. when provided early and used consistently, these supplies help children with hearing loss to engage in spoken connections. Cochlear implant (CI) is a standard medical-surgical treatment for bilateral severe to profound hearing loss with no advantage with the hearing aid. Hearing is one of the most important senses in humans. Pediatric hearing loss establishes one of the most important public health challenges. Children with hearing loss are recognized early and habilitated via hearing aids or with cochlear implants (CIs). Suitable care and maintenance as well as continuous auditory verbal therapy (AVT) are also essential in reaching for the successful attainment of language acquisition. Children with hearing loss posture important challenges to their parents, particularly when there is limited admission to their hearing care providers. The disruption in the routine of their hearing and therapy follow-up services has had substantial effects on the children as well as their parents.

Keywords: healthcare, covid-19, cochlear implants, spoken communication, hearing loss

Procedia PDF Downloads 167