Search results for: charge transfer complex
7006 Volcanostratigraphy Reconaissance Study Using Ridge Continuity to Solve Complex Volcanic Deposit Problems, Case Study Old Sunda Volcano
Authors: Afy Syahidan ACHMAD, Astin NURDIANA, SURYANTINI
Abstract:
In volcanic arc environment we can find multiple volcanic deposits which overlapped with another volcanic deposit so it will complicates source and distribution determination. This problem getting more difficult when we can not trace any deposit border evidences in field especially in high vegetation volcanic area, or overlapped deposit with same characteristics. Main purpose of this study is to solve complex volcanostratigraphy mapping problems trough ridge, valley, and river continuity. This method application carried out in Old Sunda Volcanic, West Java, Indonesia. Using 1:100.000 and 1:50.000 topographic map, and regional geology map, old sunda volcanic deposit was differentiated in regional level and detail level. Final product of this method is volcanostratigraphy unit determination in reconnaissance stage to simplify mapping process.Keywords: volcanostratigraphy, study, method, volcanic deposit
Procedia PDF Downloads 4027005 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack
Authors: Manikanta Prasad Banda, Che Hua Yang
Abstract:
Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves
Procedia PDF Downloads 1367004 Supporting Regulation and Shared Attention to Facilitate the Foundations for Development of Children and Adolescents with Complex Individual Profiles
Authors: Patsy Tan, Dana Baltutis
Abstract:
This presentation demonstrates the effectiveness of music therapy in co-treatment with speech pathology and occupational therapy as an innovative way when working with children and adolescents with complex individual differences to facilitate communication, emotional, motor and social skills development. Each child with special needs and their carer has an individual profile which encompasses their visual-spatial, auditory, language, learning, mental health, family dynamic, sensory-motor, motor planning and sequencing profiles. The most common issues among children with special needs, especially those diagnosed with Autism Spectrum Disorder, are in the areas of regulation, communication, and social-emotional development. The ability of children living with challenges to communicate and use language and understand verbal and non-verbal information, as well as move their bodies to explore and interact with their environments in social situations, depends on the children being regulated both internally and externally and trusting their communication partners and understanding what is happening in the moment. For carers, it is about understanding the tempo, rhythm, pacing, and timing of their own individual profile, as well as the profile of the child they are interacting with, and how these can sync together. In this study, music therapy is used in co-treatment sessions with a speech pathologist and/or an occupational therapist using the DIRFloortime approach to facilitate the regulation, attention, engagement, reciprocity and social-emotional capacities of children presenting with complex individual differences. Documented changes in 10 domains of children’s development over a 12-month period using the Individual Music Therapy Assessment Profile (IMTAP) were observed. Children were assessed biannually, and results show significant improvements in the social-emotional, musicality and receptive language domains indicating that co-treatment with a music therapist using the DIRFloortime framework is highly effective. This presentation will highlight strategies that facilitate regulation, social-emotional and communication development for children and adolescents with complex individual profiles.Keywords: communication, shared attention, regulation, social emotional
Procedia PDF Downloads 2567003 Determinant Factor Analysis of Foreign Direct Investment in Asean-6 Countries Period 2004-2012
Authors: Eleonora Sofilda, Ria Amalia, Muhammad Zilal Hamzah
Abstract:
Foreign direct investment is one of the sources of financing or capital that important for a country, especially for developing countries. This investment also provides a great contribution to development through the transfer of assets, management improving, and transfer of technology in enhancing the economy of a country. In the other side currently in ASEAN countries emerge the interesting phenomenon where some big producers are re-locate their basic production among those countries. This research is aimed to analyze the factors that affect capital inflows of foreign direct investment into the 6 ASEAN countries (Indonesia, Malaysia, Singapore, Thailand, Philippines, and Vietnam) in period 2004-2012. This study uses panel data analysis to determine the factors that affect of foreign direct investment in 6 ASEAN. The factors that affect of foreign direct investment (FDI) are the gross domestic product (GDP), global competitiveness (GCI), interest rate, exchange rate and trade openness (TO). Result of panel data analysis show that three independent variables (GCI, GDP, and TO) have a significant effect to the FDI in 6 ASEAN Countries.Keywords: foreign direct investment, the gross domestic product, global competitiveness, interest rate, exchange rate, trade openness, panel data analysis
Procedia PDF Downloads 4697002 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement
Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey
Abstract:
The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index
Procedia PDF Downloads 6187001 Heat Transfer Modeling of 'Carabao' Mango (Mangifera indica L.) during Postharvest Hot Water Treatments
Authors: Hazel James P. Agngarayngay, Arnold R. Elepaño
Abstract:
Mango is the third most important export fruit in the Philippines. Despite the expanding mango trade in world market, problems on postharvest losses caused by pests and diseases are still prevalent. Many disease control and pest disinfestation methods have been studied and adopted. Heat treatment is necessary to eliminate pests and diseases to be able to pass the quarantine requirements of importing countries. During heat treatments, temperature and time are critical because fruits can easily be damaged by over-exposure to heat. Modeling the process enables researchers and engineers to study the behaviour of temperature distribution within the fruit over time. Understanding physical processes through modeling and simulation also saves time and resources because of reduced experimentation. This research aimed to simulate the heat transfer mechanism and predict the temperature distribution in ‘Carabao' mangoes during hot water treatment (HWT) and extended hot water treatment (EHWT). The simulation was performed in ANSYS CFD Software, using ANSYS CFX Solver. The simulation process involved model creation, mesh generation, defining the physics of the model, solving the problem, and visualizing the results. Boundary conditions consisted of the convective heat transfer coefficient and a constant free stream temperature. The three-dimensional energy equation for transient conditions was numerically solved to obtain heat flux and transient temperature values. The solver utilized finite volume method of discretization. To validate the simulation, actual data were obtained through experiment. The goodness of fit was evaluated using mean temperature difference (MTD). Also, t-test was used to detect significant differences between the data sets. Results showed that the simulations were able to estimate temperatures accurately with MTD of 0.50 and 0.69 °C for the HWT and EHWT, respectively. This indicates good agreement between the simulated and actual temperature values. The data included in the analysis were taken at different locations of probe punctures within the fruit. Moreover, t-tests showed no significant differences between the two data sets. Maximum heat fluxes obtained at the beginning of the treatments were 394.15 and 262.77 J.s-1 for HWT and EHWT, respectively. These values decreased abruptly at the first 10 seconds and gradual decrease was observed thereafter. Data on heat flux is necessary in the design of heaters. If underestimated, the heating component of a certain machine will not be able to provide enough heat required by certain operations. Otherwise, over-estimation will result in wasting of energy and resources. This study demonstrated that the simulation was able to estimate temperatures accurately. Thus, it can be used to evaluate the influence of various treatment conditions on the temperature-time history in mangoes. When combined with information on insect mortality and quality degradation kinetics, it could predict the efficacy of a particular treatment and guide appropriate selection of treatment conditions. The effect of various parameters on heat transfer rates, such as the boundary and initial conditions as well as the thermal properties of the material, can be systematically studied without performing experiments. Furthermore, the use of ANSYS software in modeling and simulation can be explored in modeling various systems and processes.Keywords: heat transfer, heat treatment, mango, modeling and simulation
Procedia PDF Downloads 2477000 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena
Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho
Abstract:
To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics
Procedia PDF Downloads 4856999 Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil
Authors: Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus
Abstract:
In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines.Keywords: onshore wind foundation, pier foundation, rotational stiffness of soil-foundation system, shallow foundation
Procedia PDF Downloads 1546998 Structural, Electronic and Magnetic Properties of Co and Mn Doped CDTE
Authors: A. Zitouni, S. Bentata, B. Bouadjemi, T. Lantri, W. Benstaali, A. Zoubir, S. Cherid, A. Sefir
Abstract:
The structural, electronic, and magnetic properties of transition metal Co and Mn doped zinc-blende semiconductor CdTe were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA). We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. We find that the Co and Mn doped zinc blende CdTe show half-metallic behavior with a total magnetic moment of 6.0 and 10.0 µB, respectively.The results obtained, make the Co and Mn doped CdTe a promising candidate for application in spintronics.Keywords: first-principles, half-metallic, diluted magnetic semiconductor, magnetic moment
Procedia PDF Downloads 4596997 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2746996 Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump
Authors: Merieleen Engtipi
Abstract:
India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand.Keywords: energy demand, energy cooperation, fossil fuels, technology transfer
Procedia PDF Downloads 2516995 Analysis of Nonlinear Bertrand Duopoly Game with Heterogeneous Players
Authors: Jixiang Zhang
Abstract:
A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium
Procedia PDF Downloads 4076994 Innovative Fabric Integrated Thermal Storage Systems and Applications
Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison
Abstract:
In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration
Procedia PDF Downloads 1666993 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles
Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack
Abstract:
Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.Keywords: electric vehicles, photovoltaic energy, lead-acid batteries, charging process, modeling, simulation, experimental tests
Procedia PDF Downloads 4446992 Investigating Iraqi EFL Undergraduates' Performance in the Production of Number Forms in English
Authors: Adnan Z. Mkhelif
Abstract:
The production of number forms in English tends to be problematic for Iraqi learners of English as a foreign language (EFL), even at the undergraduate level. To help better understand and consequently address this problem, it is important to identify its sources. This study aims at: (1) statistically analysing Iraqi EFL undergraduates' performance in the production of number forms in English; (2) classifying learners' errors in terms of their possible major causes; and (3) outlining some pedagogical recommendations relevant to the teaching of number forms in English. It is hypothesized in this study that (1) Iraqi EFL undergraduates still face problems in the production of number forms in English and (2) errors pertaining to the context of learning are more numerous than those attributable to the other possible causes. After reviewing the literature available on the topic, a written test comprising 50 items has been constructed and administered to a randomly chosen sample of 50 second-year college students from the Department of English, College of Education, Wasit University. The findings of the study showed that Iraqi EFL undergraduates still face problems in the production of number forms in English and that the possible major sources of learners’ errors can be arranged hierarchically in terms of the percentages of errors to which they can be ascribed as follows: (1) context of learning (50%), (2) intralingual transfer (37%), and (3) interlingual transfer (13%). It is hoped that the implications of the study findings will be beneficial to researchers, syllabus designers, as well as teachers of English as a foreign/second language.Keywords: L2 number forms, L2 vocabulary learning, productive knowledge, proficiency
Procedia PDF Downloads 1426991 The Algorithmic Dilemma: Virtue Development in the Midst of Role Conflict and Role Ambiguity in Platform Work
Authors: Thumesha Jayatilake
Abstract:
As platform work continues to proliferate, algorithmic management, which takes care of its operational role, poses complex challenges, including job satisfaction, worker involvement, ethical decision-making, and worker well-being. This conceptual paper scrutinizes how algorithmic management influences virtue development among platform workers, with an emphasis on the effects of role conflict and role ambiguity. Using an interdisciplinary approach, the research elucidates the complex relationship between algorithmic management systems and the ethical dimensions of work. The study also incorporates the interplay of human interaction and short-term task orientation, thus broadening the understanding of the impacts of algorithmic management on virtue development. The findings have significant implications for policymakers, academics, and industry practitioners, illuminating the ethical complexities presented by the use of algorithms in modern employment settings.Keywords: algorithmic management, ethics, platform work, virtue
Procedia PDF Downloads 736990 Solvent Extraction and Spectrophotometric Determination of Palladium(II) Using P-Methylphenyl Thiourea as a Complexing Agent
Authors: Shashikant R. Kuchekar, Somnath D. Bhumkar, Haribhau R. Aher, Bhaskar H. Zaware, Ponnadurai Ramasami
Abstract:
A precise, sensitive, rapid and selective method for the solvent extraction, spectrophotometric determination of palladium(II) using para-methylphenyl thiourea (PMPT) as an extractant is developed. Palladium(II) forms yellow colored complex with PMPT which shows an absorption maximum at 300 nm. The colored complex obeys Beer’s law up to 7.0 µg ml-1 of palladium. The molar absorptivity and Sandell’s sensitivity were found to be 8.486 x 103 l mol-1cm-1 and 0.0125 μg cm-2 respectively. The optimum conditions for the extraction and determination of palladium have been established by monitoring the various experimental parameters. The precision of the method has been evaluated and the relative standard deviation has been found to be less than 0.53%. The proposed method is free from interference from large number of foreign ions. The method has been successfully applied for the determination of palladium from alloy, synthetic mixtures corresponding to alloy samples.Keywords: solvent extraction, PMPT, Palladium (II), spectrophotometry
Procedia PDF Downloads 4616989 Localization of Pyrolysis and Burning of Ground Forest Fires
Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov
Abstract:
This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.Keywords: forest fire, barrier water lines, pyrolysis front, flame front
Procedia PDF Downloads 1336988 General Framework for Price Regulation of Container Terminals
Authors: Murat Yildiz, Burcu Yildiz
Abstract:
Price Cap Regulation is a form of economic regulation designed in the 1980s in the United Kingdom. Price cap regulation sets a cap on the price that the utility provider can charge. The cap is set according to several economic factors, such as the price cap index, expected efficiency savings and inflation. It has been used by several countries as a regulatory regime in several sectors. Container port privatization is still in early stages in some countries. Lack of a general framework can be an impediment to privatization. This paper aims a general framework to comprising decisions to be made for variables which are able to accommodate the variety of container terminals. Several approaches that may be needed as well as a passage between approaches.Keywords: Price Cap Regulation, ports privatization, container terminal price regime, earning sharing
Procedia PDF Downloads 3606987 Stability Analysis of Stagnation-Point Flow past a Shrinking Sheet in a Nanofluid
Authors: Amin Noor, Roslinda Nazar, Norihan Md. Arifin
Abstract:
In this paper, a numerical and theoretical study has been performed for the stagnation-point boundary layer flow and heat transfer towards a shrinking sheet in a nanofluid. The mathematical nanofluid model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Numerical results are obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction Φ, the shrinking parameter λ and the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that solutions do not exist for larger shrinking rates and dual (upper and lower branch) solutions exist when λ < -1.0. A stability analysis has been performed to show which branch solutions are stable and physically realizable. It is also found that the upper branch solutions are stable while the lower branch solutions are unstable.Keywords: heat transfer, nanofluid, shrinking sheet, stability analysis, stagnation-point flow
Procedia PDF Downloads 3826986 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications
Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie
Abstract:
In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer
Procedia PDF Downloads 1506985 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future
Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino
Abstract:
Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery
Procedia PDF Downloads 766984 Evaluating Electronic Service Quality in Banking Iran
Authors: Vahid Bairami Rad
Abstract:
With the rapid growth of the Internet and the globalization of the market, most enterprises are trying to attract and win customers in the highly competitive electronic market. Better e-service quality will enhance the relationship with customers and their satisfaction. So the measurement of eservice quality is very important but it is a complex process due to the complex nature of services. Literature predicts that there is a lack of universal definition of e-service quality. The e-service quality measures in banking have great importance in achieving high customer base. This paper proposes a conceptual model for measuring e-service quality in Iranian Banking Iran. Nine dimensions reliability, ease of use, personalization, security and trust, website aesthetic, responsiveness, contact and speed of delivery had been identified. The results of this paper may help to develop a proper scale to measure the e-service quality in Iranian Banking Industry, which may assist to maintain and improve the performance and effectiveness of e-service quality to retain customers.Keywords: electronic banking, Dimensions, customer service quality, electronic, communication
Procedia PDF Downloads 4996983 Real-Time Adaptive Obstacle Avoidance with DS Method and the Influence of Dynamic Environments Change on Different DS
Authors: Saeed Mahjoub Moghadas, Farhad Asadi, Shahed Torkamandi, Hassan Moradi, Mahmood Purgamshidian
Abstract:
In this paper, we present real-time obstacle avoidance approach for both autonomous and non-autonomous DS-based controllers and also based on dynamical systems (DS) method. In this approach, we can modulate the original dynamics of the controller and it allows us to determine safety margin and different types of DS to increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle and especially when robot moves very fast in changeable complex environments. The method is validated in simulation and influence of different autonomous and non-autonomous DS such as limit cycles, and unstable DS on this algorithm and also the position of different obstacles in complex environment is explained. Finally, we describe how the avoidance trajectories can be verified through different parameters such as safety factor.Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, DS-based controllers
Procedia PDF Downloads 3896982 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis
Procedia PDF Downloads 1366981 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid Onaizah
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 796980 Investigation of NiO/V₂O₅ Powder Composite as Cathode Material for Lithium-Ion Batteries
Authors: Katia Ayouz-Chebout, Fatima Boudeffar, Maha Ayat, Malika Berouaken, Chafiaa Yaddaden, Saloua Merazga, Nouredine Gabouze
Abstract:
Transition metal oxide composites have been widely reported in energy storage and conversion systems. In this regard, an attempt has been made to synthesize NiO@V₂O₅ nanocomposite. The structures and morphology of synthesized powder are investigated by X-ray diffraction, scanning electron microscope (SEM), and Attenuated Total Reflection (ATR). The electrochemical properties and performances as cathode electrodes based on active material NiO@V₂O₅ were studied by cyclic voltammetry (CV), between potential bias [0.01V to 3V], with scanning speed of 0,1mVs⁻¹, the galvanostatic charge/discharge (CDG) for 100 cycles was also measured.Keywords: composite nanobelts, vanadium pentoxide, nickel oxide, Li-ion batteries
Procedia PDF Downloads 236979 Macroeconomic Effects and Dynamics of Natural Disaster Damages: Evidence from SETX on the Resiliency Hypothesis
Authors: Agim Kukelii, Gevorg Sargsyan
Abstract:
This study, focusing on the base regional area (county level), estimates the effect of natural disaster damages on aggregate personal income, aggregate wages, wages per worker, aggregate employment, and aggregate income transfer. The study further estimates the dynamics of personal income, employment, and wages under natural disaster shocks. Southeast Texas, located at the center of Golf Coast, is hit by meteorological and hydrological caused natural disasters yearly. On average, there are more than four natural disasters per year that cane an estimated damage average of 2.2% of real personal income. The study uses the panel data method to estimate the average effect of natural disasters on the area’s economy (personal income, wages, employment, and income transfer). It also uses Panel Vector Autoregressive (PVAR) model to study the dynamics of macroeconomic variables under natural disaster shocks. The study finds that the average effect of natural disasters is positive for personal income and income transfer and is negative for wages and employment. The PVAR and the impulse response function estimates reveal that natural disaster shocks cause a decrease in personal income, employment, and wages. However, the economy’s variables bounce back after three years. The novelty of this study rests on several aspects. First, this is the first study to investigate the effects of natural disasters on macroeconomic variables at a regional level. Second, the study uses direct measures of natural disaster damages. Third, the study estimates that the time that the local economy takes to absorb the natural disaster damages shocks is three years. This is a relatively good reaction to the local economy, therefore, adding to the “resiliency” hypothesis. The study has several implications for policymakers, businesses, and households. First, this study serves to increase the awareness of local stakeholders that natural disaster damages do worsen, macroeconomic variables, such as personal income, employment, and wages beyond the immediate damages to residential and commercial properties, physical infrastructure, and discomfort in daily lives. Second, the study estimates that these effects linger on the economy on average for three years, which would require policymakers to factor in the time area need to be on focus.Keywords: natural disaster damages, macroeconomics effects, PVAR, panel data
Procedia PDF Downloads 886978 Vitamin B9 Separation by Synergic Pertraction
Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan
Abstract:
Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid
Procedia PDF Downloads 2756977 Settlement Analysis of Axially Loaded Bored Piles: A Case History
Authors: M. Mert, M. T. Ozkan
Abstract:
Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined. Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.Keywords: failure, finite element method, monitoring and instrumentation, pile, settlement
Procedia PDF Downloads 167