Search results for: accuracy improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7878

Search results for: accuracy improvement

6378 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 158
6377 Evaluation of the Capabilities of Saccharomyces cerevisiae and Lactobacillus plantarum in Improvement of Total Phenolic Content and Antioxidant Activity in Carob Kibble

Authors: Thi Huong Vu, Vijay Jayasena, Zhongxiang Fang, Gary Dykes

Abstract:

Carob kibble has recently received attention due to the presence of high level of polyphenol antioxidants. The capacity of microorganisms to improve antioxidant activities and total phenolics in carob kibble was investigated in the study. Two types of microorganisms including lactic acid bacteria Lactobacillus plantarum (L. plantarum) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used in single and in their combination as starters. The total phenolic content was determined by the Folin–Ciocalteu method. Antioxidant activities were assessed scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study found that S. cerevisiae alone considerably improved 55% total phenolics content at 15 h, while L. plantarum caused in a loss of 20% through the process. Antioxidant capacity of the yeast-fermented samples significantly increased by 43 % and 10 % in ABTS and DPPH assays, respectively. However, reduction of 13 % and 32 % inhibition were recorded in the carob treated with L. plantarum. In the combination of S. cerevisiae and L. plantarum (1:1), both total phenolic content and antioxidant activity of carob kibble were a similar trend as these of S. cerevisiae single, but a lower improvement. The antioxidant power of the extracts was linearly correlated to their total phenolic contents (R=0.75). The results suggested that S. cerevisiae alone was the better for enhancement of both total phenolic content and antioxidant activity in carob kibble using submerged fermentation. The efficiency of fermentation reached the highest at 15h. Thus submerged fermentation with S. cerevisiae offers a tool with simple and cost effective to further increase the bioactive potential of carob kibble, which is in use for food, cosmetic and pharmaceutical industries.

Keywords: antioxidant activity, carob kibble, lactobacillus plantarum, saccharomyces cerevisiae, total phenolics

Procedia PDF Downloads 291
6376 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method

Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi

Abstract:

This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.

Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure

Procedia PDF Downloads 492
6375 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile

Procedia PDF Downloads 172
6374 Neuron Point-of-Care Stem Cell Therapy: Intrathecal Transplant of Autologous Bone Marrow-Derived Stem Cells in Patients with Cerebral Palsy

Authors: F. Ruiz-Navarro, M. Matzner, G. Kobinia

Abstract:

Background: Cerebral palsy (CP) encompasses the largest group of childhood movement disorders, the patterns and severity varies widely. Today, the management focuses only on a rehabilitation therapy that tries to secure the functions remained and prevents complications. However the treatments are not aimed to cure the disease. Stem cells (SCs) transplant via intrathecal is a new approach to the disease. Method: Our aim was to performed a pilot study under the condition of unproven treatment on clinical practice to assessed the safety and efficacy of Neuron Point-of-care Stem cell Therapy (N-POCST), an ambulatory procedure of autologous bone marrow derived SCs (BM-SCs) harvested from the posterior superior iliac crest undergo an on-site cell separation for intrathecal infusion via lumbar puncture. Results: 82 patients were treated in a period of 28 months, with a follow-up after 6 months. They had a mean age of 6,2 years old and male predominance (65,9%). Our preliminary results show that: A. No patient had any major side effects, B. Only 20% presented mild headache due to LP, C. 53% of the patients had an improvement in spasticity, D. 61% improved the coordination abilities, 23% improved the motor function, 15% improved the speech, 23% reduced the number of convulsive events with the same doses or less doses of anti-convulsive medication and 94% of the patients report a subjective general improvement. Conclusions: These results support previous worldwide publications that described the safety and effectiveness of autologous BM-SCs transplant for patients wit CP.

Keywords: autologous transplant, cerebral palsy, point of care, childhood movement disorders

Procedia PDF Downloads 416
6373 Access to Inclusive and Culturally Sensitive Mental Healthcare in Pharmacy Students and Residents

Authors: Esha Thakkar, Ina Liu, Kalynn Hosea, Shana Katz, Katie Marks, Sarah Hall, Cat Liu, Suzanne Harris

Abstract:

Purpose: Inequities in mental healthcare accessibility are cited as an international public health concern by the World Health Organization (WHO) and National Alliance on Mental Illness (NAMI). These disparities are further exacerbated in racial and ethnic minority groups and are especially concerning in health professional training settings such as Doctor of Pharmacy (PharmD) programs and postgraduate residency training where mental illness rates are high. The purpose of the study was to determine baseline access to culturally sensitive mental healthcare and how to improve such access and communication for racially and ethnically minoritized pharmacy students and residents at one school of pharmacy and a partnering academic medical center in the United States. Methods: This IRB-exempt study included 60-minute focus groups conducted in person or online from November 2021 to February 2022. Eligible participants included PharmD students in their first (P1), second (P2), third (P3), or fourth year (P4) or pharmacy residents completing a postgraduate year 1 (PGY1) or PGY2 who identify as Black, Indigenous, or Person of Color (BIPOC). There were four core theme questions asked during the focus groups to lead the discussion, specifically on the core themes of personal barriers, identities, areas that are working well, and areas for improvement. Participant responses were transcribed and analyzed using an open coding system with two individual reviews, followed by collaborative and intentional discussion and, as needed, an external audit of the coding by a third research team member to reach a consensus on themes. Results: This study enrolled 26 participants, with eight P1, five P2, seven P3, two P4, and four resident participants. Within the four core themes of barriers, identities, areas working well, and areas for improvement, emerging subthemes included: lack of time, access to resources, and stigma under barriers; lack of representation, cultural and family stigma, and gender identities for identity barriers; supportive faculty, sense of community and culture supporting paid time off for areas going well; and wellness days, reduced workload and diversity of the workforce in areas of improvement. Subthemes sometimes varied within a core theme depending on the participant year. Conclusions: There is a gap in the literature in addressing barriers and disparities in mental health access for pharmacy trainees who identify as BIPOC. We identified key findings in regards to barriers, identities, areas going well and areas for improvement that can inform the School and the Residency Program in two priority initiatives of well-being and diversity equity and inclusion in creating actionable recommendations for trainees, program directors, and employers of our institutions, and also has the potential to provide insight for other organizations about the structures influencing access to culturally sensitive care in BIPOC trainees. These findings can inform organizations on how to continue building on communication with those who identify as BIPOC and improve access to care.

Keywords: mental health, disparities, minorities, wellbeing, identity, communication, barriers

Procedia PDF Downloads 95
6372 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 205
6371 Evaluation of the Grammar Questions at the Undergraduate Level

Authors: Preeti Gacche

Abstract:

A considerable part of undergraduate level English Examination papers is devoted to grammar. Hence the grammar questions in the question papers are evaluated and the opinions of both students and teachers about them are obtained and analyzed. A grammar test of 100 marks is administered to 43 students to check their performance. The question papers have been evaluated by 10 different teachers and their scores compared. The analysis of 38 University question papers reveals that on an average 20 percent marks are allotted to grammar. Almost all the grammar topics are tested. Abundant use of grammatical terminology is observed in the questions. Decontextualization, repetition, possibility of multiple correct answers and grammatical errors in framing the questions have been observed. Opinions of teachers and students about grammar questions vary in many respects. The students responses are analyzed medium-wise and sex-wise. The Medium at the School level and the sex of the students are found to play no role as far as interest in the study of grammar is concerned. English medium students solve grammar questions intuitively whereas non-English medium students are required to recollect the rules of grammar. Prepositions, Verbs, Articles and Model auxiliaries are found to be easy topics for most students whereas the use of conjunctions is the most difficult topic. Out of context items of grammar are difficult to answer in comparison with contextualized items of grammar. Hence contextualized texts to test grammar items are desirable. No formal training in setting questions is imparted to teachers by the competent authorities like the University. They need to be trained in testing. Statistically there is no significant change of score with the change in the rater in testing of grammar items. There is scope of future improvement. The question papers need to be evaluated and feedback needs to be obtained from students and teachers for future improvement.

Keywords: context, evaluation, grammar, tests

Procedia PDF Downloads 357
6370 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome and Effect on Median Ersus Ulnar Comparative Studies

Authors: Emmanuel K. Aziz Saba, Sarah S. El-Tawab

Abstract:

Objectives: Carpal tunnel syndrome (CTS) was found to be associated with high pressure within the Guyon’s canal. The aim of this study was to assess the involvement of sensory and/or motor ulnar nerve fibers in patients with CTS and whether this affects the accuracy of the median versus ulnar sensory and motor comparative tests. Patients and methods: The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done for all patients. The following tests were done for the patients and control: (1) Sensory conduction studies: median nerve, ulnar nerve, dorsal ulnar cutaneous nerve and median versus ulnar digit (D) four sensory comparative study; (2) Motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. Results: There were no statistically significant differences between patients and control group as regards parameters of ulnar motor study and dorsal ulnar cutaneous sensory conduction study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were statistically significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. There were statistically significant positive correlations between median sensory conduction velocity and both ulnar sensory nerve action potential amplitude recording D5 and D4. Conclusions: There is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. The presence of abnormalities in ulnar nerve occurs in moderate and severe degrees of CTS. This does not affect the median versus ulnar sensory and motor comparative tests accuracy and validity for use in electrophysiological diagnosis of CTS.

Keywords: carpal tunnel syndrome, ulnar nerve, median nerve, median versus ulnar comparative study, dorsal ulnar cutaneous nerve

Procedia PDF Downloads 569
6369 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings

Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy

Abstract:

Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.

Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization

Procedia PDF Downloads 415
6368 Improving Self-Administered Medication Adherence for Older Adults: A Systematic Review

Authors: Mathumalar Loganathan, Lina Syazana, Bryony Dean Franklin

Abstract:

Background: The therapeutic benefit of self-administered medication for long-term use is limited by an average 50% non-adherence rate. Patient forgetfulness is a common factor in unintentional non-adherence. With a growing ageing population, strategies to improve self-administration of medication adherence are essential. Our aim was to review systematically the effects of interventions to optimise self-administration of medication. Method: Database searched were MEDLINE, EMBASE, PsynINFO, CINAHL from 1980 to 31 October 2013. Search terms included were ‘self-administration’, ‘self-care’, ‘medication adherence’, and ‘intervention’. Two independent reviewers undertook screening and methodological quality assessment, using the Downs and Black rating scale. Results: The search strategy retrieved 6 studies that met the inclusion and exclusion criteria. Three intervention strategies were identified: self-administration medication programme (SAMP), nursing education and medication packaging (pill calendar). A nursing education programme focused on improving patients’ behavioural self-management of drug prescribing. This was the most studied area and three studies highlighting an improvement in self-administration of medication. Conclusion: Results are mixed and there is no one interventional strategy that has proved to be effective. Nevertheless, self-administration of medication programme seems to show most promise. A multi-faceted approach and clearer policy guideline are likely to be required to improve prescribing for these vulnerable patients. Mixed results were found for SAMP. Medication packaging (pill calendar) was evaluated in one study showing a significant improvement in self-administration of medication. A meta-analysis could not be performed due to heterogeneity in the outcome measures.

Keywords: self-administered medication, intervention, prescribing, older patients

Procedia PDF Downloads 325
6367 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 14
6366 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements

Authors: Denis A. Sokolov, Andrey V. Mazurkevich

Abstract:

In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.

Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement

Procedia PDF Downloads 61
6365 The Surgical Trainee Perception of the Operating Room Educational Environment

Authors: Neal Rupani

Abstract:

Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.

Keywords: education environment, surgery, post-graduate education, OREEM

Procedia PDF Downloads 186
6364 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 450
6363 Reducing Ambulance Offload Delay: A Quality Improvement Project at Princess Royal University Hospital

Authors: Fergus Wade, Jasmine Makker, Matthew Jankinson, Aminah Qamar, Gemma Morrelli, Shayan Shah

Abstract:

Background: Ambulance offload delays (AODs) affect patient outcomes. At baseline, the average AOD at Princess Royal University Hospital (PRUH) was 41 minutes, in breach of the 15-minute target. Aims: By February 2023, we aimed to reduce: the average AOD to 30 minutes percentage of AOD >30 minutes (PA30) to 25% and >60 minutes (PA60) to 10% Methods: Following a root-cause analysis, we implemented 2 Plan, Do, Study, Act (PDSA) cycles. PDSA-1 ‘Drop-and-run’: ambulances waiting >15 minutes for a handover left the patients in the Emergency Department (ED) and returned to the community. PDSA-2: Booking in the patients before the handover, allowing direct updates to online records, eliminating the need for handwritten notes. Outcome measures: AOD, PA30, and PA60, and process measures: total ambulances and patients in the ED were recorded for 16 weeks. Results: In PDSA-1, all parameters increased slightly despite unvarying ED crowding. In PDSA-2, two shifts in data were seen: initially, a sharp increase in the outcome measures consistent with increased ED crowding, followed by a downward shift when crowding returned to baseline (p<0.01). Within this interval, the AOD reduced to 29.9 minutes, and PA30 and PA60 were 31.2% and 9.2% respectively. Discussion/conclusion: PDSA-1 didn’t result in any significant changes; lack of compliance was a key cause. The initial upward shift in PDSA-2 is likely associated with NHS staff strikes. However, during the second interval, the AOD and the PA60 met our targets of 30 minutes and 10%, respectively, improving patient flow in the ED. This was sustained without further input and if maintained, saves 2 paramedic shifts every 3 days.

Keywords: ambulance offload, district general hospital, handover, quality improvement

Procedia PDF Downloads 108
6362 Parasagittal Approach to Lumbar Epidural Steroid Injections: A Cost-Effectiveness Analysis

Authors: K. D. Candido, A. Lissounov, I. Knezevic, N. Knezevic

Abstract:

Background: The most commonly performed pain procedures in the USA is Lumbar Epidural Steroid Injections (LESI). There are three main types of these procedures: transforaminal (TF), interlaminar (IL) and caudal injections. It is expected for TF injections to have better outcomes than IL injections, based on the recently published systematic review. The studies presented in that review used a midline IL approach, but those with parasagittal IL approach were not taken into consideration. Our aim is to emphasize the efficacy of the lateral parasagittal (paramedian) IL approach in this review. Methods: We included five studies in this systematic review, which compared Parasagittal-IL (PIL) with either Midline-IL (MIL) or TF LESI. Total of 296 patients who had undergone different types of LESI were observed across the five studies, and the average pain and functional improvements were calculated and compared among groups. Results: Pain and function improvements with PIL approach is superior on 12 months follow up to MIL approach (53.4% vs. 14.7%) and (55% vs. 27.7%), respectively. A 12 months follow-up results between PIL and TF shows a near equivalent effectiveness for pain (58.9% vs. 63.2%) and function improvement (47.3% vs. 48.1%). An average follow-up of 17.1 days have shown better short-term pain relief for PIL than TF approach (45.8% vs. 19.2%), respectively. Number of repeated injections is lower for PIL injections than MIL. Number of weeks between 1st and 2nd injections: PIL averaged 15.8 weeks and MIL averaged 9.7 weeks. Third LESI injection is more common in TF group (30%) than PIL group (18.8%). Conclusion: Higher complication rates are associated with TF injections for which FDA7 issued an official warning. We have recorded better outcomes in pain and function improvement of Parasagittal-IL LESI as compared to midline-IL injection, in the presented systematic review. Parasagittal and TF injections have equivalent efficacy in Pain and Function improvements thus we advocate for Parasagittal-IL approach consideration as an alternative for TF injections.

Keywords: parasagital approach, lumbar, back pain, epidural steroid injection

Procedia PDF Downloads 176
6361 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 83
6360 The Role of Bone Marrow Stem Cells Transplantation in the Repair of Damaged Inner Ear in Albino Rats

Authors: Ahmed Gaber Abdel Raheem, Nashwa Ahmed Mohamed

Abstract:

Introduction: Sensorineural hearing loss (SNHL) is largely caused by the degeneration of the cochlea. Therapeutic options for SNHL are limited to hearing aids and cochlear implants. The cell transplantation approach to the regeneration of hair cells has gained considerable attention because stem cells are believed to accumulate in the damaged sites and have the potential for the repair of damaged tissues. The aim of the work: was to assess the use of bone marrow transplantation in repair of damaged inner ear hair cells in rats after the damage had been inflicted by Amikacin injection. Material and Methods: Thirty albino rats were used in this study. They were divided into three groups. Each group ten rats. Group I: used as control. Group II: Were given Amikacin- intratympanic injection till complete loss of hearing function. This could be assessed by Distortion product Otoacoustic Emission (DPOAEs) and / or auditory brain stem evoked potential (ABR). GroupIII: were given intra-peritoneal injection of bone marrow stem cell after complete loss of hearing caused by Amikacin. Clinical assessment was done using DPOAEs and / or auditory brain stem evoked potential (ABR), before and after bone marrow injection. Histological assessment of the inner ear was done by light and electron microscope. Also, Detection of stem cells in the inner ear by immunohistochemistry. Results: Histological examination of the specimens showed promising improvement in the structure of cochlea that may be responsible for the improvement of hearing function in rats detected by DPOAEs and / or ABR. Conclusion: Bone marrow stem cells transplantation might be useful for the treatment of SNHL.

Keywords: amikacin, hair cells, sensorineural hearing loss, stem cells

Procedia PDF Downloads 451
6359 Elite Child Athletes Are Our Future: Cardiac Adaptation to Monofin Training in Prepubertal Egyptian Athletes

Authors: Magdy Abouzeid, Nancy Abouzeid, Afaf Salem

Abstract:

Background: The elite child athletes are one who has superior athletic talent. Monofin (a single surface swim fin) swimming already proved to be the most efficient method of swimming for human being. This is a novel descriptive study examining myocardial function indices in prepubertal monofin children. The aim of the present study was to determine the influence of long-term monofin training (LTMT), 36 weeks, 6 times per week, 90 min per unit on Myocardial function adaptation in elite child monofin athletes. Methods: 14 elite monofin children aged 11.95 years (± 1.09 yr) took part for (LTMT). All subjects underwent two-dimension, M-mode, and Doppler echocardiography before and after training to evaluate cardiac dimensions and function; septal and posterior wall thickness. Statistical methods of SPSS, means ± SD and paired t test, % of improvement were used. Findings: There was significant difference (p<0.01) and % improvement for all echocardiography parameter after (LTMT). Inter ventricular septal thickness in diastole and in systole increased by 27.9 % and 42.75 %. Left ventricular end systolic dimension and diastole increased by 16.81 % and 42.7 % respectively. Posterior wall thickness in systole very highly increased by 283.3 % and in diastole increased by 51.78 %. Left ventricular mass in diastole and in systole increased by 44.8 % and 40.1 % respectively. Stroke volume (SV) and resting heart rate (HR) significant changed (sv) 25 %, (HR) 14.7 %. Interpretation: the unique swim fin tool and create propulsion and overcome resistance. Further researches are needed to determine the effects of monofin training on right ventricular in child athletes.

Keywords: prepubertal, monofin training, heart athlete's, elite child athlete, echocardiography

Procedia PDF Downloads 340
6358 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 48
6357 Static Test Pad for Solid Rocket Motors

Authors: Svanik Garg

Abstract:

Static Test Pads are stationary mechanisms that hold a solid rocket motor, measuring the different parameters of its operation including thrust and temperature to better calibrate it for launch. This paper outlines a specific STP designed to test high powered rocket motors with a thrust upwards of 4000N and limited to 6500N. The design includes a specific portable mechanism with cost an integral part of the design process to make it accessible to small scale rocket developers with limited resources. Using curved surfaces and an ergonomic design, the STP has a delicately engineered façade/case with a focus on stability and axial calibration of thrust. This paper describes the design, operation and working of the STP and its widescale uses given the growing market of aviation enthusiasts. Simulations on the CAD model in Fusion 360 provided promising results with a safety factor of 2 established and stress limited along with the load coefficient A PCB was also designed as part of the test pad design process to help obtain results, with visual output and various virtual terminals to collect data of different parameters. The circuitry was simulated using ‘proteus’ and a special virtual interface with auditory commands was also created for accessibility and wide-scale implementation. Along with this description of the design, the paper also emphasizes the design principle behind the STP including a description of its vertical orientation to maximize thrust accuracy along with a stable base to prevent micromovements. Given the rise of students and professionals alike building high powered rockets, the STP described in this paper is an appropriate option, with limited cost, portability, accuracy, and versatility. There are two types of STP’s vertical or horizontal, the one discussed in this paper is vertical to utilize the axial component of thrust.

Keywords: static test pad, rocket motor, thrust, load, circuit, avionics, drag

Procedia PDF Downloads 387
6356 Vehicle Activity Characterization Approach to Quantify On-Road Mobile Source Emissions

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. Other methods provided better accuracy utilizing annual average estimates. Travel demand models provided an intermediate level of detail through average daily volumes. Currently, higher accuracy can be established utilizing microscopic analyses by splitting the network links into sub-links and utilizing second-by-second trajectories to calculate emissions. The need to accurately quantify transportation-related emissions from vehicles is essential. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited access highway in Orlando, Florida. First, (at the most basic level), emissions were estimated for the entire 10-mile section 'by hand' using one average traffic volume and average speed. Then, three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NOx, PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach.

Keywords: limited access highways, MOVES, operating mode distribution (OPMODE), transportation emissions, vehicle specific power (VSP)

Procedia PDF Downloads 341
6355 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 134
6354 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation

Authors: Vadim Vagin, Marina Fomina, Oleg Morosin

Abstract:

This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.

Keywords: argumentation, justification degrees, inductive concept formation, noise, generalization

Procedia PDF Downloads 444
6353 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing

Authors: John Eric C. Bargas, Maria Cecilia M. Marcos

Abstract:

One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.

Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing

Procedia PDF Downloads 57
6352 Vibro-Tactile Equalizer for Musical Energy-Valence Categorization

Authors: Dhanya Nair, Nicholas Mirchandani

Abstract:

Musical haptic systems can enhance a listener’s musical experience while providing an alternative platform for the hearing impaired to experience music. Current music tactile technologies focus on representing tactile metronomes to synchronize performers or encoding musical notes into distinguishable (albeit distracting) tactile patterns. There is growing interest in the development of musical haptic systems to augment the auditory experience, although the haptic-music relationship is still not well understood. This paper represents a tactile music interface that provides vibrations to multiple fingertips in synchronicity with auditory music. Like an audio equalizer, different frequency bands are filtered out, and the power in each frequency band is computed and converted to a corresponding vibrational strength. These vibrations are felt on different fingertips, each corresponding to a different frequency band. Songs with music from different spectrums, as classified by their energy and valence, were used to test the effectiveness of the system and to understand the relationship between music and tactile sensations. Three participants were trained on one song categorized as sad (low energy and low valence score) and one song categorized as happy (high energy and high valence score). They were trained both with and without auditory feedback (listening to the song while experiencing the tactile music on their fingertips and then experiencing the vibrations alone without the music). The participants were then tested on three songs from both categories, without any auditory feedback, and were asked to classify the tactile vibrations they felt into either category. The participants were blinded to the songs being tested and were not provided any feedback on the accuracy of their classification. These participants were able to classify the music with 100% accuracy. Although the songs tested were on two opposite spectrums (sad/happy), the preliminary results show the potential of utilizing a vibrotactile equalizer, like the one presented, for augmenting musical experience while furthering the current understanding of music tactile relationship.

Keywords: haptic music relationship, tactile equalizer, tactile music, vibrations and mood

Procedia PDF Downloads 182
6351 A Study on Development Strategies of Marine Leisure Tourism Using AHP

Authors: Da-Hye Jang, Woo-Jeong Cho

Abstract:

Marine leisure tourism contributes greatly to the national economy in which the sea is located nearby and many countries are using marine tourism to create value added. The interest and investment of government and local governments on marine leisure tourism growing as a major trend of marine tourism is steadily increasing. But indiscriminate investment in marine leisure tourism such as duplicated business wastes limited resources. In other words, government and local governments need to select and concentrate on the goal they pursue by drawing priority on maritime leisure tourism policies. The purpose of this study is to analyze development strategies on supplier for marine leisure tourism and thus provide a comprehensive and rational framework for developing marine leisure tourism. In order to achieve the purpose, this study is to analyze priorities for each evaluation criterion of marine leisure tourism development policies using Analytic Hierarchy Process. In this study, a questionnaire was used as the survey tool and was developed based on the previous studies, government report, regional report, related thesis and literature for marine leisure tourism. The questionnaire was constructed by verifying the validity of contents from the expert group related to marine leisure tourism after conducting the first and second preliminary surveys. The AHP survey was conducted to experts (university professors, researchers, field specialists and related public officials) from April 6, 2018 to April 30, 2018 by visiting in person or e-mail. This study distributed 123 questionnaires and 68 valid questionnaires were used for data analysis. As a result, 4 factors with 12 detail strategies were analyzed using Excel. Extracted factors of development strategies of marine leisure tourism are consist of 4 factors such as infrastructure, popularization, law & system improvement and advancement. In conclusion, the results of the pairwise comparison of the four major factor on the first class were infrastructure, popularization, law & system improvement and advancement in order. Second, marine water front space maintenance had higher priority than marina facilities expansion and the establishment of marine leisure education center. Third, marine leisure safety·culture improvement had higher priority than strengthening experience·education program and the upkeep and open promotion event. Fourth, specialization·cluster of marine leisure tourism had higher priority than business support system of marine leisure tourism. Fifth, the revision of water-related leisure activities safety act had higher priority than an enactment of marine tourism promotion act and the foster of marina service industry. Finally, marine water front space maintenance was the most important development plan to boost marine leisure tourism.

Keywords: marine leisure tourism, marine leisure, marine tourism, analytic hierarchy process

Procedia PDF Downloads 166
6350 Nowcasting Indonesian Economy

Authors: Ferry Kurniawan

Abstract:

In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.

Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination

Procedia PDF Downloads 332
6349 Telemedicine App Powered by AI

Authors: Cotran Mabeya

Abstract:

This focuses on an artificially intelligent telemedicine application that aims to enrich the access to health care services, especially for those who live in remote and underserved areas. This app is highly packed with very advanced AI technologies—symptom checkers and virtual consultations—as well as health data integration for very efficient and user-friendly remote health support with main features: AI-based diagnostics, real-time health monitoring through wearables, and an intuitive interface. The Telemedicine Application tries too hard to address some of the healthcare problems, such as limited access in remote areas, high costs, lengthy wait times for certain services, as well as difficulty in getting second opinions. By making it friendlier for consultation remotely, the application removes geographic and financial barriers to accessing affordable and timely medical care. In addition, by having centralized patient records and communication between healthcare providers, it allows continuity of care by making it easier to transition to treatment. It has been confirmed that this multi-design approach incorporated both quantitative and qualitative designs to evaluate the socio-economic impacts of artificial intelligence and telemedicine on patients in Nairobi County. Adults made up the target population, while informers and respondents were categorized into patients, healthcare providers, and specialists in law, IT, and AI. Stratified and simple random sampling techniques were used to ensure diversely inclusive representation to enhance accuracy and triangulation in the data collected. Moreover, the study provides several recommendations, which include regular updating accuracy of AI symptom checkers, improving data security through encryption and multi-factor authentication, as well as real-time health data integration from bodily wearables for personal healthcare

Keywords: artificial intelligence, virtual consultations, user-friendly, remote areas

Procedia PDF Downloads 9