Search results for: Boussinesq equations
344 Evaluation of the Dry Compressive Strength of Refractory Bricks Developed from Local Kaolin
Authors: Olanrewaju Rotimi Bodede, Akinlabi Oyetunji
Abstract:
Modeling the dry compressive strength of sodium silicate bonded kaolin refractory bricks was studied. The materials used for this research work included refractory clay obtained from Ijero-Ekiti kaolin deposit on coordinates 7º 49´N and 5º 5´E, sodium silicate obtained from the open market in Lagos on coordinates 6°27′11″N 3°23′45″E all in the South Western part of Nigeria. The mineralogical composition of the kaolin clay was determined using the Energy Dispersive X-Ray Fluorescence Spectrometer (ED-XRF). The clay samples were crushed and sieved using the laboratory pulveriser, ball mill and sieve shaker respectively to obtain 100 μm diameter particles. Manual pipe extruder of dimension 30 mm diameter by 43.30 mm height was used to prepare the samples with varying percentage volume of sodium silicate 5 %, 7.5 % 10 %, 12.5 %, 15 %, 17.5 %, 20% and 22.5 % while kaolin and water were kept at 50 % and 5 % respectively for the comprehensive test. The samples were left to dry in the open laboratory atmosphere for 24 hours to remove moisture. The samples were then were fired in an electrically powered muffle furnace. Firing was done at the following temperatures; 700ºC, 750ºC, 800ºC, 850ºC, 900ºC, 950ºC, 1000ºC and 1100ºC. Compressive strength test was carried out on the dried samples using a Testometric Universal Testing Machine (TUTM) equipped with a computer and printer, optimum compression of 4.41 kN/mm2 was obtained at 12.5 % sodium silicate; the experimental results were modeled with MATLAB and Origin packages using polynomial regression equations that predicted the estimated values for dry compressive strength and later validated with Pearson’s rank correlation coefficient, thereby obtaining a very high positive correlation value of 0.97.Keywords: dry compressive strength, kaolin, modeling, sodium silicate
Procedia PDF Downloads 455343 Fluid–Structure Interaction Modeling of Wind Turbines
Authors: Andre F. A. Cyrino
Abstract:
Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade
Procedia PDF Downloads 268342 Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges
Authors: Ali Mahmoud, Shadi Najjar, Mounir Mabsout, Kassim Tarhini
Abstract:
Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges.Keywords: reliability analysis of concrete bridges, finite element modeling, reliability analysis, reinforced concrete bridge design, load carrying capacity
Procedia PDF Downloads 340341 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria
Authors: R. Santos Alimi
Abstract:
Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.Keywords: public expenditure, economic growth, optimum level, fully modified OLS
Procedia PDF Downloads 420340 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate
Procedia PDF Downloads 152339 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 148338 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations
Authors: Ram Mohan, Richard Haney, Ajit Kelkar
Abstract:
Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance
Procedia PDF Downloads 363337 Earthquake Forecasting Procedure Due to Diurnal Stress Transfer by the Core to the Crust
Authors: Hassan Gholibeigian, Kazem Gholibeigian
Abstract:
In this paper, our goal is determination of loading versus time in crust. For this goal, we present a computational procedure to propose a cumulative strain energy time profile which can be used to predict the approximate location and time of the next major earthquake (M > 4.5) along a specific fault, which we believe, is more accurate than many of the methods presently in use. In the coming pages, after a short review of the research works presently going on in the area of earthquake analysis and prediction, earthquake mechanisms in both the jerk and sequence earthquake direction is discussed, then our computational procedure is presented using differential equations of equilibrium which govern the nonlinear dynamic response of a system of finite elements, modified with an extra term to account for the jerk produced during the quake. We then employ Von Mises developed model for the stress strain relationship in our calculations, modified with the addition of an extra term to account for thermal effects. For calculation of the strain energy the idea of Pulsating Mantle Hypothesis (PMH) is used. This hypothesis, in brief, states that the mantle is under diurnal cyclic pulsating loads due to unbalanced gravitational attraction of the sun and the moon. A brief discussion is done on the Denali fault as a case study. The cumulative strain energy is then graphically represented versus time. At the end, based on some hypothetic earthquake data, the final results are verified.Keywords: pulsating mantle hypothesis, inner core’s dislocation, outer core’s bulge, constitutive model, transient hydro-magneto-thermo-mechanical load, diurnal stress, jerk, fault behaviour
Procedia PDF Downloads 276336 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper
Authors: Hossein Ramezani Ali-Akbari
Abstract:
This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.Keywords: back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism
Procedia PDF Downloads 325335 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material
Authors: Muhammad Zahid
Abstract:
The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material
Procedia PDF Downloads 148334 The Influence of the Regional Sectoral Structure on the Socio-Economic Development of the Arkhangelsk Region
Authors: K. G. Sorokozherdyev, E. A. Efimov
Abstract:
The socio-economic development of regions and countries is an important research issue. Today, in the face of many negative events in the global and regional economies, it is especially important to identify those areas that can serve as sources of economic growth and the basis for the well-being of the population. This study aims to identify the most important sectors of the economy of the Arkhangelsk region that can contribute to the socio-economic development of the region as a whole. For research, the Arkhangelsk region was taken as one of the typical Russian regions that do not have significant reserves of hydrocarbons nor there are located any large industrial complexes. In this regard, the question of possible origins of economic growth seems especially relevant. The basis of this study constitutes the distributed lag regression model (ADL model) developed by the authors, which is based on quarterly data on the socio-economic development of the Arkhangelsk region for the period 2004-2016. As a result, we obtained three equations reflecting the dynamics of three indicators of the socio-economic development of the region -the average wage, the regional GRP, and the birth rate. The influencing factors are the shares in GRP of such sectors as agriculture, mining, manufacturing, construction, wholesale and retail trade, hotels and restaurants, as well as the financial sector. The study showed that the greatest influence on the socio-economic development of the region is exerted by such industries as wholesale and retail trade, construction, and industrial sectors. The study can be the basis for forecasting and modeling the socio-economic development of the Arkhangelsk region in the short and medium term. It also can be helpful while analyzing the effectiveness of measures aimed at stimulating those or other industries of the region. The model can be used in developing a regional development strategy.Keywords: regional economic development, regional sectoral structure, ADL model, Arkhangelsk region
Procedia PDF Downloads 100333 Synthesis, Characterization and Catecholase Study of Novel Bidentate Schiff Base Derived from Dehydroacetic Acid
Authors: Salima Tabti, Chaima Maouche, Tinhinene Louaileche, Amel Djedouani, Ismail Warad
Abstract:
Novel Schiff base ligand HL has been synthesized by condensation of aromatic amine and DHA. It was characterized by UV-Vis, FT-IR, SM, NMR (1H, 13C) and also by single-crystal X-ray diffraction. The crystal structure shows that compound crystallized in a triclinic system in P-1 space group and with a two unit per cell (Z = 2).The asymmetric unit, contains one independent molecules, the conformation is determined by an intermolecular N-H…O hydrogen bond with an S(6) ring motif. The molecule have an (E) conformation about the C=N bond. The dihedral angles between the phenyl and pyran ring planes is 89.37 (1), the two plans are approximately perpendicular. The catecholase activity of is situ copper complexes of this ligand has been investigated against catechol. The progress of the oxidation reactions was closely monitored over time following the strong peak of catechol using UV-Vis. Oxidation rates were determined from the initial slope of absorbance. time plots, then analyzed by Michaelis-Menten equations. Catechol oxidation reactions were realized using different concentrations of copper acetate and ligand (L/Cu: 1/1, 1/2, 2/1). The results show that all complexes were able to catalyze the oxidation of catechol. Acetate complexes have the highest activity. Catalysis is a branch of chemical kinetics that, more generally, studies the influence of all physical or chemical factors determining reaction rates. It solves a lot of problems in the chemistry reaction process, especially for a green, economic and less polluting chemistry. For this reason, the search for new catalysts for known organic reactions, occupies a very advanced place in the themes proposed by the chemists.Keywords: dehydroacetic acid, catechol, copper, catecholase activity, x-ray
Procedia PDF Downloads 110332 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 445331 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser
Procedia PDF Downloads 352330 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study
Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan
Abstract:
Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation
Procedia PDF Downloads 225329 Body Mass Components in Young Soccer Players
Authors: Elizabeta Sivevska, Sunchica Petrovska, Vaska Antevska, Lidija Todorovska, Sanja Manchevska, Beti Dejanova, Ivanka Karagjozova, Jasmina Pluncevic Gligoroska
Abstract:
Introduction: Body composition plays an important role in the selection of young soccer players and it is associated with their successful performance. The most commonly used model of body composition divides the body into two compartments: fat components and fat-free mass (muscular and bone components). The aims of the study were to determine the body composition parameters of young male soccer players and to show the differences in age groups. Material and methods: A sample of 52 young male soccer players, with an age span from 9 to 14 years were divided into two groups according to the age (group 1 aged 9 to 12 years and group 2 aged 12 to 14 years). Anthropometric measurements were taken according to the method of Mateigka. The following measurements were made: body weight, body height, circumferences (arm, forearm, thigh and calf), diameters (elbow, knee, wrist, ankle) and skinfold thickness (biceps, triceps, thigh, leg, chest, abdomen). The measurements were used in Mateigka’s equations. Results: Body mass components were analyzed as absolute values (in kilograms) and as percentage values: the muscular component (MC kg and MC%), the bone component (BCkg and BC%) and the body fat (BFkg and BF%). The group up to 12 years showed the following mean values of the analyzed parameters: MM=21.5kg; MM%=46.3%; BC=8.1kg; BC%=19.1%; BF= 6.3kg; BF%= 15.7%. The second group aged 12-14 year had mean values of body composition parameters as follows: MM=25.6 kg; MM%=48.2%; BC = 11.4 kg; BC%=21.6%; BF= 8.5 kg; BF%= 14. 7%. Conclusions: The young soccer players aged 12 up to 14 years who are in the pre-pubertal phase of growth and development had higher bone component (p<0.05) compared to younger players. There is no significant difference in muscular and fat body component between the two groups of young soccer players.Keywords: body composition, young soccer players, body fat, fat-free mass
Procedia PDF Downloads 458328 Analytical Description of Disordered Structures in Continuum Models of Pattern Formation
Authors: Gyula I. Tóth, Shaho Abdalla
Abstract:
Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases.Keywords: fundamental theory, mathematical physics, continuum models, analytical description
Procedia PDF Downloads 134327 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements
Authors: Brody R. Clark, Chaminda Gallage, John Yeaman
Abstract:
Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.Keywords: asphalt, complex modulus, fatigue life, flexural stiffness, four point bending, multigrade bitumen, recycled asphalt pavement
Procedia PDF Downloads 376326 Design an Assessment Model of Research and Development Capabilities with the New Product Development Approach: A Case Study of Iran Khodro Company
Authors: Hamid Hanifi, Adel Azar, Alireza Booshehri
Abstract:
In order to know about the capability level of R & D units in automotive industry, it is essential that organizations always compare themselves with standard level and higher than themselves so that to be improved continuously. In this research, with respect to the importance of this issue, we have tried to present an assessment model for R & D capabilities having reviewed on new products development in automotive industry of Iran. Iran Khodro Company was selected for the case study. To this purpose, first, having a review on the literature, about 200 indicators effective in R & D capabilities and new products development were extracted. Then, of these numbers, 29 indicators which were more important were selected by industry and academia experts and the questionnaire was distributed among statistical population. Statistical population was consisted of 410 individuals in Iran Khodro Company. We used the 410 questionnaires for exploratory factor analysis and then used the data of 308 questionnaires from the same population randomly for confirmatory factor analysis. The results of exploratory factor analysis led to categorization of dimensions in 9 secondary dimensions. Naming the dimensions was done according to a literature review and the professors’ opinion. Using structural equation modeling and AMOS software, confirmatory factor analysis was conducted and ultimate model with 9 secondary dimensions was confirmed. Meanwhile, 9 secondary dimensions of this research are as follows: 1) Research and design capability, 2) Customer and market capability, 3) Technology capability, 4) Financial resources capability, 5) Organizational chart, 6) Intellectual capital capability, 7) NPD process capability, 8) Managerial capability and 9) Strategy capability.Keywords: research and development, new products development, structural equations, exploratory factor analysis, confirmatory factor analysis
Procedia PDF Downloads 339325 Vibration Absorption Strategy for Multi-Frequency Excitation
Authors: Der Chyan Lin
Abstract:
Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber
Procedia PDF Downloads 155324 The Quality of Business Relationships in the Tourism System: An Imaginary Organisation Approach
Authors: Armando Luis Vieira, Carlos Costa, Arthur Araújo
Abstract:
The tourism system is viewable as a network of relationships amongst business partners where the success of each actor will ultimately be determined by the success of the whole network. Especially since the publication of Gümmesson’s (1996) ‘theory of imaginary organisations’, which suggests that organisational effectiveness largely depends on managing relationships and sharing resources and activities, relationship quality (RQ) has been increasingly recognised as a main source of value creation and competitive advantage. However, there is still ambiguity around this topic, and managers and researchers have been recurrently reporting the need to better understand and capitalise on the quality of interactions with business partners. This research aims at testing an RQ model from a relational, imaginary organisation’s approach. Two mail surveys provide the perceptions of 725 hotel representatives about their business relationships with tour operators, and 1,224 corporate client representatives about their business relationships with hotels (21.9 % and 38.8 % response rate, respectively). The analysis contributes to enhance our understanding on the linkages between RQ and its determinants, and identifies the role of their dimensions. Structural equation modelling results highlight trust as the dominant dimension, the crucial role of commitment and satisfaction, and suggest customer orientation as complementary building block. Findings also emphasise problem solving behaviour and selling orientation as the most relevant dimensions of customer orientation. The comparison of the two ‘dyads’ deepens the discussion and enriches the suggested theoretical and managerial guidelines concerning the contribution of quality relationships to business performance.Keywords: corporate clients, destination competitiveness, hotels, relationship quality, structural equations modelling, tour operators
Procedia PDF Downloads 393323 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube
Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang
Abstract:
Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM
Procedia PDF Downloads 281322 Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements
Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck
Abstract:
This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow
Procedia PDF Downloads 135321 An Experimental (Wind Tunnel) and Numerical (CFD) Study on the Flow over Hills
Authors: Tanit Daniel Jodar Vecina, Adriane Prisco Petry
Abstract:
The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 68° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data; this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used.Keywords: Atmospheric Boundary Layer, Computational Fluid Dynamic (CFD), Numerical Modeling, Wind Tunnel
Procedia PDF Downloads 380320 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact
Authors: Edward Nartey
Abstract:
Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations
Procedia PDF Downloads 63319 Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc
Authors: V. K. Gupta, Tejeet Singh
Abstract:
In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc.Keywords: anisotropy, creep, functionally graded composite, rotating disc
Procedia PDF Downloads 391318 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling
Authors: Ali Ashtiani, Cesar Carrasco
Abstract:
Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement
Procedia PDF Downloads 149317 Finite Element Model to Evaluate Gas Conning Phenomenon in Naturally Fractured Oil Reservoirs
Authors: Reda Abdel Azim
Abstract:
Gas conning phenomenon considered one of the prevalent matter in oil field applications as it significantly affects the amount of produced oil, increase cost of production operation and it has a direct effect on oil reservoirs recovery efficiency as well. Therefore, evaluation of such phenomenon and study the reservoir mechanisms that may strongly affect invading gas to the producing formation is crucial. Gas conning is a result of an imbalance between two major forces controlling the oil production: gravitational and viscous forces especially in naturally fractured reservoirs where the capillary pressure forces are negligible. Once the gas invading the producing formation near the wellbore due to large producing oil rate, the oil gas contact will change and such reservoirs are prone to gas conning. Moreover, the oil volume expected to be produced requires the use of long horizontal perforated well. This work presents a numerical simulation study to predict and propose solutions to gas coning in naturally fractured oil reservoirs. The simulation work is based on discrete fractures and permeability tensors approaches. The governing equations are discretized using finite element approach and Galerkin’s least square technique (GLS) is employed to stabilize the equation solutions. The developed simulator is validated against Eclipse-100 using horizontal fractures. The matrix and fracture properties are modelled. Critical rate, breakthrough time and GOR are determined to be used in investigation of the effect of matrix and fracture properties on gas coning. Results show that fracture distribution in terms of diverse dip and azimuth has a great effect on conning occurring. In addition, fracture porosity, anisotropy ratio, and fracture aperture.Keywords: gas conning, finite element, fractured reservoirs, multiphase
Procedia PDF Downloads 195316 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures
Authors: Anny Zambrano, German Gonzalez, Yair Quintero
Abstract:
The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness
Procedia PDF Downloads 343315 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys
Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta
Abstract:
The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.Keywords: chimney, deterministic model, van der pol, vortex-induced vibration
Procedia PDF Downloads 221