Search results for: speech dataset
438 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt
Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol
Abstract:
Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level
Procedia PDF Downloads 164437 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency
Authors: M. Mohan, J. P. Roise, G. P. Catts
Abstract:
Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker
Procedia PDF Downloads 336436 The Web of Injustice: Untangling Violations of Personality Rights in European International Private Law
Authors: Sara Vora (Hoxha)
Abstract:
Defamation, invasion of privacy, and cyberbullying have all increased in tandem with the growth of the internet. European international private law may struggle to deal with such transgressions if they occur in many jurisdictions. The current study examines how effectively the legal system of European international private law addresses abuses of personality rights in cyberspace. The study starts by discussing how established legal frameworks are being threatened by online personality rights abuses. The article then looks into the rules and regulations of European international private law that are in place to handle overseas lawsuits. This article examines the different elements that courts evaluate when deciding which law to use in a particular case, focusing on the concepts of jurisdiction, choice of law, and recognition and execution of foreign judgements. Next, the research analyses the function of the European Union in preventing and punishing online personality rights abuses. Key pieces of law that control the collecting and processing of personal data on the Internet, including the General Data Protection Regulation (GDPR) and the e-Commerce Directive, are discussed. In addition, this article investigates how the ECtHR handles cases involving the infringement of personal freedoms, including privacy and speech. The article finishes with an assessment of how well the legal framework of European international private law protects individuals' right to privacy online. It draws attention to problems with the present legal structure, such as the inability to enforce international judgements, the inconsistency between national laws, and the necessity for stronger measures to safeguard people' rights online. This paper concludes that while European international private law provides a useful framework for dealing with violations of personality rights online, further harmonisation and stronger enforcement mechanisms are necessary to effectively protect individuals' rights in the digital age.Keywords: European international private law, personality rights, internet, jurisdiction, cross-border disputes, data protection
Procedia PDF Downloads 73435 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Reading in Students of Special Needs
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Background & aims: Reading is a receptive skill whose importance could involve abilities' variance from linguistic standard. Several evidences support the hypothesis stating that the more you read the better you write, with a different impact for speech language therapists (SLTs) who use audio-visual aids and computer-assisted language instruction (CALI) and those who do not. Methods: Here we made use of audio-visual aids and CALI for teaching reading skill to a group of 40 students of special needs of both sexes (range between 8 and 18 years old) at al-Malādh school for teaching students of special needs in Dhamar (Yemen) while another group of the same number is taught using ordinary teaching methods. Pre-and-posttests have been administered at the beginning and the end of the semester (Before and after teaching the reading course). The purpose was to understand the differences between the levels of the students of special needs to see to what extent audio-visual aids and CALI are useful for them. The two groups were taught by the same instructor under the same circumstances in the same school. Both quantitative and qualitative procedures were used to analyze the data. Results: The overall findings revealed that audio-visual aids and CALI are very useful for teaching reading to students of special needs and this can be seen in the scores of the treatment group’s subjects (7.0%, in post-test vs.2.5% in pre-test). In comparison to the scores of the second group’s subjects (where audio-visual aids and CALI were not used) (2.2% in both pre-and-posttests), the first group subjects have overcome reading tasks and this can be observed in their performance in the posttest. Compared with males, females’ performance was better (1466 scores (7.3%) vs. 1371 scores (6.8%). Qualitative and statistical analyses showed that such comprehension is absolutely due to the use of audio-visual aids and CALI and nothing else. These outcomes confirm the evidence of the significance of using audio-visual aids and CALI as effective means for teaching receptive skills in general and reading skill in particular.Keywords: reading, receptive skills, audio-visual aids, CALI, students, special needs, SLTs
Procedia PDF Downloads 47434 Internal Auditing and the Performance of State-Owned Enterprises in Emerging Markets
Authors: Jobo Dubihlela, Kofi Boamah
Abstract:
The inimitable role of the internal auditing, challenges and the predicament of state-owned enterprises in emerging markets are acknowledged. Study sought to address the inter-related questions, about how does IAF complement the performance and sustainability of SOEs? How can effective IA control systems be implemented to improve the performance results and culture of SOEs in Namibia? The weaknesses inherent in the SOE sector, unfortunately, impacts on the IAF ability to effectively support the SOEs. Despite these challenges, the study has unearthed IAF potential capabilities to contribute to SOE survival in Namibia by complementing the governance practices of the sector. Using a quantitative research approach, the dataset was collected and analysed from SOEs to confirm the role of the internal auditing function (IAF) as an indispensable concomitant of SOE performance. The study adopted a data approach supported by the literary evidence, which enabled generalisation and connectedness of the issues being addressed. The outcome of the data analysis contributed to achieving the results, which are discussed and eventually support the conclusions reached. Results show that the intractable task of internal auditing depends on the leadership of the board of directors of the SOEs. Study also revealed critical priorities needed to influence policymakers and oversight bodies to overcome the iniquities influencing SOE operations, understand and embrace IAF to salvage a sector that has a lot to offer and yet is severely mismanaged. Results support literature on IA’s contribution to SOE development from a developing country’s point of view and is the first of its kind in Namibia. Findings suggest ways to possibly enhance knowledge development of future researchers and ‘wet their appetite’ for further research in emerging markets and on a global scale.Keywords: internal auditing activity, state-owned enterprises, emerging markets, auditing function
Procedia PDF Downloads 101433 The Phonemic Inventory of Tenyidie Affricates: An Acoustic Study
Authors: NeisaKuonuo Tungoe
Abstract:
Tenyidie, also known as Angami, is spoken by the Angami tribe of Nagaland, North-East India, bordering Myanmar (Burma). It belongs to the Tibeto-Burman language group, falling under the Kuki-Chin-Naga sub-family. Tenyidie studies have seen random attempts at explaining the phonemic inventory of Tenyidie. Different scholars have variously emphasized the grammar or the history of Tenyidie. Many of these claims have been stimulating, but they were often based on a small amount of merely suggestive data or on auditory perception only. The principal objective of this paper is to analyse the affricate segments of Tenyidie as an acoustic study. There are seven categories to the inventory of Tenyidie; Plosives, Nasals, Affricates, Laterals, Rhotics, Fricatives, Semi vowels and Vowels. In all, there are sixty phonemes in the inventory. As mentioned above, the only prominent readings on Tenyidie or affricates in particular are only reflected through auditory perception. As noted above, this study aims to lay out the affricate segments based only on acoustic conclusions. There are seven affricates found in Tenyidie. They are: 1) Voiceless Labiodental Affricate - / pf /, 2) Voiceless Aspirated Labiodental Affricate- / pfh /, 3) Voiceless Alveolar Affricate - / ts /, 4) Voiceless Aspirated Alveolar Affricate - / tsh /, 5) Voiced Alveolar Affricate - / dz /, 6) Voiceless Post-Alveolar Affricate / tʃ / and 7) Voiced Post- Alveolar Affricate- / dʒ /. Since the study is based on acoustic features of affricates, five informants were asked to record their voice with Tenyidie phonemes and English phonemes. Throughout the study of the recorded data, PRAAT, a scientific software program that has made itself indispensible for the analyses of speech in phonetics, have been used as the main software. This data was then used as a comparative study between Tenyidie and English affricates. Comparisons have also been drawn between this study and the work of another author who has stated that there are only six affricates in Tenyidie. The study has been quite detailed regarding the specifics of the data. Detailed accounts of the duration and acoustic cues have been noted. The data will be presented in the form of spectrograms. Since there aren’t any other acoustic related data done on Tenyidie, this study will be the first in the long line of acoustic researches on Tenyidie.Keywords: tenyidie, affricates, praat, phonemic inventory
Procedia PDF Downloads 415432 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 315431 Trump’s COVID-19 Discourse: Downgrading the Fundamentals of the Political Fair Play
Authors: Gustavo Naranjo Maroto, Dolores Fernandez Martinez
Abstract:
Context has always been essential to understand any reaction from every human being, and words, whether written or spoken, are definitely a powerful representative sample of human reaction. This study starts with an accurate breakdown of the context in which the current president of the US, Mr. Donald J. Trump is conveying his discourses in order to be able to judge them from a critical discourse analysis point of view. The present world’s scenario with a pandemic disease in form of Covid-19 that is threatening the world and certainly putting at risk the so called 'Welfare State', the role of the United States as the first superpower on earth nowadays, the very peculiar profile of President Trump not only as a politician but as a persona, and the fact of being on the verge of a very controversial presidential elections are without doubt a great and undeniable opportunity for the implementation of the critical discourse analysis methodology. Hence, this research will primarily analyze in detail some of the most interesting discourses delivered by Trump in different media since the very beginning of the outbreak of the coronavirus pandemic in the United States of America (February, 2020), sadly very often downplayed by President Trump, until the final result of the upcoming presidential election scheduled for Tuesday, November 3, 2020, where the political discourse has been dramatically downgraded to a very dangerous state, putting in jeopardy the fundamentals of the political fair play in terms of speech. Finally, the study will hopefully conclude with the final outcome of the data analyzed, allowing to picture how significant the context can be concerning linguistics on the one hand, in terms of shaping or altering the message that the issuer thought to convey in the first place, and on the other hand, generously assessing to what extend the recipients of the message are influenced by the message in terms of receptiveness.Keywords: Covid-19, critical discourse analysis, Donald J. Trump, political discourse
Procedia PDF Downloads 130430 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 144429 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 475428 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble
Authors: Jaehong Yu, Seoung Bum Kim
Abstract:
Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking
Procedia PDF Downloads 335427 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 91426 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 140425 Genderqueerness in Polish: A Survey-Based Study of Linguistic Strategies Employed by Genderqueer Speakers of Polish
Authors: Szymon Misiek
Abstract:
The genderqueer (or gender non-binary, both terms referring to those individuals who are identified as neither men nor women) community has been gaining greater visibility over the last few years. This includes legal recognition, representation in popular media, and inclusion of non-binary perspectives in research on transgender issues. Another important aspect of visibility is language. Gender-neutrality, often associated with genderqueer people, is relatively easy to achieve in natural-gender languages such as English. This can be observed in the growing popularity of the 'singular they' pronoun (used specifically with reference to genderqueer individuals) or the gender-neutral title 'Mx.' (as an alternative to 'Ms./Mr.'). 'Singular they' seems to have become a certain standard in the genderqueer community. Grammatical-gender languages, such as Polish, provide for a greater challenge to genderqueer speakers. In Polish, every noun is inherently gendered, while verbs, adjectives, and pronouns inflect for gender. Those who do not wish to settle for using only either masculine or feminine forms (which some genderqueer Polish speakers do choose) have to somehow mix the two, attempt to avoid gendered forms altogether, or turn to non-standard forms, such as neuter (not used for people in standard Polish), plurals (vaguely akin to English 'singular they'), or neologisms (such as verb forms using the '-u-' affix). The following paper presents the results of a survey conducted among genderqueer speakers of Polish regarding their choice of linguistic strategies. As no definitive standard such as 'singular they' has (yet) emerged, it rather seeks to emphasize the diversity of chosen strategies and their relation to a person's specific identity as well as the context an exchange takes place. The findings of the study may offer an insight into how heavily gendered languages deal with non-normatively gendered experiences, and to what extent English influences this process (e.g., the majority of genderqueer poles choose English terms to label their identity), as well as help design good practices aimed at achieving gender-equality in speech.Keywords: genderqueer, grammatical gender in Polish, non-binary, transgender
Procedia PDF Downloads 138424 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis
Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin
Abstract:
Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis
Procedia PDF Downloads 200423 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia
Authors: Arragaw Alemayehu, Woldeamlak Bewket
Abstract:
The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend
Procedia PDF Downloads 434422 The Nexus Between the Rise of Autocratisation and the Deeper Level of BRI Engagement
Authors: Dishari Rakshit, Mitchell Gallagher
Abstract:
The global landscape is witnessing a disconcerting surge in democratic backsliding, engendering concerns over the rise of autocratisation. This research demonstrates the intricate relationship between a nation's domestic propensity for autocratic governance and its trade relations with China. Giving prominence to Belt and Road Initiative (BRI) investments, this study adopts a rigorous neorealist framework to discern the complexities of nations' economic interests amidst an anarchic milieu and how these interests may transcend steadfast adherence to democratic principles. The burgeoning bipolarity in the international political setting serves as a backdrop to our inquiry. To operationalise our hypothesis, we conduct a large-scale 'N' study, encompassing a comprehensive global dataset comprising countries' democracy indicators, total trade volume with China, and cumulative Chinese BRI investments over a substantial temporal expanse. By meticulously examining BRI signatories’, we aim to ascertain the potential accentuation of democratic backsliding among these nations. To test our empirical underpinning, we will validate our findings through cogent case studies. Our analysis adds to the scholarship on multifaceted interactions between trade dynamics and democratic governance within the fabric of the international political landscape. In its culmination, the paper addresses the question- has the erstwhile grandeur of bipolarity resurfaced in the contemporary global panorama? Concurrently, we explore the nexus between the ascendant wave of autocratisation as a by-product of the Beijing Consensus? Pertinent to policymakers, our discoveries stand poised to furnish a comprehensive grasp of the manifold implications arising from the deepening entanglements with China under the auspices of the BRI.Keywords: democracy, autocracy, china, belt road initiative, international political economy
Procedia PDF Downloads 69421 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 85420 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 140419 Qualitative and Quantitative Methods in Multidisciplinary Fields Collection Development
Authors: Hui Wang
Abstract:
Traditional collection building approaches are limited in breadth and scope and are not necessarily suitable for multidisciplinary fields development in the institutes of the Chinese Academy of Sciences. The increasing of multidisciplinary fields researches require a viable approach to collection development in these libraries. This study uses qualitative and quantitative analysis to assess collection. The quantitative analysis consists of three levels of evaluation, which including realistic demand, potential demand and trend demand analysis. For one institute, three samples were separately selected from the object institute, more than one international top institutes in highly relative research fields and future research hotspots. Each sample contains an appropriate number of papers published in recent five years. Several keywords and the organization names were reasonably combined to search in commercial databases and the institutional repositories. The publishing information and citations in the bibliographies of these papers were selected to build the dataset. One weighted evaluation model and citation analysis were used to calculate the demand intensity index of every journal and book. Principal Investigator selector and database traffic provide a qualitative evidence to describe the demand frequency. The demand intensity, demand frequency and academic committee recommendations were comprehensively considered to recommend collection development. The collection gaps or weaknesses were ascertained by comparing the current collection and the recommend collection. This approach was applied in more than 80 institutes’ libraries in Chinese Academy of Sciences in the past three years. The evaluation results provided an important evidence for collections building in the second year. The latest user survey results showed that the updated collection’s capacity to support research in a multidisciplinary subject area have increased significantly.Keywords: citation analysis, collection assessment, collection development, quantitative analysis
Procedia PDF Downloads 216418 Contextual Variables Affecting Frustration Level in Reading: An Integral Inquiry
Authors: Mae C. Pavilario
Abstract:
This study employs a sequential explanatory mixed method. Quantitatively it investigated the profile of grade VII students. Qualitatively, the prevailing contextual variables that affect their frustration-level were sought based on their perspective and that of their parents and teachers. These students were categorized as frustration-level in reading based on the data on word list of the Philippine Informal Reading Inventory (Phil-IRI). The researcher-made reading factor instrument translated to local dialect (Hiligaynon) was subjected to cross-cultural translation to address content, semantic, technical, criterion, or conceptual equivalence, the open-ended questions, and one unstructured interview was utilized. In the profile of the 26 participants, the 12 males are categorized as grade II and grade III frustration-levels. The prevailing contextual variables are personal-“having no interest in reading”, “being ashamed and fear of having to read in front of others” for extremely high frustration level; social environmental-“having no regular reading schedule at home” for very high frustration level and personal- “having no interest in reading” for high frustration level. Kendall Tau inferential statistical tool was used to test the significant relationship in the prevailing contextual variables that affect frustration-level readers when grouped according to perspective. Result showed that significant relationship exists between students-parents perspectives; however, there is no significant relationship between students’ and teachers’, and parents’ and teachers’ perspectives. The themes in the narratives of the participants on frustration-level readers are existence of speech defects, undesirable attitude, insufficient amount of reading materials, lack of close supervision from parents, and losing time and focus on task. Intervention was designed.Keywords: contextual variables, frustration-level readers, perspective, inquiry
Procedia PDF Downloads 163417 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data
Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos
Abstract:
Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia
Procedia PDF Downloads 20416 Crossing the Interdisciplinary Border: A Multidimensional Linguistics Analysis of a Legislative Discourse
Authors: Manvender Kaur Sarjit Singh
Abstract:
There is a crucial mismatch between classroom written language tasks and real world written language requirements. Realizing the importance of reducing the gap between the professional needs of the legal practitioners and the higher learning institutions that offer the legislative education in Malaysia, it is deemed necessary to develop a framework that integrates real-life written communication with the teaching of content-based legislative discourse to future legal practitioners. By highlighting the actual needs of the legal practitioners in the country, the present teaching practices will be enhanced and aligned with the actual needs of the learners thus realizing the vision and aspirations of the Malaysian Education Blueprint 2013-2025 and Legal Profession Qualifying Board. The need to focus future education according to the actual needs of the learners can be realized by developing a teaching framework which is designed within the prospective requirements of its real-life context. This paper presents the steps taken to develop a specific teaching framework that fulfills the fundamental real-life context of the prospective legal practitioners. The teaching framework was developed based on real-life written communication from the legal profession in Malaysia, using the specific genre analysis approach which integrates a corpus-based approach and a structural linguistics analysis. This approach was adopted due to its fundamental nature of intensive exploration of the real-life written communication according to the established strategies used. The findings showed the use of specific moves and parts-of-speech by the legal practitioners, in order to prepare the selected genre. The teaching framework is hoped to enhance the teachings of content-based law courses offered at present in the higher learning institutions in Malaysia.Keywords: linguistics analysis, corpus analysis, genre analysis, legislative discourse
Procedia PDF Downloads 382415 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor
Authors: Tayyaba Azim, Bibi Amina
Abstract:
The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec
Procedia PDF Downloads 148414 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses
Authors: Mohamed Moussaoui
Abstract:
A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeuticsKeywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer
Procedia PDF Downloads 46413 The Impact of Model Specification Decisions on the Teacher ValuE-added Effectiveness: Choosing the Correct Predictors
Authors: Ismail Aslantas
Abstract:
Value-Added Models (VAMs), the statistical methods for evaluating the effectiveness of teachers and schools based on student achievement growth, has attracted decision-makers’ and researchers’ attention over the last decades. As a result of this attention, many studies have conducted in recent years to discuss these statistical models from different aspects. This research focused on the importance of conceptual variables in VAM estimations; therefor, this research was undertaken to examine the extent to which value-added effectiveness estimates for teachers can be affected by using context predictions. Using longitudinal data over three years from the international school context, value-added teacher effectiveness was estimated by ordinary least-square value-added models, and the effectiveness of the teachers was examined. The longitudinal dataset in this study consisted of three major sources: students’ attainment scores up to three years and their characteristics, teacher background information, and school characteristics. A total of 1,027 teachers and their 35,355 students who were in eighth grade were examined for understanding the impact of model specifications on the value-added teacher effectiveness evaluation. Models were created using selection methods that adding a predictor on each step, then removing it and adding another one on a subsequent step and evaluating changes in model fit was checked by reviewing changes in R² values. Cohen’s effect size statistics were also employed in order to find out the degree of the relationship between teacher characteristics and their effectiveness. Overall, the results indicated that prior attainment score is the most powerful predictor of the current attainment score. 47.1 percent of the variation in grade 8 math score can be explained by the prior attainment score in grade 7. The research findings raise issues to be considered in VAM implementations for teacher evaluations and make suggestions to researchers and practitioners.Keywords: model specification, teacher effectiveness, teacher performance evaluation, value-added model
Procedia PDF Downloads 132412 Formal Institutions and Women's Electoral Participation in Four European Countries
Authors: Sophia Francesca D. Lu
Abstract:
This research tried to produce evidence that formal institutions, such as electoral and internal party quotas, can advance women’s active roles in the public sphere using the cases of four European countries: Belgium, Germany, Italy, and the Netherlands. The quantitative dataset was provided by the University of Chicago and the Inter-University Consortium of Political and Social Research based on a two-year study (2008-2010) of political parties. Belgium engages in constitutionally mandated electoral quotas. Germany, Italy and the Netherlands, on the other hand, have internal party quotas, which are voluntarily adopted by political parties. In analyzing each country’s chi-square and Pearson’s r correlation, Belgium, having an electoral quota, is the only country that was analyzed for electoral quotas. Germany, Italy and the Netherlands’ internal voluntary party quotas were correlated with women’s descriptive representations. Using chi-square analysis, this study showed that the presence of electoral quotas is correlated with an increase in the percentage of women in decision-making bodies as well as with an increase in the percentage of women in decision-making bodies. Likewise, using correlational analysis, a higher number of political parties employing internal party voluntary quotas is correlated with an increase in the percentage of women occupying seats in parliament as well as an increase in the percentage of women nominees in electoral lists of political parties. In conclusion, gender quotas, such as electoral quotas or internal party quotas, are an effective policy tool for greater women’s representation in political bodies. Political parties and governments should opt to have gender quotas, whether electoral or internal party quotas, to address the underrepresentation of women in parliament, decision-making bodies, and policy-formulation.Keywords: electoral quota, Europe, formal institutions, institutional feminism, internal party quota, women’s electoral participation
Procedia PDF Downloads 428411 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 26410 Biostimulant and Abiotic Plant Stress Interactions in Malting Barley: A Glasshouse Study
Authors: Conor Blunt, Mariluz del Pino-de Elias, Grace Cott, Saoirse Tracy, Rainer Melzer
Abstract:
The European Green Deal announced in 2021 details agricultural chemical pesticide use and synthetic fertilizer application to be reduced by 50% and 20% by 2030. Increasing and maintaining expected yields under these ambitious goals has strained the agricultural sector. This intergovernmental plan has identified plant biostimulants as one potential input to facilitate this new phase of sustainable agriculture; these products are defined as microorganisms or substances that can stimulate soil and plant functioning to enhance crop nutrient use efficiency, quality and tolerance to abiotic stresses. Spring barley is Ireland’s most widely sown tillage crop, and grain destined for malting commands the most significant market price. Heavy erratic rainfall is forecasted in Ireland’s climate future, and barley is particularly susceptible to waterlogging. Recent findings suggest that plant receptivity to biostimulants may depend on the level of stress inflicted on crops to elicit an assisted plant response. In this study, three biostimulants of different genesis (seaweed, protein hydrolysate and bacteria) are applied to ‘RGT Planet’ malting barley fertilized at three different rates (0 kg/ha, 40 kg/ha, 75 kg/ha) of calcium ammonium nitrogen (27% N) under non-stressed and waterlogged conditions. This 4x3x2 factorial trial design was planted in a completed randomized block with one plant per experimental unit. Leaf gas exchange data and key agronomic and grain quality parameters were analyzed via ANOVA. No penalty on productivity was evident on plants receiving 40 kg/ha of N and bio stimulant compared to 75 kg/ha of N treatments. The main effects of nitrogen application and waterlogging provided the most significant variation in the dataset.Keywords: biostimulant, Barley, malting, NUE, waterlogging
Procedia PDF Downloads 73409 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 4