Search results for: laser processing
3038 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1463037 Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential
Authors: Rasheed Amao Busari, Ahmed Ibrahim
Abstract:
The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds.Keywords: giant palm seeds, engineering properties, oil potential, moisture content, and giant palm fruit
Procedia PDF Downloads 833036 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications
Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.Keywords: geobacillus, optimization, production, xylanase
Procedia PDF Downloads 3133035 The Effect of an Abnormal Prefrontal Cortex on the Symptoms of Attention Deficit/Hyperactivity Disorder
Authors: Irene M. Arora
Abstract:
Hypothesis: Attention Deficit Hyperactivity Disorder is the result of an underdeveloped prefrontal cortex which is the primary cause for the signs and symptoms seen as defining features of ADHD. Methods: Through ‘PubMed’, ‘Wiley’ and ‘Google Scholar’ studies published between 2011-2018 were evaluated, determining if a dysfunctional prefrontal cortex caused the characteristic symptoms associated with ADHD. The search terms "prefrontal cortex", "Attention-Deficit/Hyperactivity Disorder", "cognitive control", "frontostriatal tract" among others, were used to maximize the assortment of relevant studies. Excluded papers were systematic reviews, meta-analyses and publications published before 2010 to ensure clinical relevance. Results: Nine publications were analyzed in this review, all of which were non-randomized matched control studies. Three studies found a decrease in the functional integrity of the frontostriatal tract fibers in conjunction with four studies finding impaired frontal cortex stimulation. Prefrontal dysfunction, specifically medial and orbitofrontal areas, displayed abnormal functionality of reward processing in ADHD patients when compared to their normal counterparts. A total of 807 subjects were studied in this review, yielding that a little over half (54%) presented with remission of symptoms in adulthood. Conclusion: While the prefrontal cortex shows the highest consistency of impaired activity and thinner volumes in patients with ADHD, this is a heterogenous disorder implicating its pathophysiology to the dysfunction of other neural structures as well. However, remission of ADHD symptomatology in adulthood was found to be attributable to increased prefrontal functional connectivity and integration, suggesting a key role for the prefrontal cortex in the development of ADHD.Keywords: prefrontal cortex, ADHD, inattentive, impulsivity, reward processing
Procedia PDF Downloads 1233034 For Post-traumatic Stress Disorder Counselors in China, the United States, and around the Globe, Cultural Beliefs Offer Challenges and Opportunities
Authors: Anne Giles
Abstract:
Trauma is generally defined as an experience, or multiple experiences, overwhelming a person's ability to cope. Over time, many people recover from the neurobiological, physical, and emotional effects of trauma on their own. For some people, however, troubling symptoms develop over time that can result in distress and disability. This cluster of symptoms is classified as Post-traumatic Stress Disorder (PTSD). People who meet the criteria for PTSD and other trauma-related disorder diagnoses often hold a set of understandable but unfounded beliefs about traumatic events that cause undue suffering. Becoming aware of unhelpful beliefs—termed "cognitive distortions"—and challenging them is the realm of Cognitive Behavior Therapy (CBT). A form of CBT found by researchers to be especially effective for PTSD is Cognitive Processing Therapy (CPT). Through the compassionate use of CPT, people identify, examine, challenge, and relinquish unhelpful beliefs, thereby reducing symptoms and suffering. Widely-held cultural beliefs can interfere with the progress of recovery from trauma-related disorders. Although highly revered, largely unquestioned, and often stabilizing, cultural beliefs can be founded in simplistic, dichotomous thinking, i.e., things are all right, or all wrong, all good, or all bad. The reality, however, is nuanced and complex. After studying examples of cultural beliefs from China and the United States and how these might interfere with trauma recovery, trauma counselors can help clients derive criteria for preserving helpful beliefs, discover, examine, and jettison unhelpful beliefs, reduce trauma symptoms, and live their lives more freely and fully.Keywords: cognitive processing therapy (CPT), cultural beliefs, post-traumatic stress disorder (PTSD), trauma recovery
Procedia PDF Downloads 2563033 Competition between Verb-Based Implicit Causality and Theme Structure's Influence on Anaphora Bias in Mandarin Chinese Sentences: Evidence from Corpus
Authors: Linnan Zhang
Abstract:
Linguists, as well as psychologists, have shown great interests in implicit causality in reference processing. However, most frequently-used approaches to this issue are psychological experiments (such as eye tracking or self-paced reading, etc.). This research is a corpus-based one and is assisted with statistical tool – software R. The main focus of the present study is about the competition between verb-based implicit causality and theme structure’s influence on anaphora bias in Mandarin Chinese sentences. In Accessibility Theory, it is believed that salience, which is also known as accessibility, and relevance are two important factors in reference processing. Theme structure, which is a special syntactic structure in Chinese, determines the salience of an antecedent on the syntactic level while verb-based implicit causality is a key factor to the relevance between antecedent and anaphora. Therefore, it is a study about anaphora, combining psychology with linguistics. With analysis of the sentences from corpus as well as the statistical analysis of Multinomial Logistic Regression, major findings of the present study are as follows: 1. When the sentence is stated in a ‘cause-effect’ structure, the theme structure will always be the antecedent no matter forward biased verbs or backward biased verbs co-occur; in non-theme structure, the anaphora bias will tend to be the opposite of the verb bias; 2. When the sentence is stated in a ‘effect-cause’ structure, theme structure will not always be the antecedent and the influence of verb-based implicit causality will outweigh that of theme structure; moreover, the anaphora bias will be the same with the bias of verbs. All the results indicate that implicit causality functions conditionally and the noun in theme structure will not be the high-salience antecedent under any circumstances.Keywords: accessibility theory, anaphora, theme strcture, verb-based implicit causality
Procedia PDF Downloads 2023032 Effect of Extrusion Processing Parameters on Protein in Banana Flour Extrudates: Characterisation Using Fourier-Transform Infrared Spectroscopy
Authors: Surabhi Pandey, Pavuluri Srinivasa Rao
Abstract:
Extrusion processing is a high-temperature short time (HTST) treatment which can improve protein quality and digestibility together with retaining active nutrients. In-vitro protein digestibility of plant protein-based foods is generally enhanced by extrusion. The current study aimed to investigate the effect of extrusion cooking on in-vitro protein digestibility (IVPD) and conformational modification of protein in green banana flour extrudates. Green banana flour was extruded through a co-rotating twin-screw extruder varying the moisture content, barrel temperature, screw speed in the range of 10-20 %, 60-80 °C, 200-300 rpm, respectively, at constant feed rate. Response surface methodology was used to optimise the result for IVPD. Fourier-transform infrared spectroscopy (FTIR) analysis provided a convenient and powerful means to monitor interactions and changes in functional and conformational properties of extrudates. Results showed that protein digestibility was highest in extrudate produced at 80°C, 250 rpm and 15% feed moisture. FTIR analysis was done for the optimised sample having highest IVPD. FTIR analysis showed that there were no changes in primary structure of protein while the secondary protein structure changed. In order to explain this behaviour, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the flour due to protein denaturation. The quantitative analysis of the changes in the amide I and II regions provided information about the modifications produced in banana flour extrudates.Keywords: extrusion, FTIR, protein conformation, raw banana flour, SDS-PAGE method
Procedia PDF Downloads 1633031 Microencapsulation of Phenobarbital by Ethyl Cellulose Matrix
Authors: S. Bouameur, S. Chirani
Abstract:
The aim of this study was to evaluate the potential use of EthylCellulose in the preparation of microspheres as a Drug Delivery System for sustained release of phenobarbital. The microspheres were prepared by solvent evaporation technique using ethylcellulose as polymer matrix with a ratio 1:2, dichloromethane as solvent and Polyvinyl alcohol 1% as processing medium to solidify the microspheres. Size, shape, drug loading capacity and entrapement efficiency were studied.Keywords: phenobarbital, microspheres, ethylcellulose, polyvinylacohol
Procedia PDF Downloads 3633030 Sensitivity Enhancement in Graphene Based Surface Plasmon Resonance (SPR) Biosensor
Authors: Angad S. Kushwaha, Rajeev Kumar, Monika Srivastava, S. K. Srivastava
Abstract:
A lot of research work is going on in the field of graphene based SPR biosensor. In the conventional SPR based biosensor, graphene is used as a biomolecular recognition element. Graphene adsorbs biomolecules due to carbon based ring structure through sp2 hybridization. The proposed SPR based biosensor configuration will open a new avenue for efficient biosensing by taking the advantage of Graphene and its fascinating nanofabrication properties. In the present study, we have studied an SPR biosensor based on graphene mediated by Zinc Oxide (ZnO) and Gold. In the proposed structure, prism (BK7) base is coated with Zinc Oxide followed by Gold and Graphene. Using the waveguide approach by transfer matrix method, the proposed structure has been investigated theoretically. We have analyzed the reflectance versus incidence angle curve using He-Ne laser of wavelength 632.8 nm. Angle, at which the reflectance is minimized, termed as SPR angle. The shift in SPR angle is responsible for biosensing. From the analysis of reflectivity curve, we have found that there is a shift in SPR angle as the biomolecules get attached on the graphene surface. This graphene layer also enhances the sensitivity of the SPR sensor as compare to the conventional sensor. The sensitivity also increases by increasing the no of graphene layer. So in our proposed biosensor we have found minimum possible reflectivity with optimum level of sensitivity.Keywords: biosensor, sensitivity, surface plasmon resonance, transfer matrix method
Procedia PDF Downloads 4243029 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 953028 Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy
Authors: Syue-Liang Lin, C. Allen Chang
Abstract:
Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future.Keywords: Near Infrared (NIR), lanthanide, core-shell structure, upconversion, theranostics
Procedia PDF Downloads 2383027 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 913026 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1233025 Study on Angle Measurement Interferometer around Any Axis Direction Selected by Transmissive Liquid Crystal Device
Authors: R. Furutani, G. Kikuchi
Abstract:
Generally, the optical interferometer system is too complicated and difficult to change the measurement items, pitch, yaw, and row, etc. In this article, the optical interferometer system using the transmissive Liquid Crystal Device (LCD) as the switch of the optical path was proposed. At first, the normal optical interferometer, Michelson interferometer, was constructed to measure the pitch angle and the yaw angle. In this optical interferometer, the ball lenses with the refractive indices of 2.0 were used as the retroreflectors. After that, the transmissive LCD was introduced as the switch to select the adequate optical path. In this article, these optical systems were constructed. Pitch measurement interferometer and yaw measurement interferometer were switched by the transmissive LCD. When the LCD was open for the yaw measurement, the yaw was sufficiently measured and optical path for the pitch measurement was blocked. On the other hand, when the LCD was open for the pitch measurement, the pitch was measured and the optical path for the yaw measurement was also blocked. In this article, the results of both of pitch measurement and yaw measurement were shown, and the result of blocked yaw measurement and pitch measurement were shown. As this measurement system was based on Michelson interferometer, the other measuring items, the deviation along the optical axis, the vertical deviation to the optical axis and row angle, could be measured by the additional ball lenses and the additional switching in future work.Keywords: any direction angle, ball lens, laser interferometer, transmissive liquid crystal device
Procedia PDF Downloads 1653024 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1373023 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh
Authors: Md. Nuru Miah, A. F. M. Akhter Uddin
Abstract:
Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.Keywords: aloe vera, herbs and shrubs, market, interventions
Procedia PDF Downloads 993022 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming
Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez
Abstract:
This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration
Procedia PDF Downloads 5433021 Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand
Authors: Natapol Pumipuntu
Abstract:
Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection.Keywords: Staphylococcus argenteus, subclinical bovine mastitis, Staphylococcus aureus complex, mass spectrometry, MLST
Procedia PDF Downloads 1573020 Luminescence and Local Environment: Identification of Thermal History
Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues
Abstract:
Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.Keywords: emission, thermal sensing, transition metal, rare eath element
Procedia PDF Downloads 3883019 Physical, Microstructural and Functional Quality Improvements of Cassava-Sorghum Composite Snacks
Authors: Adil Basuki Ahza, Michael Liong, Subarna Suryatman
Abstract:
Healthy chips now dominating the snack market shelves. More than 80% processed snack foods in the market are chips. This research takes the advantages of twin extrusion technology to produce two types of product, i.e. directly expanded and intermediate ready-to-fry or microwavable chips. To improve the functional quality, the cereal-tuber based mix was enriched with antioxidant rich mix of temurui, celery, carrot and isolated soy protein (ISP) powder. Objectives of this research were to find best composite cassava-sorghum ratio, i.e. 60:40, 70:30 and 80:20, to optimize processing conditions of extrusion and study the microstructural, physical and sensorial characteristics of the final products. Optimization was firstly done by applying metering section of extruder barrel temperatures of 120, 130 and 140 °C with screw speeds of 150, 160 and 170 rpm to produce direct expanded product. The intermediate product was extruded in 100 °C and 100 rpm screw speed with feed moisture content of 35, 40 and 45%. The directly expanded products were analyzed for color, hardness, density, microstructure, and organoleptic properties. The results showed that interaction of ratio of cassava-sorghum and cooking methods affected the product's color, hardness, and bulk density (p<0.05). Extrusion processing conditions also significantly affected product's microstructure (p<0.05). The direct expanded snacks of 80:20 cassava-sorghum ratio and fried expanded one 70:30 and 80:20 ratio shown the best organoleptic score (slightly liked) while baking the intermediate product with microwave were resulted sensorial not acceptable quality chips.Keywords: cassava-sorghum composite, extrusion, microstructure, physical characteristics
Procedia PDF Downloads 2863018 Experimental Exploration of Recycled Materials for Potential Application in Interior Design
Authors: E. P. Bhowmik, R. Singh
Abstract:
Certain materials casually thrown away as by-product household waste, such as used tea leaves, used coffee remnants, eggshells, peanut husks, coconut coir, unwanted paper, and pencil shavings- have scope in the hidden properties that they offer as recyclable raw ingredients. This paper aims to explore and experiment with the sustainable potential of such disposed wastes, obtained from domestic and commercial backgrounds, that could otherwise contribute to the field of interior design if mass-collected and repurposed. Research has been conducted on available recorded methods of mass-collection, storage, and processing of such materials by certain brands, designers, and researchers, as well as the various application and angles possible with regards to re-usage. A questionnaire survey was carried out to understand the willingness of the demographics for efforts of the mass collection and their openness to such unconventional materials for interiors. An experiment was also conducted where the selected waste ingredients were used to create small samples that could be used as decorative panels. Comparisons were made for properties like color, smell, texture, relative durability, and weight- and accordingly, applications were suggested. The experiment, therefore, helped to propose to recycle of the common household as a potential surface finish for floors, walls, and ceilings, and even founding material for furniture and decor accessories such as pottery and lamp shades; for non-structural application in both residential and commercial interiors. Common by-product wastes often see their ends at landfills- laymen unaware of their sustainable possibilities dispose of them. However, processing these waste materials and repurposing them by incorporating them into interiors would serve as a sustainable alternative to ethical dilemmas in the construction of interior design/architecture elements.Keywords: interior materials, mass-collection, sustainable, waste recycle
Procedia PDF Downloads 1083017 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles
Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks
Abstract:
Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon
Procedia PDF Downloads 3833016 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer
Procedia PDF Downloads 1513015 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China
Authors: Lixin Zhao, Genmao Zhou
Abstract:
Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing
Procedia PDF Downloads 1813014 Hydrogen Production from Solid Waste of Sago Processing Industries in Indonesia: Effect of Chemical and Biological Pretreatment
Authors: Pratikno Hidayat, Khamdan Cahyari
Abstract:
Hydrogen is the ultimate choice of energy carriers in future. It contents high energy density (42 kJ/g), emits only water vapor during combustion and has high energy conversion up to 50% in fuel cell application. One of the promising methods to produce hydrogen is from organic waste through dark fermentation method. It utilizes sugar-rich organic waste as substrate and hydrogen-producing microorganisms to generate the hydrogen. Solid waste of sago processing industries in Indonesia is one of the promising raw materials for both producing biofuel hydrogen and mitigating the environmental impact due to the waste disposal. This research was meant to investigate the effect of chemical and biological pretreatment i.e. acid treatment and mushroom cultivation toward lignocellulosic waste of these sago industries. Chemical pretreatment was conducted through exposing the waste into acid condition using sulfuric acid (H2SO4) (various molar i.e. 0.2, 0.3, and 0.4 M and various duration of exposure i.e. 30, 60 and 90 minutes). Meanwhile, biological treatment was conducted through utilization of the solid waste as growth media of mushroom (Oyster and Ling-zhi) for 3 months. Dark fermentation was conducted at pH 5.0, temperature 27℃ and atmospheric pressure. It was noticed that chemical and biological pretreatment could improve hydrogen yield with the highest yield at 3.8 ml/g VS (31%v H2). The hydrogen production was successfully performed to generate high percentage of hydrogen, although the yield was still low. This result indicated that the explosion of acid chemical and biological method might need to be extended to improve degradability of the solid waste. However, high percentage of hydrogen was resulted from proper pretreatment of residual sludge of biogas plant to generate hydrogen-producing inoculum.Keywords: hydrogen, sago waste, chemical, biological, dark fermentation, Indonesia
Procedia PDF Downloads 3693013 Pharmaceutical Science and Development in Drug Research
Authors: Adegoke Yinka Adebayo
Abstract:
An understanding of the critical product attributes that impact on in vivo performance is key to the production of safe and effective medicines. Thus, a key driver for our research is the development of new basic science and technology underpinning the development of new pharmaceutical products. Research includes the structure and properties of drugs and excipients, biopharmaceutical characterisation, pharmaceutical processing and technology and formulation and analysis.Keywords: drug discovery, drug development, drug delivery
Procedia PDF Downloads 4963012 Energy Production with Closed Methods
Authors: Bujar Ismaili, Bahti Ismajli, Venhar Ismaili, Skender Ramadani
Abstract:
In Kosovo, the problem with the electricity supply is huge and does not meet the demands of consumers. Older thermal power plants, which are regarded as big environmental polluters, produce most of the energy. Our experiment is based on the production of electricity using the closed method that does not affect environmental pollution by using waste as fuel that is considered to pollute the environment. The experiment was carried out in the village of Godanc, municipality of Shtime - Kosovo. In the experiment, a production line based on the production of electricity and central heating was designed at the same time. The results are the benefits of electricity as well as the release of temperature for heating with minimal expenses and with the release of 0% gases into the atmosphere. During this experiment, coal, plastic, waste from wood processing, and agricultural wastes were used as raw materials. The method utilized in the experiment allows for the release of gas through pipes and filters during the top-to-bottom combustion of the raw material in the boiler, followed by the method of gas filtration from waste wood processing (sawdust). During this process, the final product is obtained - gas, which passes through the carburetor, which enables the gas combustion process and puts into operation the internal combustion machine and the generator and produces electricity that does not release gases into the atmosphere. The obtained results show that the system provides energy stability without environmental pollution from toxic substances and waste, as well as with low production costs. From the final results, it follows that: in the case of using coal fuel, we have benefited from more electricity and higher temperature release, followed by plastic waste, which also gave good results. The results obtained during these experiments prove that the current problems of lack of electricity and heating can be met at a lower cost and have a clean environment and waste management.Keywords: energy, heating, atmosphere, waste, gasification
Procedia PDF Downloads 2393011 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 1093010 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 1283009 Cellular Uptake and Endocytosis of Doxorubicin Loaded Methoxy Poly (Ethylene Glycol)-Block-Poly (Glutamic Acid) [DOX/mPEG-b-PLG] Nanoparticles against Human Breast Cancer Cell Lines
Authors: Zaheer Ahmad, Afzal Shah
Abstract:
pH responsive block copolymers consist of mPEG and glutamic acid units were syntheiszed in different formulations. The synthesized polymers were structurally investigated. Doxorubicin Hydrocholide (DOX-HCl) as a chemotherapy medication for the treatment of cancer was selected. DOX-HCl was loaded and their drug loading content and drug loading efficiency were determined. The nanocarriers were obtained in small size, well shaped and slightly negative surface charge. The release study was carried out both at pH 7.4 and 5.5 and it was revealed that the release was sustained and in controlled manner and there was no initial burst release. The in vitro release study was further carried out for different formulations with different glutamic acid moieties. Time dependent cell proliferation inhibition of the free drug and drug loaded nanoparticles against human breast cancer cell lines MCF-7 and Zr-75-30 was observed. Cellular uptakes and endocytosis were investigated by confocal laser scanning microscopy (CLSM) and flow cytometery. The biocompatibility, optimum size, shape and surface charge of the developed nanoparticles make the nanoparticles an efficient drug delivery carrier.Keywords: doxorubicin, glutamic acid, cell proliferation inhibition, breast cancer cell
Procedia PDF Downloads 145