Search results for: estimation of properties of the model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25462

Search results for: estimation of properties of the model

23992 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects

Authors: Brian Romansky

Abstract:

There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.

Keywords: automation, BIM, robot, ROI.

Procedia PDF Downloads 88
23991 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement

Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh

Abstract:

This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable rangeof multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.

Keywords: DNA, nanopore, amplifier, ADC, multichannel

Procedia PDF Downloads 454
23990 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 159
23989 Investigation of Alfa Fibers Reinforced Epoxy-Amine Composites Properties

Authors: Amar Boukerrou, Ouerdia Belhadj, Dalila Hammiche, Jean Francois Gerard, Jannick Rumeau

Abstract:

The main goal of this study is the investigation of alfa fiber content, treated with alkali treatment, on the thermal and mechanical properties of epoxy-amine matrix-based composites. The fibers were treated with 5% of sodium hydroxide solution and varied between 10% to 30% weight fractions. The tensile, flexural, and hardness tests are carried out to investigate the mechanical properties of composites. The results show those composites’ mechanical properties are higher than the neat epoxy-amine. It was noticed that the alkali treatment is more effective in the case of the tensile and flexural modulus than the tensile and flexural strength. The decline of both the tensile and flexural behavior of all composites with the increasing of the filler content was due probably to the random dispersion of the fibers in the epoxy resin The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of epoxy resin before and after curing with amine hardener. FTIR and DSC analysis confirmed that epoxy resin was completely cured with amine hardener at room temperature. SEM analysis has highlighted the microstructure of epoxy matrix and its composites.

Keywords: alfa fiber, epoxy resin, alkali treatment, mechanical properties

Procedia PDF Downloads 110
23988 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.

Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese

Procedia PDF Downloads 75
23987 A New Mathematical Model of Human Olfaction

Authors: H. Namazi, H. T. N. Kuan

Abstract:

It is known that in humans, the adaptation to a given odor occurs within a quite short span of time (typically one minute) after the odor is presented to the brain. Different models of human olfaction have been developed by scientists but none of these models consider the diffusion phenomenon in olfaction. A novel microscopic model of the human olfaction is presented in this paper. We develop this model by incorporating the transient diffusivity. In fact, the mathematical model is written based on diffusion of the odorant within the mucus layer. By the use of the model developed in this paper, it becomes possible to provide quantification of the objective strength of odor.

Keywords: diffusion, microscopic model, mucus layer, olfaction

Procedia PDF Downloads 507
23986 Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres

Authors: J. Pantoja Enríquez, G. P. Hernández, G. I. Duharte, X. Mathew, J. Moreira, P. J. Sebastian

Abstract:

Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.

Keywords: cds, thin films, annealing, optical, electrical properties

Procedia PDF Downloads 510
23985 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 214
23984 Rheological Properties of Dough and Sensory Quality of Crackers with Dietary Fibers

Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Zita Šereš, Biljana Pajin, Nils Juul, Nikola Maravić

Abstract:

The possibility of application the dietary fibers in production of crackers was observed in this work, as well as their influence on rheological and textural properties on the dough for crackers and influence on sensory properties of obtained crackers. Three different dietary fibers, oat, potato and pea fibers, replaced 10% of wheat flour. Long fermentation process and baking test method were used for crackers production. The changes of dough for crackers were observed by rheological methods of determination the viscoelastic dough properties and by textural measurements. Sensory quality of obtained crackers was described using quantity descriptive method (QDA) by trained members of descriptive panel. Additional analysis of crackers surface was performed by videometer. Based on rheological determination, viscoelastic properties of dough for crackers were reduced by application of dietary fibers. Manipulation of dough with 10% of potato fiber was disabled, thus the recipe modification included increase in water content at 35%. Dough compliance to constant stress for samples with dietary fibers decreased, due to more rigid and stiffer dough consistency compared to control sample. Also, hardness of dough for these samples increased and dough extensibility decreased. Sensory properties of final products, crackers, were reduced compared to control sample. Application of dietary fibers affected mostly hardness, structure and crispness of the crackers. Observed crackers were low marked for flavor and taste, due to influence of fibers specific aroma. The sample with 10% of potato fibers and increased water content was the most adaptable to applied stresses and to production process. Also this sample was close to control sample without dietary fibers by evaluation of sensory properties and by results of videometer method.

Keywords: crackers, dietary fibers, rheology, sensory properties

Procedia PDF Downloads 323
23983 An Output Oriented Super-Efficiency Model for Considering Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO model

Keywords: DEA, Super-efficiency, Time Lag, research activities

Procedia PDF Downloads 659
23982 Age–Related Changes of the Sella Turcica Morphometry in Adults Older Than 20-25 Years

Authors: Yu. I. Pigolkin, M. A. Garcia Corro

Abstract:

Age determination of unknown dead bodies in forensic personal identification is a complicated process which involves the application of numerous methods and techniques. Skeletal remains are less exposed to influences of environmental factors. In order to enhance the accuracy of forensic age estimation additional properties of bones correlating with age are required to be revealed. Material and Methods: Dimensional examination of the sella turcica was carried out on cadavers with the cranium opened by a circular vibrating saw. The sample consisted of a total of 90 Russian subjects, ranging in age from two months and 87 years. Results: The tendency of dimensional variations throughout life was detected. There were no observed gender differences in the morphometry of the sella turcica. The shared use of the sella turcica depth and length values revealed the possibility to categorize an examined sample in a certain age period. Conclusions: Based on the results of existing methods of age determination, the morphometry of the sella turcica can be an additional characteristic, amplifying the received values, and accordingly, increasing the accuracy of forensic biological age diagnosis.

Keywords: age–related changes in bone structures, forensic personal identification, sella turcica morphometry, body identification

Procedia PDF Downloads 275
23981 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 197
23980 An Estimation of Rice Output Supply Response in Sierra Leone: A Nerlovian Model Approach

Authors: Alhaji M. H. Conteh, Xiangbin Yan, Issa Fofana, Brima Gegbe, Tamba I. Isaac

Abstract:

Rice grain is Sierra Leone’s staple food and the nation imports over 120,000 metric tons annually due to a shortfall in its cultivation. Thus, the insufficient level of the crop's cultivation in Sierra Leone is caused by many problems and this led to the endlessly widening supply and demand for the crop within the country. Consequently, this has instigated the government to spend huge money on the importation of this grain that would have been otherwise cultivated domestically at a cheaper cost. Hence, this research attempts to explore the response of rice supply with respect to its demand in Sierra Leone within the period 1980-2010. The Nerlovian adjustment model to the Sierra Leone rice data set within the period 1980-2010 was used. The estimated trend equations revealed that time had significant effect on output, productivity (yield) and area (acreage) of rice grain within the period 1980-2010 and this occurred generally at the 1% level of significance. The results showed that, almost the entire growth in output had the tendency to increase in the area cultivated to the crop. The time trend variable that was included for government policy intervention showed an insignificant effect on all the variables considered in this research. Therefore, both the short-run and long-run price response was inelastic since all their values were less than one. From the findings above, immediate actions that will lead to productivity growth in rice cultivation are required. To achieve the above, the responsible agencies should provide extension service schemes to farmers as well as motivating them on the adoption of modern rice varieties and technology in their rice cultivation ventures.

Keywords: Nerlovian adjustment model, price elasticities, Sierra Leone, trend equations

Procedia PDF Downloads 235
23979 Critical Parameters of a Square-Well Fluid

Authors: Hamza Javar Magnier, Leslie V. Woodcock

Abstract:

We report extensive molecular dynamics (MD) computational investigations into the thermodynamic description of supercritical properties for a model fluid that is the simplest realistic representation of atoms or molecules. The pair potential is a hard-sphere repulsion of diameter σ with a very short attraction of length λσ. When λ = 1.005 the range is so short that the model atoms are referred to as “adhesive spheres”. Molecular dimers, trimers …etc. up to large clusters, or droplets, of many adhesive-sphere atoms are unambiguously defined. This then defines percolation transitions at the molecular level that bound the existence of gas and liquid phases at supercritical temperatures, and which define the existence of a supercritical mesophase. Both liquid and gas phases are seen to terminate at the loci of percolation transitions, and below a second characteristic temperature (Tc2) are separated by the supercritical mesophase. An analysis of the distribution of clusters in gas, meso- and liquid phases confirms the colloidal nature of this mesophase. The general phase behaviour is compared with both experimental properties of the water-steam supercritical region and also with formally exact cluster theory of Mayer and Mayer. Both are found to be consistent with the present findings that in this system the supercritical mesophase narrows in density with increasing T > Tc and terminates at a higher Tc2 at a confluence of the primary percolation loci. The expended plot of the MD data points in the mesophase of 7 critical and supercritical isotherms in highlight this narrowing in density of the linear-slope region of the mesophase as temperature is increased above the critical. This linearity in the mesophase implies the existence of a linear combination rule between gas and liquid which is an extension of the Lever rule in the subcritical region, and can be used to obtain critical parameters without resorting to experimental data in the two-phase region. Using this combination rule, the calculated critical parameters Tc = 0.2007 and Pc = 0.0278 are found be agree with the values found by of Largo and coworkers. The properties of this supercritical mesophase are shown to be consistent with an alternative description of the phenomenon of critical opalescence seen in the supercritical region of both molecular and colloidal-protein supercritical fluids.

Keywords: critical opalescence, supercritical, square-well, percolation transition, critical parameters.

Procedia PDF Downloads 527
23978 Aqueous Hydrogen Sulphide in Slit-Shaped Silica Nano-Pores: Confinement Effects on Solubility, Structural and Dynamical Properties

Authors: Sakiru Badmos, David R. Cole, Alberto Striolo

Abstract:

It is known that confinement in nm-size pores affects many structural and transport properties of water and co-existing volatile species. Of particular interest for fluids in sub-surface systems, in catalysis, and in separations are reports that confinement can enhance the solubility of gases in water. Equilibrium molecular dynamics simulations were performed for aqueous H₂S confined in slit-shaped silica pores at 313K. The effect of pore width on the H₂S solubility in water was investigated. Other properties of interest include the molecular distribution of the various fluid molecules within the pores, the hydration structure for solvated H₂S molecules, and the dynamical properties of the confined fluids. The simulation results demonstrate that confinement reduces the H₂S solubility in water and that the solubility increases with pore size. Analysis of spatial distribution functions suggests that these results are due to perturbations on the coordination of water molecules around H₂S due to confinement. Confinement is found to dampen the dynamical properties of aqueous H₂S as well. Comparing the results obtained for aqueous H₂S to those reported elsewhere for aqueous CH₄, it can be concluded that H₂S permeates hydrated slit-shaped silica nano-pores faster than CH₄. In addition to contributing to better understanding the behavior of fluids in subsurface formations, these observations could also have important implications for developing new natural gas sweetening technologies.

Keywords: confinement, interfacial properties, molecular dynamic simulation, sub-surface formations

Procedia PDF Downloads 165
23977 Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite

Authors: Mozhgan Chaichi, Farhad Sharif, Saeede Mazinani

Abstract:

Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix.

Keywords: magnetic nanoparticles, nanocomposites, toughness, orientation

Procedia PDF Downloads 329
23976 Investigation of the Addition of Macro and Micro Polypropylene Fibers on Mechanical Properties of Concrete Pavement

Authors: Seyed Javad Vaziri Kang Olyaei, Asma Sadat Dabiri, Hassan Fazaeli, Amir Ali Amini

Abstract:

Cracks in concrete pavements are places for the entrance of water and corrosive substances to the pavement, which can reduce the durability of concrete in the long term as well as the serviceability of road. The use of fibers in concrete pavement is one of the effective methods to control and mitigate cracking. This study investigates the effect of the addition of micro and macro polypropylene fibers in different types and volumes and also in combination with the mechanical properties of concrete used in concrete pavements, including compressive strength, splitting tensile strength, modulus of rupture, and average residual strength. The fibers included micro-polypropylene, macro-polypropylene, and hybrid micro and micro polypropylene in different percentages. The results showed that macro polypropylene has the most significant effect on improving the mechanical properties of concrete. Also, the hybrid micro and macro polypropylene fibers increase the mechanical properties of concrete more. It was observed that according to the results of the average residual strength, macro polypropylene fibers alone and together with micro polypropylene fibers could have excellent performance in controlling the sudden formation of cracks and their growth after the formation of cracking which is an essential property in concrete pavements.

Keywords: concrete pavement, mechanical properties, macro polypropylene fibers, micro polypropylene fibers

Procedia PDF Downloads 157
23975 An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life

Authors: Daianne Fernandes Diogenes

Abstract:

Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions.

Keywords: digital image processing, mechanical behavior, railway ballast, shape properties

Procedia PDF Downloads 125
23974 Adding a Degree of Freedom to Opinion Dynamics Models

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 119
23973 Effect of Kenaf Fibres on Starch-Grafted-Polypropylene Biopolymer Properties

Authors: Amel Hamma, Allesandro Pegoretti

Abstract:

Kenaf fibres, with two aspect ratios, were melt compounded with two types of biopolymers named starch grafted polypropylene, and then blends compression molded to form plates of 1 mm thick. Results showed that processing induced variation of fibres length which is quantified by optical microscopy observations. Young modulus, stress at break and impact resistance values of starch-grafted-polypropylenes were remarkably improved by kenaf fibres for both matrixes and demonstrated best values when G906PJ were used as matrix. These results attest the good interfacial bonding between the matrix and fibres even in the absence of any interfacial modification. Vicat Softening Point and storage modules were also improved due to the reinforcing effect of fibres. Moreover, short-term tensile creep tests have proven that kenaf fibres remarkably improve the creep stability of composites. The creep behavior of the investigated materials was successfully modeled by the four parameters Burgers model.

Keywords: creep behaviour, kenaf fibres, mechanical properties, starch-grafted-polypropylene

Procedia PDF Downloads 232
23972 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model

Authors: Shreya Srivastava, Sagnik Dey

Abstract:

Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).

Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART

Procedia PDF Downloads 56
23971 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle

Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han

Abstract:

The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).

Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure

Procedia PDF Downloads 276
23970 Linear MIMO Model Identification Using an Extended Kalman Filter

Authors: Matthew C. Best

Abstract:

Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.

Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction

Procedia PDF Downloads 595
23969 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider

Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz

Abstract:

The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.

Keywords: anomalos couplings, FCC-eh, Higgs, Z boson

Procedia PDF Downloads 211
23968 A Comparative Study on Indian and Greek Cotton Fiber Properties Correlations

Authors: Md. Nakib Ul Hasan, Md. Ariful Islam, Md. Sumon Miah, Misbah Ul Hoque, Bulbul Ahmed

Abstract:

The variability of cotton fiber characteristics has always been influenced by origin, weather conditions, method of culturing, and harvesting. Spinners work tirelessly to ensure consistent yarn quality by using the different origins of fibers to maximizes the profit margin. Spinners often fail to select desired raw materials of various origins to achieve an appropriate mixing plan due to the lack of knowledge on the interrelationship among fiber properties. The purpose of this research is to investigate the correlations among dominating fiber properties such as micronaire, strength, breaking elongation, upper half mean length, length uniformity index, short fiber index, maturity, reflectance, and yellowness. For this purpose, fiber samples from 500 Indian cotton bales and 350 Greek cotton bales were collected and tested using the high volume instrument (HVI). The fiber properties dataset was then compiled and analyzed using python 3.7 to determine the correlations matrix. Results show that Indian cotton fiber have highest correlation between strength-mat = 0.84, followed by SFI-Unf =-0.83, and Neps-Unf = -0.72. Greek cotton fiber, in contrast, have highest correlation between SFI-Unf =-0.98, followed by SFI-Mat = 0.89, +b-Len = 0.84, and Str-Mat = 0.74. Overall, the Greek cotton fiber showed a higher correlational matrix than compared to that of Indian cotton fiber.

Keywords: cotton fiber, fiber properties correlation, Greek cotton, HVI, Indian cotton, spinning

Procedia PDF Downloads 164
23967 Effect of Martensite Content and Its Morphology on Mechanical Properties of Microalloyed Dual Phase Steel

Authors: M. K. Manoj, V. Pancholi, S. K. Nath

Abstract:

Microalloyed dual phase steels have been prepared by intercritical austenitisation (ICA) treatment of normalized steel at different temperature and time. Water quenching wad carried to obtain different martensite volume fraction (MVF) in DP steels. DP steels and normalized steels have been characterized by optical and scanning electron microscopy, Vickers hardness measurements and tensile properties determination. The effect of MVF and martensite morphology on mechanical properties and fracture behavior of microalloyed dual phase steels have been explained in the present work.

Keywords: dual phase steel, martensite morphology, hardness, tensile strength

Procedia PDF Downloads 329
23966 Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results.

Keywords: carbon nanotube, injection molding, Mechanical properties, Nanocomposite, polyethylene

Procedia PDF Downloads 270
23965 The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites

Authors: Pooria Pasbakhsh, Rangika T. De Silva, Vahdat Vahedi, Hanafi Ismail

Abstract:

The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA, and CLA, respectively with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites.

Keywords: aspect ratio, halloysite nanotubes (HNTs), mechanical properties, rubber/clay nanocomposites

Procedia PDF Downloads 375
23964 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences

Authors: M. Pomianek, M. Piszczek, M. Maciejewski

Abstract:

The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.

Keywords: eye tracking, fixation point, pupil size, virtual reality

Procedia PDF Downloads 133
23963 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material

Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi

Abstract:

The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.

Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio

Procedia PDF Downloads 277