Search results for: circular business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10055

Search results for: circular business models

8585 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 144
8584 Developing Social Responsibility Values in Nascent Entrepreneurs through Role-Play: An Explorative Study of University Students in the United Kingdom

Authors: David W. Taylor, Fernando Lourenço, Carolyn Branston, Paul Tucker

Abstract:

There are an increasing number of students at Universities in the United Kingdom engaging in entrepreneurship role-play to explore business start-up as a career alternative to employment. These role-play activities have been shown to have a positive influence on students’ entrepreneurial intentions. Universities also play a role in developing graduates’ awareness of social responsibility. However, social responsibility is often missing from these entrepreneurship role-plays. It is important that these role-play activities include the development of values that support social responsibility, in-line with those running hybrid, humane and sustainable enterprises, and not simply focus on profit. The Young Enterprise (YE) Start-Up programme is an example of a role-play activity that is gaining in popularity amongst United Kingdom Universities seeking ways to give students insight into a business start-up. A Post-92 University in the North-West of England has adapted the traditional YE Directorship roles (e.g., Marketing Director, Sales Director) by including a Corporate Social Responsibility (CSR) Director in all of the team-based YE Start-Up businesses. The aim for introducing this Directorship was to observe if such a role would help create a more socially responsible value-system within each company and in turn shape business decisions. This paper investigates role-play as a tool to help enterprise educators develop socially responsible attitudes and values in nascent entrepreneurs. A mixed qualitative methodology approach has been used, which includes interviews, role-play, and reflection, to help students develop positive value characteristics through the exploration of unethical and selfish behaviors. The initial findings indicate that role-play helped CSR Directors learn and gain insights into the importance of corporate social responsibility, influenced the values and actions of their YE Start-Ups, and increased the likelihood that if the participants were to launch a business post-graduation, that the intent would be for the business to be socially responsible. These findings help inform educators on how to develop socially responsible nascent entrepreneurs within a traditionally profit orientated business model.

Keywords: student entrepreneurship, young enterprise, social responsibility, role-play, values

Procedia PDF Downloads 151
8583 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92
8582 Experiments on Weakly-Supervised Learning on Imperfect Data

Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler

Abstract:

Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.

Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation

Procedia PDF Downloads 199
8581 Development of an Optimised, Automated Multidimensional Model for Supply Chains

Authors: Safaa H. Sindi, Michael Roe

Abstract:

This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.

Keywords: Leagile, automation, heuristic learning, supply chain models

Procedia PDF Downloads 389
8580 Affordable, Adaptable, and Resilient Industrial Precincts

Authors: Peter Ned Wales

Abstract:

This paper is the result of a substantial amount of data looking at how industrially zoned land is changing post COVID in the 21st Century. With the impact of global megatrends such as globalisation, the rapid adaption of innovative technologies and elevated demands on the design typologies, the tradition view of employment lands is quickly evolving. The research findings discussed here clearly show that land use conflicts have begun to take their toll across numerous light industrial precincts within the booming City of the Gold Coast. The recent global pandemic has placed enormous pressures on land values and industrial lands in Southeast Queensland. considered a highly desirable place to live, work and play are morphing in new ways. This region of Australia has become one of the most desirable places to locate after extended pandemic lock downs in Sydney and Melbourne. Findings in the current business trends have highlighted a new way of applying land use zones that provide a sustainable hybrid of acceptable land uses for prosperous business activity. In the wake of a rapid rise in the knowledge economy and boutique products that reflect the younger demographic has resulted in new emerging business activities that are significantly different from business trends two decades ago, when these industrial land use controls were originally applied. This paper explores what are the new demands on these established employment precincts and how local governments can better support start-ups and a broad variety of land uses not previously considered relevant to local government planners.

Keywords: sustainable urban, urban design, industrial lands, employment lands, sustainable communities

Procedia PDF Downloads 71
8579 Corporate Social Responsibility as a Determinant of Sustainability of SME: A Study of House of Tara, a Small Business Operating in Nigeria

Authors: Bolanle Deborah Motilewa, E. K. Rowland Worlu, Gbenga Mayowa Agboola, Ayodele Maxwell Olokundun

Abstract:

In the pursuit of profit maximization as a major objective of business organizations, several firms forfeit their social and economic responsibility whilst focusing on activities that are deemed to solely profit the firm, without taking into cognizance the effect of their operations on the society in which they operate. Business analysts have, however, realized the determinant role of social responsibility in corporate performance, such that firms that are able to imbibe corporate social responsibility in their core business operations may be able to take advantage of the social reputation gained across their several stakeholders. Small and medium enterprises operating in highly competitive markets are also advised to leverage on this reputation gained from being socially responsible, if they seek ways to remain relevant in the same markets dominated by multinational corporations. Adapting a case study approach, this study highlights the advantages (such as employee and customer loyalty) gained by House of Tara, a small business operating in the beauty and make-up industry in Nigeria, resulting from the firm’s commitment to advancing the society in which it operates through several social responsibility activities. It is observed that although competing with major makeup brands such as MAC, Maybelline, Dior, Mary Kay and others, House of Tara has been able to not only thrive, but gain a sizeable market in the Nigerian makeup industry, because several consumers purchase their products not solely because of the quality or price of their product, but because they perceive themselves as buying into the firm’s CSR vision. This study, therefore, recommends that small and medium enterprises that may lack adequate resources (manpower, technology, capital) needed to successfully compete with multinationals, can harness the potentials in the reputation and loyalty gained from adequate investment in corporate social responsibility.

Keywords: corporate social responsibility, small and medium enterprises, House of Tara, sustainability

Procedia PDF Downloads 273
8578 Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube

Authors: M. Guen

Abstract:

A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers.

Keywords: conical vortex tube, temperature separation, cold mass fraction, turbulence

Procedia PDF Downloads 249
8577 Kinetics, Equilibrium and Thermodynamics of the Adsorption of Triphenyltin onto NanoSiO₂/Fly Ash/Activated Carbon Composite

Authors: Olushola S. Ayanda, Olalekan S. Fatoki, Folahan A. Adekola, Bhekumusa J. Ximba, Cecilia O. Akintayo

Abstract:

In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of triphenyltin (TPT) from TPT-contaminated water onto nanoSiO2/fly ash/activated carbon composite was investigated in batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich and fractional power models were applied to test the kinetic data and in order to understand the mechanism of adsorption, thermodynamic parameters such as ΔG°, ΔSo and ΔH° were also calculated. The results showed a very good compliance with pseudo second-order equation while the Freundlich and D-R models fit the experiment data. Approximately 99.999 % TPT was removed from the initial concentration of 100 mg/L TPT at 80oC, contact time of 60 min, pH 8 and a stirring speed of 200 rpm. Thus, nanoSiO2/fly ash/activated carbon composite could be used as effective adsorbent for the removal of TPT from contaminated water and wastewater.

Keywords: isotherm, kinetics, nanoSiO₂/fly ash/activated carbon composite, tributyltin

Procedia PDF Downloads 293
8576 An Informative Marketing Platform: Methodology and Architecture

Authors: Martina Marinelli, Samanta Vellante, Francesco Pilotti, Daniele Di Valerio, Gaetanino Paolone

Abstract:

Any development in web marketing technology requires changes in information engineering to identify instruments and techniques suitable for the production of software applications for informative marketing. Moreover, for large web solutions, designing an interface that enables human interactions is a complex process that must bridge between informative marketing requirements and the developed solution. A user-friendly interface in web marketing applications is crucial for a successful business. The paper introduces mkInfo - a software platform that implements informative marketing. Informative marketing is a new interpretation of marketing which places the information at the center of every marketing action. The creative team includes software engineering researchers who have recently authored an article on automatic code generation. The authors have created the mkInfo software platform to generate informative marketing web applications. For each web application, it is possible to automatically implement an opt in page, a landing page, a sales page, and a thank you page: one only needs to insert the content. mkInfo implements an autoresponder to send mail according to a predetermined schedule. The mkInfo platform also includes e-commerce for a product or service. The stakeholder can access any opt-in page and get basic information about a product or service. If he wants to know more, he will need to provide an e-mail address to access a landing page that will generate an e-mail sequence. It will provide him with complete information about the product or the service. From this point on, the stakeholder becomes a user and is now able to purchase the product or related services through the mkInfo platform. This paper suggests a possible definition for Informative Marketing, illustrates its basic principles, and finally details the mkInfo platform that implements it. This paper also offers some Informative Marketing models, which are implemented in the mkInfo platform. Informative marketing can be applied to products or services. It is necessary to realize a web application for each product or service. The mkInfo platform enables the product or the service producer to send information concerning a specific product or service to all stakeholders. In conclusion, the technical contributions of this paper are: a different interpretation of marketing based on information; a modular architecture for web applications, particularly for one with standard features such as information storage, exchange, and delivery; multiple models to implement informative marketing; a software platform enabling the implementation of such models in a web application. Future research aims to enable stakeholders to provide information about a product or a service so that the information gathered about a product or a service includes both the producer’s and the stakeholders' point of view. The purpose is to create an all-inclusive management system of the knowledge regarding a specific product or service: a system that includes everything about the product or service and is able to address even unexpected questions.

Keywords: informative marketing, opt in page, software platform, web application

Procedia PDF Downloads 127
8575 Business Entrepreneurs in the Making

Authors: Talha Sareshwala

Abstract:

The purpose of this research paper is to revise the skills of an entrepreneur in the making and to guide future Entrepreneurs into a promising future. The study presents a broader review of entrepreneurship, starting from its definition and antecedents. A well-developed original set of guidelines can help budding entrepreneurs and practitioners seeking an answer to being successful as an entrepreneur. It is a journey full of excitement, experiences, rewards, and learning. Dedication, work ethics and a never-say-die attitude will largely contribute to the success as a businessman and an entrepreneur. This paper is sharing an experience of how an entrepreneur can act as a catalyst for young minds while ensuring them that ethics and principles do pay in business when followed in true spirit and action. It is very important for an entrepreneur to enhance his product or services, marketing skills, and market share, along with providing customer satisfaction and opportunities for teams to improve their leadership qualities. To have strong employee loyalty and job satisfaction among its employees. Based on Research objectives, primarily in-depth interviews and focused group interviews were conducted as a qualitative research method. And to support this survey, questionnaires were used as a qualitative research method to explore how Indian Entrepreneurs face the challenge of the changing, volatile socio-political environment in India.

Keywords: entrepreneur, business ethics, sales, marketing

Procedia PDF Downloads 91
8574 The Outsourcing System and Competitiveness Enhancement in the Thai Electricity and Electronic Industries

Authors: Sudawan Somjai

Abstract:

This paper aims to find out level of influences of factors that affected core competency and competitiveness of Thai electricity and electronics, and to indentify factors that affected core competency and competitiveness of Thai electricity and electronics. Using systematic random sampling technique, the samples of this study were 400 employees in the selected 10 medium enterprises in the electricity and electronic industries of Thailand that applied an outsourcing system. All selected companies were located in Bangkok and the eastern part of Thailand. Interviews were also utilized with managing directors. Qualitative and quantitative approaches were both applied. Questionnaires were employed in data collection, whereas in-depth interviews and focus groups were used with key informants in management. The findings unveiled a high level of influence of the outsourcing system on labor flexibility, manpower management efficiency, capability of business processes, cost reduction, business risk elimination and core competency. These factors were found to have a relationship with business core competency for competitiveness in the Thai electricity and electronic industry. Suggestions of this paper were also presented.

Keywords: competitiveness, core competency, outsourcing, Thai electricity and electronic industry

Procedia PDF Downloads 410
8573 Telecom Infrastructure Outsourcing: An Innovative Approach

Authors: Irfan Zafar

Abstract:

Over the years the Telecom Industry in the country has shown a lot of progress in terms of infrastructure development coupled with the availability of telecom services. This has however led to the cut throat completion among various operators thus leading to reduced tariffs to the customers. The profit margins have seen a reduction thus leading the operators to think of other avenues by adopting new models while keeping the quality of service intact. The outsourcing of the network and the resources is one such model which has shown promising benefits which includes lower costs, less risk, higher levels of customer support and engagement, predictable expenses, access to the emerging technologies, benefiting from a highly skilled workforce, adaptability, focus on the core business while reducing capital costs. A lot of research has been done on outsourcing in terms of reasons of outsourcing and its benefits. However this study is an attempt to analyze the effects of the outsourcing on an organizations performance (Telecommunication Sector) considering the variables (1) Cost Reduction (2) Organizational Performance (3) Flexibility (4) Employee Performance (5) Access to Specialized Skills & Technology and the (6) Outsourcing Risks.

Keywords: outsourcing, ICT, telecommunication, IT, networking

Procedia PDF Downloads 398
8572 Methods of Improving Production Processes Based on Deming Cycle

Authors: Daniel Tochwin

Abstract:

Continuous improvement is an essential part of effective process performance management. In order to achieve continuous quality improvement, each organization must use the appropriate selection of tools and techniques. The basic condition for success is a proper understanding of the business need faced by the company and the selection of appropriate methods to improve a given production process. The main aim of this article is to analyze the methods of conduct which are popular in practice when implementing process improvements and then to determine whether the tested methods include repetitive systematics of the approach, i.e., a similar sequence of the same or similar actions. Based on an extensive literature review, 4 methods of continuous improvement of production processes were selected: A3 report, Gemba Kaizen, PDCA cycle, and Deming cycle. The research shows that all frequently used improvement methods are generally based on the PDCA cycle, and the differences are due to "(re)interpretation" and the need to adapt the continuous improvement approach to the specific business process. The research shows that all the frequently used improvement methods are generally based on the PDCA cycle, and the differences are due to "(re) interpretation" and the need to adapt the continuous improvement approach to the specific business process.

Keywords: continuous improvement, lean methods, process improvement, PDCA

Procedia PDF Downloads 80
8571 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 180
8570 Open Innovation in SMEs: A Multiple Case Study of Collaboration between Start-ups and Craft Enterprises

Authors: Carl-Philipp Valentin Beichert, Marcel Seger

Abstract:

Digital transformation and climate change require small and medium-sized enterprises (SME) to rethink their way of doing business. Inter-firm collaboration is recognized as helpful means of promoting innovation and competitiveness. In this context, collaborations with start-ups offer valuable opportunities through their innovative products, services, and business models. SMEs, and in particular German craft enterprises, play an important role in the country’s society and economy. Companies in this heterogeneous economic sector have unique characteristics and are limited in their ability to innovate due to their small size and lack of resources. Collaborating with start-ups could help to overcome these shortcomings. To investigate how collaborations emerge and what factors are decisive to successfully drive collaboration, we apply an explorative, qualitative research design. A sample of ten case studies was selected, with the collaboration between a start-up and a craft enterprise forming the unit of analysis. Semi-structured interviews with 20 company representatives allow for a two-sided perspective on the respective collaboration. The interview data is enriched by publicly available data and three expert interviews. As a result, objectives, initiation practices, applied collaboration types, barriers, as well as key success factors could be identified. The results indicate a three-phase collaboration process comprising an initiation, concept, and partner phase (ICP). The ICP framework proposed accordingly highlights the success factors (personal fit, communication, expertise, structure, network) for craft enterprises and start-ups for each collaboration phase. The role of a mediator in the start-up company, with strong expertise in the respective craft sector, is considered an important lever for overcoming barriers such as cultural and communication differences. The ICP framework thus provides promising directions for further research and can help practitioners establish successful collaborations.

Keywords: open innovation, SME, craft businesses, startup collaboration, qualitative research

Procedia PDF Downloads 93
8569 Indigenous Firms Out-leverage other New Zealand firms through Cultural Practices: A Mixed Methods Study

Authors: Jarrod Haar, David Brougham, Azka Ghafoor

Abstract:

Māori are the indigenous people of Aotearoa (New Zealand) and have a unique perspective called Te Ao Māori (the Māori worldview) and important cultural values around utu (reciprocation), collectivism, long-term orientation, and whanaungatanga (networking, relationships). The present research conducts two studies to better understand how Māori businesses might have similarities and differences to New Zealand businesses. In study 1, we conducted 50 interviews with 25 Māori business owners and 25 New Zealand (non-Māori) owners. For the indigenous population, we used a kaupapa Māori research approach using Māori protocols. This ensured the research is culturally safe. Interviews were conducted around semi-structured questions tapping into the existing business challenges, the role of innovation, and business values and approaches. Transcripts were analyzed using interpretative phenomenological analytic techniques. We identified several themes shared across all business owners: (1) the critical challenge around staff attraction and retention; (2) cost pressures including inflation; (3) and a focus on human resource (HR) practices to address issues including retention. Amongst the Māori businesses, the analysis also identified (4) a unique cultural approach to business relationships. Specifically, amongst the indigenous businesses we find a strong Te Ao Māori perspective amongst Māori business towards innovation. Analysis within this group only identified, within the following sub-themes: (a) whanaungatanga, around the development of strong relationships as a way to aid recruitment and retention, and business fluctuations; (b) mātauranga (knowledge) whereby Māori businesses seek to access advanced knowledge via universities; (c) taking a long-term orientation to business relationships – including with universities. The findings suggest people practices might be a way that firms address workforce retention issues, and we also acknowledge that Māori businesses might also leverage cultural practices to achieve better gains. Thus, in study 2, we survey 606 New Zealand private sector firms including 85 who self-identify as Māori Firms. We test the benefits of high-performance work-systems (HPWS), which represent bundle of human-resource practices designed to bolster workforce productivity through enhancing knowledge, skills, abilities, and commitment of the workforce. We test these on workforce retention and include Māori firm status and cultural capital (reflecting workforce knowledge around Māori cultural values) as moderators. Overall, we find all firms achieve superior workforce retention when they have high levels of HPWS, but Māori firms with high cultural capital are better able to leverage these HR practices to achieve superior workforce retention. In summary, the present study highlights how indigenous businesses in New Zealand might achieve superior performance by leveraging their unique cultural values. The study provides unique insights into established literatures around retention and HR practices and highlights the lessons around indigenous cultural values that appear to aid businesses.

Keywords: Māori business, cultural values, employee retention, human resource practices

Procedia PDF Downloads 67
8568 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm

Procedia PDF Downloads 412
8567 Kalman Filter for Bilinear Systems with Application

Authors: Abdullah E. Al-Mazrooei

Abstract:

In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.

Keywords: bilinear systems, state space model, Kalman filter, application, models

Procedia PDF Downloads 441
8566 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area

Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos

Abstract:

We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.

Keywords: computational fluid dynamics, extreme events, loading, tsunami

Procedia PDF Downloads 115
8565 Critical Success Factors for Implementation of E-Supply Chain Management

Authors: Mehrnoosh Askarizadeh

Abstract:

Globalization of the economy, e-business, and introduction of new technologies pose new challenges to all organizations. In recent decades, globalization, outsourcing, and information technology have enabled many organizations to successfully operate collaborative supply networks in which each specialized business partner focuses on only a few key strategic activities For this industries supply network can be acknowledged as a new form of organization. We will study about critical success factors (CSFs) for implementation of SCM in companies. It is shown that in different circumstances e- supply chain management has a higher impact on performance.

Keywords: supply chain management, logistics management, critical success factors, information technology, top management support, human resource

Procedia PDF Downloads 409
8564 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 231
8563 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 166
8562 "Revolutionizing Geographic Data: CADmapper's Automated Precision in CAD Drawing Transformation"

Authors: Toleen Alaqqad, Kadi Alshabramiy, Suad Zaafarany, Basma Musallam

Abstract:

CADmapper is a significant tool of software for transforming geographic data into realistic CAD drawings. It speeds up and simplifies the conversion process by automating it. This allows architects, urban planners, engineers, and geographic information system (GIS) experts to solely concentrate on the imaginative and scientific parts of their projects. While the future incorporation of AI has the potential for further improvements, CADmapper's current capabilities make it an indispensable asset in the business. It covers a combination of 2D and 3D city and urban area models. The user can select a specific square section of the map to view, and the fee is based on the dimensions of the area being viewed. The procedure is straightforward: you choose the area you want, then pick whether or not to include topography. 3D architectural data (if available), followed by selecting whatever design program or CAD style you want to publish the document which contains more than 200 free broad town plans in DXF format. If you desire to specify a bespoke area, it's free up to 1 km2.

Keywords: cadmaper, gdata, 2d and 3d data conversion, automated cad drawing, urban planning software

Procedia PDF Downloads 68
8561 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 154
8560 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions

Authors: Jose Juan Peña, J. Morales, J. García-Ravelo

Abstract:

In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.

Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials

Procedia PDF Downloads 185
8559 Model-Based Process Development for the Comparison of a Radial Riveting and Roller Burnishing Process in Mechanical Joining Technology

Authors: Tobias Beyer, Christoph Friedrich

Abstract:

Modern simulation methodology using finite element models is nowadays a recognized tool for product design/optimization. Likewise, manufacturing process design is increasingly becoming the focus of simulation methodology in order to enable sustainable results based on reduced real-life tests here as well. In this article, two process simulations -radial riveting and roller burnishing- used for mechanical joining of components are explained. In the first step, the required boundary conditions are developed and implemented in the respective simulation models. This is followed by process space validation. With the help of the validated models, the interdependencies of the input parameters are investigated and evaluated by means of sensitivity analyses. Limit case investigations are carried out and evaluated with the aid of the process simulations. Likewise, a comparison of the two joining methods to each other becomes possible.

Keywords: FEM, model-based process development, process simulation, radial riveting, roller burnishing, sensitivity analysis

Procedia PDF Downloads 108
8558 A Study of Two Disease Models: With and Without Incubation Period

Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle

Abstract:

The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a  mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.

Keywords: asymptotic stability, Hartman-Grobman stability criterion, incubation period, Routh-Hurwitz criterion, Runge-Kutta method

Procedia PDF Downloads 175
8557 Demand for Domestic Marine and Coastal Tourism and Day Trips on an Island Nation

Authors: John Deely, Stephen Hynes, Mary Cawley, Sarah Hogan

Abstract:

Domestic marine and coastal tourism have increased in importance over the last number of years due to the impacts of international travel, environmental concerns, associated health benefits and COVID-19 related travel restrictions. Consequently, this paper conceptualizes domestic marine and coastal tourism within an economic framework. Two logit models examine the factors that influence participation in the coastal day trips and overnight stays markets, respectively. Two truncated travel cost models are employed to explore trip duration, one analyzing the number of day trips taken and the other examining the number of nights spent in marine and coastal areas. Although a range of variables predicts participation, no one variable had a significant and consistent effect on every model. A division in access to domestic marine and coastal tourism is also observed based on variation in household income. The results also indicate a vibrant day trip market and large consumer surpluses.

Keywords: domestic marine and coastal tourism, day tripper, participation models, truncated travel cost model

Procedia PDF Downloads 133
8556 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 35