Search results for: tunnel entrance and exit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: tunnel entrance and exit

590 A New Type Safety-Door for Earthquake Disaster Prevention: Part I

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.

Keywords: safety-door, earthquake disaster, low yield point steel, passive energy dissipating device, FE analysis

Procedia PDF Downloads 526
589 Persistent Bacteremia in Cases of Endodontic Re-Treatments

Authors: Ilma Robo, Manola Kelmendi, Kleves Elezi, Nevila Alliu

Abstract:

The most important stage in deciding whether to re-treat or not endodontically is to find the reason for the clinical in-success. Therefore, endodontic re-treatment aims to eliminate the etiology of the pathology, where the main ones are the bacteria remaining in the inter-radicular spaces or the presence of other irritants that can be not only bacterial toxins but also the elements that keep the batteries fixed or extra-canal toxins such as extraction outside the apex of the canal filling. Shortcomings of endodontic treatment can be corrected, if possible, only with endodontic re-treatment that is initially attempted orthograde, and if clinical endodontic success is not achieved again, it can be performed retrograde or surgically. The elements that do not help in this direction are the anatomical deformations in the canal network of the tooth roots, in the presence of the delta at the apex of the tooth root, in the isthmuses present, all of which can be explained by the endodontic canal anatomical morphology. Actually, even if the causative endodontic bacteria remains isolated and without an exit in the healthy periodontal tissues, then this can also be a clinical endodontic success, regardless of the fact that the endodontic isolation occurred only in the exits such as the apex or the accessory canals. Clinical endodontic in-success occurs only when bacterial residues emerge or provide an exit in the healthy periradicular tissues or along the entire length of the canal where the accessory canals exit.

Keywords: endodontic success, E. foecalis, nanoparticles, laser diode, antibacterial, antiseptic

Procedia PDF Downloads 53
588 Improvement Performances of the Supersonic Nozzles at High Temperature Type Minimum Length Nozzle

Authors: W. Hamaidia, T. Zebbiche

Abstract:

This paper presents the design of axisymmetric supersonic nozzles, in order to accelerate a supersonic flow to the desired Mach number and that having a small weight, in the same time gives a high thrust. The concerned nozzle gives a parallel and uniform flow at the exit section. The nozzle is divided into subsonic and supersonic regions. The supersonic portion is independent to the upstream conditions of the sonic line. The subsonic portion is used to give a sonic flow at the throat. In this case, nozzle gives a uniform and parallel flow at the exit section. It’s named by minimum length Nozzle. The study is done at high temperature, lower than the dissociation threshold of the molecules, in order to improve the aerodynamic performances. Our aim consists of improving the performances both by the increase of exit Mach number and the thrust coefficient and by reduction of the nozzle's mass. The variation of the specific heats with the temperature is considered. The design is made by the Method of Characteristics. The finite differences method with predictor-corrector algorithm is used to make the numerical resolution of the obtained nonlinear algebraic equations. The application is for air. All the obtained results depend on three parameters which are exit Mach number, the stagnation temperature, the chosen mesh in characteristics. A numerical simulation of nozzle through Computational Fluid Dynamics-FASTRAN was done to determine and to confirm the necessary design parameters.

Keywords: flux supersonic flow, axisymmetric minimum length nozzle, high temperature, method of characteristics, calorically imperfect gas, finite difference method, trust coefficient, mass of the nozzle, specific heat at constant pressure, air, error

Procedia PDF Downloads 150
587 Aerodynamic Bicycle Torque Augmentation with a Wells Turbine in Wheels

Authors: Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Cyclists often run through a crosswind and sometimes we experience the adverse pressure. We came to an idea that Wells turbine can be used as power augmentation device in the crosswind something like sails of a yacht. Wells turbine always rotates in the same direction irrespective of the incoming flow direction, and we use it in the small-scale power generation in the ocean where waves create an oscillating flow. We incorporate the turbine to the wheel of a bike. A commercial device integrates strain gauges in the crank of a bike and transmitted force and torque applied to the pedal of the bike as an e-mail to the driver’s mobile phone. We can analyze the unsteady data in a spreadsheet sent from the crank sensor. We run the bike with the crank sensor on the rollers at the exit of a low-speed wind tunnel and analyze the effect of the crosswind to the wheel with a Wells turbine. We also test the aerodynamic characteristics of the turbine separately. Although power gain depends on the flow direction, several Watts increase might be possible by the Wells turbine incorporated to a bike wheel.

Keywords: aerodynamics, Wells turbine, bicycle, wind engineering

Procedia PDF Downloads 180
586 Investigation of Effects and Hazards of Wind Flow on Buildings in Multiple Arrangements Using CFD

Authors: S. C. Gupta

Abstract:

The wind flow over several buildings lying in close vicinity in urban areas generates flow interference effects causing problems related to pedestrian comfort and ventilation within the buildings. This promoted a lot of research interest in the recent years. Airflow over a building creates a positive pressure zone on the upstream side and negative pressure zones (cavities or eddy zones) on the roof and all other sides. Large eddy simulation model is used along with sub-grid-scale model to numerically simulate turbulence for this purpose. The basis of flow outside the building is the pressure difference (between the wind and building interior). Wind Tunnel models are fabricated and tested in the subsonic wind tunnel. Theoretical results are compared with the experimental data. Newer configuration is tried for favorable effects in recovering static pressure values. Results obtained are seen very encouraging. The proposed exhaustive research investigation through numerical simulations and the experimental work are described and some interesting findings are brought out.

Keywords: wind flow, buildings, static pressure wind tunnel testing, CFD

Procedia PDF Downloads 498
585 Individual Differences and Language Learning Strategies

Authors: Nilgun Karatas, Bihter Sakin

Abstract:

In this study, the relationships between the use of language learning strategies and English language exit exam success were investigated in the university EFL learners’ context. The study was conducted at Fatih University Prep School. To collect data 3 classes from the A1 module in English language classes completed a questionnaire known as the English Language Learning Strategy Inventory or ELLSI. The data for the present study were collected from the preparatory class students who are studying English as a second language at the School of Foreign Languages. The students were placed into four different levels of English, namely A1, A2, B1, and B2 level of English competency according to European Union Language Proficiency Standard, by means of their English placement test results. The Placement test was conveyed at the beginning of the spring semester in 2014-2015.The ELLSI consists of 30 strategy items which students are asked to rate from 1 (low frequency) to 5 (high frequency) according to how often they use them. The questionnaire and exit exam results were entered onto SPSS and analyzed for mean frequencies and statistical differences. Spearman and Pearson correlation were used in a detailed way. There were no statistically significant results between the frequency of strategy use and exit exam results. However, most questions correlate at a significant level with some of the questions.

Keywords: individual differences, language learning strategies, Fatih University, English language

Procedia PDF Downloads 493
584 Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner

Authors: Vishnu Raj, Chockalingam Prathap

Abstract:

The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with premixed n-butane air mixture at equivalence ratio (ϕ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10mm&15mm, 98mm2 (2) 17.5mm&22.5mm, 157mm2 and (3) 25mm & 30mm, 216mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar PIV with TiO2 seeding particles and (ii) OH* chemiluminescence were used to measure the velocity fields and reaction zones of the swirl flames at 5Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 28ᵒ, (b) 6.78, 2.37, 34ᵒ, and (c) 8.73, 2.32, 37ᵒ. The lean blowout was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157mm2 case. For this case, particle image velocimetry (PIV) measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower lean blowout (LBO).

Keywords: chemiluminescence, jet spreading rate, lean blowout, swirl flow

Procedia PDF Downloads 67
583 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling

Procedia PDF Downloads 527
582 Endoscopic Versus Open Treatment of Carpal Tunnel Syndrome: Postoperative Complications in Patients with Diabetes Mellitus

Authors: Arman Kishan, Mark Haft, Steve Li, Duc Nguyen, Dawn Laporte

Abstract:

Objective: Patients with Type 2 diabetes (T2DM) often face higher postoperative complication rates. Limited data exist on outcomes in T2DM patients undergoing carpal tunnel release (CTR). This study aims to compare complication rates between endoscopic CTR (ECTR) and open CTR (OCTR) in patients with T2DM. Methods: This was a retrospective cohort study using the TriNetX database of 56741 patients with T2DM undergoing ECTR (N= 14,949) or OCTR (N= 41,792). Demographic data, medical comorbidities, and complication rates were analyzed. We used multivariable analysis to identify differences in postoperative complication rates between the two treatment methods in patients with T2DM. Results: Patients with T2DM undergoing ECTR had a significantly lower incidence of 90-day wound infection (p < 0.001), 90-day wound dehiscence (p < 0.001), and nerve injury (p < 0.001) when compared to patients who underwent OCTR. After matching, there was a significantly higher number of T2DM patients undergoing ECTR who had peripheral vascular disease (p = 0.045) and hypertension (p = 0.020) when compared to the OCTR group. These patients also had a lower incidence of fluid and electrolyte disorders (p = 0.002) and chronic blood loss anemia (p = 0.025). Conclusion: ECTR presents a superior choice for T2DM patients undergoing CTR, yielding significantly lower rates of wound infection, wound dehiscence, and nerve injury within 90 days post-surgery—reducing the risk by 31%, 48%, and 59%, respectively. These findings support the adoption of ECTR as the preferred method in this patient population, potentially leading to improved postoperative outcomes.

Keywords: endoscopic treatment of carpal tunnel syndrome, open treatment of carpal tunnel syndrome, carpal tunnel syndrome, postoperative complications in patients with diabetes mellitus

Procedia PDF Downloads 69
581 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 98
580 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines

Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior

Abstract:

Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.

Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro

Procedia PDF Downloads 279
579 Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic

Authors: Yasuyuki Nabeshima

Abstract:

Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void.

Keywords: tunnel, lining concrete, void, non-destructive inspection, ultrasonic

Procedia PDF Downloads 214
578 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes

Authors: Siddharth Ahuja, T. M. Muruganandam

Abstract:

An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.

Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions

Procedia PDF Downloads 218
577 Studies on Design of Cyclone Separator with Tri-Chambered Filter Unit for Dust Removal in Rice Mills

Authors: T. K. Chandrashekar, R. Harish Kumar, T. B. Prasad, C. R. Rajashekhar

Abstract:

Cyclone separators are normally used for dust collection in rice mills for a long time. However, their dust collection efficiency is lower and is influenced by factors like geometry, exit pipe dimensions and length, humidity, and temperature at dust generation place. The design of cyclone has been slightly altered, and the new design has proven to be successful in collecting the dust particles of size up to 10 microns, the major modification was to change the height of exit pipe of the cyclone chamber to have optimum dust collection. The cyclone is coupled with a tri-chambered filter unit with three geo text materials filters of different mesh size to capture the dust less than 10 micron.

Keywords: cyclone-separator, rice mill, tri chambered filter, dust removal

Procedia PDF Downloads 517
576 Construction of Wind Tunnel for Aerodynamic

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, José Ubiragi de Lima Mendes

Abstract:

The study of the aerodynamics is related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. In that way, being tried the new demands with relationship to the aerodynamic study in the most several areas of the engineering, this work presents the stages of the project and construction of a wind tunnel for application in aerodynamic rehearsals. Among the several configurations of existent wind tunnels, opted to build open circuit, due to smaller construction complexity and installation; operational simplicity and cost reduced. Belonging to the type blower, to take advantage of a larger efficiency of the motor; and with diffusion so that flowed him of air it wins speed before reaching the section of rehearsals. The guidelines for project were: didactic practices: study of the layer it limits and analyze of the drainages on proof bodies with different geometries. For the pressure variation in the test section a connected manometer used a pitot tube. Quantitative and qualitative results showed to be satisfactory.

Keywords: wind tunnel, aerodynamics, air, airplane

Procedia PDF Downloads 486
575 Development of the Accelerator Applied to an Early Stage High-Strength Shotcrete

Authors: Ayanori Sugiyama, Takahisa Hanei, Yasuhide Higo

Abstract:

Domestic demand for the construction of tunnels has been increasing in recent years in Japan. To meet this demand, various construction materials and construction methods have been developed to attain higher strength, reduction of negative impact on the environment and improvement for working conditions. In this report, we would like to introduce the newly developed shotcrete with superior hardening properties which were tested through the actual machine scale and its workability and strength development were evaluated. As a result, this new tunnel construction method was found to achieve higher workability and quicker strength development in only a couple of minutes.

Keywords: accelerator, shotcrete, tunnel, high-strength

Procedia PDF Downloads 318
574 A Parametric Study on Aerodynamic Performance of Tyre Using CFD

Authors: Sowntharya L.

Abstract:

Aerodynamics is the most important factor when it comes to resistive forces such as lift, drag and side forces acting on the vehicle. In passenger vehicles, reducing the drag will not only unlock the door for higher achievable speed but will also reduce the fuel consumption of the vehicle. Generally, tyre contributes significantly to the overall aerodynamics of the vehicle. Hence, understanding the air-flow behaviour around the tyre is vital to optimize the aerodynamic performance in the early stage of design process. Nowadays, aerodynamic simulation employing Computational Fluid Dynamics (CFD) is gaining more importance as it reduces the number of physical wind-tunnel experiments during vehicle development process. This research develops a methodology to predict aerodynamic drag of a standalone tyre using Numerical CFD Solver and to validate the same using a wind tunnel experiment. A parametric study was carried out on different tread pattern tyres such as slick, circumferential groove & patterned tyre in stationary and rotating boundary conditions. In order to represent wheel rotation contact with the ground, moving reference frame (MRF) approach was used in this study. Aerodynamic parameters such as drag lift & air flow behaviour around the tire were simulated and compared with experimental results.

Keywords: aerodynamics, CFD, drag, MRF, wind-tunnel

Procedia PDF Downloads 194
573 Needle Track Technique In Strabismus Surgery

Authors: Seema Dutt Bandhu, Yashi Bansal, Tania Moudgil, Barinder Kaur

Abstract:

Introduction: Scleral perforation during the passage of suture needle is a known complication of strabismus surgery. The present study was conducted to evolve a safe and easy technique of passing the suture needle through the sclera. A scleral tunnel was created with a 26-guage needle through which the suture needle was passed. The rest of the steps of strabismus surgery were carried out as usual. Material and Methods: After taking clearance from the Institutional Ethics Committee, an interventional study was carried out on twenty patients. The scleral tunnel technique was performed on the patients of strabismus after taking written informed consent. Before passing the suture needle through the sclera during strabismus surgery, a tunnel through approximately half the thickness of the sclera was created with the help of a bent 26-gauge needle. The suture needle was then passed through this tunnel. Rest of the steps of the surgery were carried out in the conventional manner. In a control group of same number of patients, the surgery was performed in the conventional method. Both the groups were followed up for any complications. Ease of passing suture and surgeons’ satisfaction with the technique was noted on a 10-point Likert scale. Results: None of the patients in either group suffered from any complications. Four surgeons participated in the study. The average Likert scale score of the surgeons for satisfaction with the technique was 4.5 on a scale of 5. The score for ease of passage of suture needle was 5 on a score of 5. Discussion: Scleral perforation during passing the sutures through the sclera is a known complication of strabismus surgery. Incidence reported is 7.8% It occurs due to inappropriate engagement of the scleral tissue or passage of the suture needle along a wrong axis during the process of passing the suture needle. The needle track technique eases the passage of passing the suture needle through the sclera as the engagement of the scleral tissue can be done with greater control with a 26-guage needle. The surgeons have reported that they are highly satisfied with the technique and they have reported that the technique eased the passage of the suture needle through the sclera.

Keywords: suture, scleral tunnel, strabismus, scleral perforation

Procedia PDF Downloads 79
572 Effect of Channel Variation of Two-Dimensional Water Tunnel to Study Fluid Dynamics Phenomenon

Authors: Rizka Yunita, Mas Aji Rizki Wijayanto

Abstract:

Computational fluid dynamics (CFD) is the solution to explain how fluid dynamics behavior. In this work, we obtain the effect of channel width of two-dimensional fluid visualization. Using a horizontal water tunnel and flowing soap film, we got a visualization of continuous film that can be observe a graphical overview of the flow that occurs on a space or field in which the fluid flow. The horizontal water tunnel we used, divided into three parts, expansion area, parallel area that used to test the data, and contraction area. The width of channel is the boundary of parallel area with the originally width of 7.2 cm, and the variation of channel width we observed is about 1 cm and its times. To compute the velocity, vortex shedding, and other physical parameters of fluid, we used the cyclinder circular as an obstacle to create a von Karman vortex in fluid and analyzed that phenomenon by using Particle Imaging Velocimetry (PIV) method and comparing Reynolds number and Strouhal number from the visualization we got. More than width the channel, the film is more turbulent and have a separation zones that occurs of uncontinuous flowing fluid.

Keywords: flow visualization, width of channel, vortex, Reynolds number, Strouhal number

Procedia PDF Downloads 379
571 An Investigation of Prior Educational Achievement on Engineering Student Performance

Authors: Jovanca Smith, Derek Gay

Abstract:

All universities possess a standard by which students are assessed and administered into their programs. This paper considers the effect of the educational history of students, as measured by specific subject grades in Caribbean examinations, on overall performance in introductory engineering math and mechanics courses. Results reflect a correlation between the highest grade in the Caribbean examinations with a higher probability of successful advancement in the university courses. Alternatively, lower entrance grades are commensurate with underperformance in the university courses. Results also demonstrate that students matriculating with the Caribbean examinations will not necessarily possess a significant advantage over students entering through an alternative route, and while previous educational background of students is a significant indicator of tentative performance in the University level math and mechanics courses, it is not the sole factor.

Keywords: bimodal distribution, differential learning, engineering education, entrance qualification

Procedia PDF Downloads 363
570 Numerical Investigation of Mixed Convection for Rarefied Gases in Square Enclosures

Authors: Wael Al-Kouz

Abstract:

Numerical simulations to study heat transfer and flow characteristics of mixed convection for rarefied gas in a square enclosure are utilized. Effect of the geometry in terms of the location of the inlet and exit openings are investigated. Moreover, effect of Knudsen number on the flow and heat transfer characteristics is illustrated and discussed. Results of the simulations show that there is a configuration that yields better heat transfer. This configuration is found to be the geometry in which the inlet opening is in the top left corner and the exit opening is at the bottom right corner. In addition, it is found that by increasing Knudsen number, Nusselt number will decrease.

Keywords: Knudsen number, mixed convection, rarefied gas, square enclosure

Procedia PDF Downloads 354
569 An Experimental (Wind Tunnel) and Numerical (CFD) Study on the Flow over Hills

Authors: Tanit Daniel Jodar Vecina, Adriane Prisco Petry

Abstract:

The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 68° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data; this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used.

Keywords: Atmospheric Boundary Layer, Computational Fluid Dynamic (CFD), Numerical Modeling, Wind Tunnel

Procedia PDF Downloads 381
568 Research on Aerodynamic Brake Device for High-Speed Train

Authors: S. Yun, M. Kwak

Abstract:

This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%.

Keywords: aerodynamic brake, braking distance, drag coefficient, high-speed train, wind-tunnel test

Procedia PDF Downloads 321
567 A Study on Establishing Criteria for Installation of Small Road Signs

Authors: Sang-KeunBaik, Kyu-Soo Chong, Joon-Yeop Na

Abstract:

This study attempts to reduce the wind load of road signs, improve roadside landscaping, and enhance the safety of road users by establishing criteria for the installation of small road signs. First, we derive the minimum font size that can be used on road signs according to the road’s design speed by considering the visibility and legibility of such road signs. We classify road junctions into eight types based on junction type (intersection, interchange, and expressway) and on the number of road lanes. Furthermore, we propose small sign alternatives, to which the minimum font size is applied, to be placed by each road junction. To verify the effects of the small signs, we implemented a 3D simulation road environment, to which the small road signs were applied, and performed experiments using the driving simulator targeting 50 drivers. The experiments compared and analyzed the effects, whether the driver proceeds to the desired exit and the average driving time, between the existing large road signs and the improved small road signs under the same road conditions and intersection type. We conducted a survey with the participants of the simulation experiment on the preference between graphical signs (large road signs) and exit-centric signs (small road signs). The results show that the participants prefer the exit-centric signs (60%) to the graphical signs (40%). We propose installation criteria for small road signs for intersections, interchanges, and expressways based on the results of the experiment and the survey.

Keywords: 3D simulation, driving simulator, legibility distance, minimum font size, small road signs

Procedia PDF Downloads 479
566 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran

Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian

Abstract:

Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.

Keywords: NATM, surface displacement history, numerical back-analysis, geotechnical parameters

Procedia PDF Downloads 194
565 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects

Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost

Abstract:

A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.

Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet

Procedia PDF Downloads 367
564 Viscous Flow Computations for the Diffuser Section of a Large Cavitation Tunnel

Authors: Ahmet Y. Gurkan, Cagatay S. Koksal, Cagri Aydin, U. Oral Unal

Abstract:

The present paper covers the viscous flow computations for the asymmetric diffuser section of a large, high-speed cavitation tunnel which will be constructed in Istanbul Technical University. The analyses were carried out by using the incompressible Reynold-Averaged-Navier-Stokes equations. While determining the diffuser geometry, a high quality, separation-free flow field with minimum energy loses was particularly aimed. The expansion angle has a critical role on the diffuser hydrodynamic performance. In order obtain a relatively short diffuser length, due to the constructive limitations, and hydrodynamic energy effectiveness, three diffuser sections with varying expansion angles for side and bottom walls were considered. A systematic study was performed to determine the most effective diffuser configuration. The results revealed that the inlet condition of the diffuser greatly affects its flow field. The inclusion of the contraction section in the computations substantially modified the flow topology in the diffuser. The effect of the diffuser flow on the test section flow characteristics was clearly observed. The influence of the introduction of small chamfers at the corners of the diffuser geometry is also presented.

Keywords: asymmetric diffuser, diffuser design, cavitation tunnel, viscous flow, computational fluid dynamics (CFD), rans

Procedia PDF Downloads 363
563 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, E. Kate

Abstract:

Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.

Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying

Procedia PDF Downloads 313
562 Heat Transfer Augmentation in Solar Air Heater Using Fins and Twisted Tape Inserts

Authors: Rajesh Kumar, Prabha Chand

Abstract:

Fins and twisted tape inserts are widely used passive elements to enhance heat transfer rate in various engineering applications. The present paper describes the theoretical analysis of solar air heater fitted with fins and twisted tape inserts. Mathematical model is develop for this novel design of solar air heater and a MATLAB code is generated for the solution of the model. The effect of twist ratio, mass flow rate and inlet temperature on the thermal efficiency and exit air temperature has been investigated. The results are compared with the results of plane solar air heater. Results show a substantial enhancement in heat transfer rate, efficiency and exit air temperature.

Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio

Procedia PDF Downloads 256
561 Verification of Geophysical Investigation during Subsea Tunnelling in Qatar

Authors: Gary Peach, Furqan Hameed

Abstract:

Musaimeer outfall tunnel is one of the longest storm water tunnels in the world, with a total length of 10.15 km. The tunnel will accommodate surface and rain water received from the drainage networks from 270 km of urban areas in southern Doha with a pumping capacity of 19.7m³/sec. The tunnel is excavated by Tunnel Boring Machine (TBM) through Rus Formation, Midra Shales, and Simsima Limestone. Water inflows at high pressure, complex mixed ground, and weaker ground strata prone to karstification with the presence of vertical and lateral fractures connected to the sea bed were also encountered during mining. In addition to pre-tender geotechnical investigations, the Contractor carried out a supplementary offshore geophysical investigation in order to fine-tune the existing results of geophysical and geotechnical investigations. Electric resistivity tomography (ERT) and Seismic Reflection survey was carried out. Offshore geophysical survey was performed, and interpretations of rock mass conditions were made to provide an overall picture of underground conditions along the tunnel alignment. This allowed the critical tunnelling area and cutter head intervention to be planned accordingly. Karstification was monitored with a non-intrusive radar system facility installed on the TBM. The Boring Electric Ahead Monitoring(BEAM) was installed at the cutter head and was able to predict the rock mass up to 3 tunnel diameters ahead of the cutter head. BEAM system was provided with an online system for real time monitoring of rock mass condition and then correlated with the rock mass conditions predicted during the interpretation phase of offshore geophysical surveys. The further correlation was carried by Samples of the rock mass taken from tunnel face inspections and excavated material produced by the TBM. The BEAM data was continuously monitored to check the variations in resistivity and percentage frequency effect (PFE) of the ground. This system provided information about rock mass condition, potential karst risk, and potential of water inflow. BEAM system was found to be more than 50% accurate in picking up the difficult ground conditions and faults as predicted in the geotechnical interpretative report before the start of tunnelling operations. Upon completion of the project, it was concluded that the combined use of different geophysical investigation results can make the execution stage be carried out in a more confident way with the less geotechnical risk involved. The approach used for the prediction of rock mass condition in Geotechnical Interpretative Report (GIR) and Geophysical Reflection and electric resistivity tomography survey (ERT) Geophysical Reflection surveys were concluded to be reliable as the same rock mass conditions were encountered during tunnelling operations.

Keywords: tunnel boring machine (TBM), subsea, karstification, seismic reflection survey

Procedia PDF Downloads 249