Search results for: tube coagulase confirmation
752 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube
Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan
Abstract:
Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity
Procedia PDF Downloads 147751 Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation
Authors: B. Käfer, V. K. Bheemineni, H. Lammer, M. Kotnik, F. O. Riemelmoser
Abstract:
Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results.Keywords: crash box, Notch triggering, energy absorption, FEM simulation
Procedia PDF Downloads 460750 Structural Behavior of Composite Hollow RC Column under Combined Loads
Authors: Abdul Qader Melhm, Hussein Elrafidi
Abstract:
This paper is dealing with studying the structural behavior of a steel-composite hollow reinforced concrete (RC) column model under combined eccentric loading. The composite model consists of an inner steel tube surrounded via a concrete core with longitudinal and circular transverse reinforcement. The radius of gyration according to American and Euro specifications be calculated, in order to calculate the thinnest ratio for this type of composite column model, in addition to the flexural rigidity. Formulas for interaction diagram is given for this type of model, which is a general loading conditions in which an element is exposed to an axial load with bending at the same time. The structural capacity of this model, elastic, plastic loads and strains will be computed and compared with experimental results. The total eccentric axial load of the column model is calculated based on the effective length KL available from several relationships provided in the paper. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength will be investigated.Keywords: column, composite, eccentric, inner tube, interaction, reinforcement
Procedia PDF Downloads 192749 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube
Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour
Abstract:
In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.Keywords: mixed convection, heat transfer, nanofluid, vertical tube, microfin tube
Procedia PDF Downloads 380748 Discussing Concept Gratitude of Muslim Consumers Based on Islamic Law: A Confirmation on the Theory of Consumer Satisfaction through Imam Al-Ghazali's Thought
Authors: Suprihatin Soewarto
Abstract:
The background of writing this paper is to assess the truth of rejection of some Muslim scholars who develop Islamic economics on the concept of consumer satisfaction and replace it with the concept of maslahah. In the perspective of Islamic law, this rejection attitude needs to be verified in order to know the accuracy of the replacement of this concept of satisfaction with maslahah as part of consumer behavior. This is done so that replacement of rejection of the term satisfaction with maslahah is objective. This objective replacement of the term will surely be more enlightening and more just than the subjective substitution. Therefore the writing of this paper aims to get an answer whether the concept of satisfaction needs to be replaced? is it possible for Islamic law to confirm the theory of consumer satisfaction? The method of writing this paper using the method of literature with a critical analysis approach. The results of this study is an explanation of the similarities and differences of consumer satisfaction theory and consumer theory maslahah according to Islamic law. disclosure of the concept of consumer gratitude according to Islamic law and its implementation in Muslim consumer demand theory.Keywords: consumer's gratitude, islamic law, confirmation, satisfaction consumer's
Procedia PDF Downloads 209747 Design, Fabrication, and Study of Droplet Tube Based Triboelectric Nanogenerators
Authors: Yana Xiao
Abstract:
The invention of Triboelectric Nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interfaces-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplets have rarely been investigated. In this study, we have proposed a new kind of droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs were designed, fabricated, and evaluated, including straight tubes TENG with 27 electrodes and curved tubes TENG of 25cm radius curvature- at the inclination of 30°, 45° and 60° respectively. Different materials and hydrophobicity treatments for the tubes have also been studied, together with a discussion on the mechanism and applications of DT-TENGs. As different types of liquid discrepant energy performance, this kind of DT-TENG can be potentially used in laboratories to identify liquid or solvent. In addition, a smart fishing float is contrived, which can recognize different levels of movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. The electric generation performance when using a PVC helix tube around a cylinder is similar in straight situations under the inclination of 45° in this experiment. This new structure changes the direction of a water drop or flows without losing kinetic energy, which makes utilizing Helix-Tube-TENG to harvest energy from different building morphologies possible.Keywords: triboelectric nanogenerator, energy harvest, liquid tribomaterial, structure innovation
Procedia PDF Downloads 90746 Investigation on Scattered Dose Rate and Exposure Parameters during Diagnostic Examination Done with an Overcouch X-Ray Tube in Nigerian Teaching Hospital
Authors: Gbenga Martins, Christopher J. Olowookere, Lateef Bamidele, Kehinde O. Olatunji
Abstract:
The aims of this research are to measure the scattered dose rate during an X-ray examination in an X-ray room, compare the scattered dose rate with exposure parameters based on the body region examined, and examine the X-ray examination done with an over couch tube. The research was carried out using Gamma Scout software installation on the computer system (Laptop) to record the radiation counts, pulse rate, and dose rate. The measurement was employed by placing the detector at 900 to the incident X-ray. Proforma was used for the collection of patients’ data such as age, sex, examination type, and initial diagnosis. Data such as focus skin distance (FSD), body mass index (BMI), body thickness of the patients, the beam output (kVp) were collected at Obafemi Awolowo University, Ile-Ife, Western Nigeria. Total number of 136 patients was considered during this research. Dose rate range between 14.21 and 86.78 µSv/h for the plain abdominal region, 85.70 and 2.86 µSv/h for the lumbosacral region,1.3 µSv/yr and 3.6 µSv/yr in the pelvis region, 2.71 µSv/yr and 28.88 µSv/yr for leg region, 3.06 µSv/yr and 29.98 µSv/yr in hand region. The results of this study were compared with those of other studies carried out in other countries. The findings of this study indicated that the number of exposure parameters selected for each diagnostic examination contributed to the dose rate recorded. Therefore, these results call for a quality assurance program (QAP) in diagnostic X-ray units in Nigerian hospitals.Keywords: X-radiation, exposure parameters, dose rate, pulse rate, number of counts, tube current, tube potential, diagnostic examination, scattered radiation
Procedia PDF Downloads 117745 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube
Abstract:
Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) – nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).Keywords: Berthelot method, liquid crystal, negative pressure, phase transitions
Procedia PDF Downloads 404744 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit
Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek
Abstract:
In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage
Procedia PDF Downloads 269743 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic
Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao
Abstract:
There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.Keywords: asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition
Procedia PDF Downloads 202742 Reversible and Irreversible Wrinkling in Tube Hydroforming Process
Authors: Ali Abd El-Aty, Ahmed Tauseef, Ahmad Farooq
Abstract:
This research aims at analyzing and optimizing the hydroforming process parameters to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed.Keywords: finite element, hydroforming, process window, wrinkling
Procedia PDF Downloads 280741 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler
Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian
Abstract:
Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.Keywords: fin wave angle, tube, intercooler, optimum, performance
Procedia PDF Downloads 383740 Evaluation of Percutaneous Tube Thoracostomy Performed by Trainee in Both Trauma and Non-Trauma Patients
Authors: Kulsum Maula, Md Kamrul Alam, Md Ibrahim Khalil, Md Nazmul Hasan, Mohammad Omar Faruq
Abstract:
Background: Percutaneous Tube Thoracostomy (PTT) is an invasive procedure that can save a life now and then in different traumatic and non-traumatic conditions. But still, it is an enigma; how our trainee surgeons are at home in this procedure. Objectives: To evaluate the outcome of the percutaneous tube thoracostomy performed by trainees in both trauma and non-trauma patients. Study design: Prospective, Observational Study. The duration of the study was September 2018 to February 2019. Methods: All patients who need PTT in traumatic and non-traumatic conditions were selected by purposive sampling. Thereafter, they were scrutinized according to eligibility criteria and 96 patients were finalized. A pre-tested, observation-based, peer-reviewed data collection sheet was prepared before the study. Data regarding clinical and surgical outcome profiles were recorded. Data were compiled, edited, and analyzed. Results: Among 96 patients, the highest 32.29% belonged to age group 31-40 years and the lowest 9.37% belonged to the age group ≤20. The mean age of the respondents was 29.19±9.81. We found out of 96 patients, 70(72.91%) were indicated PTT for traumatic conditions and the rest 26(27.08%) were indicated PTT for non-traumatic chest conditions, where 36(37.5%) had simple penumothorax, 21(21.87%) haemothorax, 14(14.58%) massive pleural effusion, 13(13.54%) tension pneumothorax, 10(10.41%) haemopneumothorax, and 2(2.08%) had pyothorax respectively. In 53.12% of patients had right-sided intercostal chest tube (ICT) insertion, whereas 46.87% had left-sided ICT insertion. In our study, 89.55 % of the tube was placed at the normal anatomical position. Besides, 10.41% of tube thoracostomy were performed deviated from anatomical site. Among 96 patients 62.5% patients had length of incision 2-3cm, 35.41% had >3cm and 2.08% had <2cm respectively. Out of 96 patients, 75(78.13%) showed uneventful outcomes, whereas 21(21.87%) had complications, including 11.15%(11) each had wound infection, 4.46%(4) subcutaneous emphysema, 4.28%(3) drain auto expulsion, 2.85%(2) hemorrhage, 1.45%(1) had a non-functioning drain and empyema with ascending infection respectively (p=<0.05). Conclusion: PTT is a life-saving procedure that is most frequently implemented in chest trauma patients in our country. In the majority of cases, the outcome of PTT was uneventful (78.13). Besides this, more than one-third of patients had a length of incision more than 3 cm that needed extra stitches and 10.41% of cases of PTT were placed other than the normal anatomical site. Trainees of Dhaka Medical College Hospitals are doing well in their performance of PTT insertion, but still, some anatomical orientations are necessary to avoid operative and post-operative complications.Keywords: PTT, trainee, trauma, non-chest trauma patients
Procedia PDF Downloads 121739 Investigating the Effect of Mobile Technologies Dimensions upon Creativity of Kermanshah Polymer Petrochemical Company’s Employees
Authors: Ghafor Ahmadi, Nader Bohloli Zynab
Abstract:
Rapid scientific changes are the driving force of upheaval. As new technologies arrive, human’s life changes and information becomes one of the productive sources besides other factors. Optimum application of each technology depends on precise recognition of that technology. Options of mobile phones are constantly developing and evolving. Meanwhile, one of the influential variables for improving the performance and eternity of organizations is creativity. One of the new technologies tied with development and innovation is mobile phone. In this research, the contribution of different dimensions of mobile technologies such as perceived use, perceived enjoyment, continuance intention, confirmation and satisfaction to creativity of employees were investigated. Statistical population included 510 employees of Kermanshah Petrochemical Company. Sample size was defined 217 based on Morgan and Krejcie table. This study is descriptive and data gathering instrument was a questionnaire. Applying SPSS software, linear regression was analyzed. It was found out that all dimensions of mobile technologies except satisfaction affect on creativity of employees.Keywords: mobile technologies, continuance intention, perceived enjoyment, perceived use, confirmation, satisfaction, creativity
Procedia PDF Downloads 260738 Species Distribution and Incidence of Inducible Clindamycin Resistance in Coagulase-Negative Staphylococci Isolated from Blood Cultures of Patients with True Bacteremia in Turkey
Authors: Fatma Koksal Cakirlar, Murat Gunaydin, Nevri̇ye Gonullu, Nuri Kiraz
Abstract:
During the last few decades, the increasing prevalence of methicillin resistant-CoNS isolates has become a common problem worldwide. Macrolide-lincosamide-streptogramin B (MLSB) antibiotics are effectively used for the treatment of CoNS infections. However, resistance to MLSB antibiotics is prevalent among staphylococci. The aim of this study is to determine species distribution and the incidence of inducible clindamycin resistance in CoNS isolates caused nosocomial bacteremia in our hospital. Between January 2014 and October 2015, a total of 484 coagulase-negative CoNS isolates were isolated from blood samples of patients with true bacteremia who were hospitalized in intensive care units and in other departments of Istanbul University Cerrahpasa Medical Hospital. Blood cultures were analyzed with the BACTEC 9120 system (Becton Dickinson, USA). The identification and antimicrobial resistance of isolates were determined by Phoenix automated system (BD Diagnostic Systems, Sparks, MD). Inducible clindamycin resistance was detected using D-test. The species distribution was as follows: Staphylococcus epidermidis 211 (43%), S. hominis 154 (32%), S. haemolyticus 69 (14%), S. capitis 28 (6%), S. saprophyticus 11 (2%), S. warnerii 7 (1%), S. schleiferi 5 (1%) and S. lugdunensis 1 (0.2%). Resistance to methicillin was detected in 74.6% of CoNS isolates. Methicillin resistance was highest in S.hemoliticus isolates (89%). Resistance rates of CoNS strains to the antibacterial agents, respectively, were as follows: ampicillin 77%, gentamicin 20%, erythromycin 71%, clindamycin 22%, trimethoprim-sulfamethoxazole 45%, ciprofloxacin 52%, tetracycline 34%, rifampicin 20%, daptomycin 0.2% and linezolid 0.2%. None of the strains were resistant to vancomycin and teicoplanin. Fifteen (3%) CoNS isolates were D-test positive, inducible MLSB resistance type (iMLSB-phenotype), 94 (19%) were constitutively resistant (cMLSB -phenotype), and 237 (46,76%) isolates were found D-test negative, indicating truly clindamycin-susceptible MS phenotype (M-phenotype resistance). The incidence of iMLSB-phenotypes was higher in S. epidermidis isolates (4,7%) compared to other CoNS isolates.Keywords: bacteremia, inducible MLSB resistance phenotype, methicillin-resistant, staphylococci
Procedia PDF Downloads 240737 Modeling of Cold Tube Drawing with a Fixed Plug by Finite Element Method and Determination of Optimum Drawing Parameters
Authors: E. Yarar, E. A. Guven, S. Karabay
Abstract:
In this study, a comprehensive simulation was made for the cold tube drawing with fixed plug. The cold tube drawing process is preferred due to its high surface quality and the high mechanical properties. In drawing processes applied to materials with low plastic deformability, cracks can occur on the surfaces and the process efficiency decreases. The aim of the work is to investigate the effects of different drawing parameters on drawing forces and stresses. In the simulations, optimum conditions were investigated for four different materials, Ti64Al4V, AA5052, AISI4140, and C365. One of the most important parameters for the cold drawing process is the die angle. Three dies were designed for the analysis with semi die angles of 5°, 10°, and 15°. Three different parameters were used for the friction coefficient between die and the material. In the simulations, reduction of area and the drawing speed is kept constant. Drawing is done in one pass. According to the simulation results, the highest drawing forces were obtained in Ti64Al4V. As the semi die angle increases, the drawing forces decrease. The change in semi die angle was most effective on Ti64Al4V. Increasing the coefficient of friction is another effect that increases the drawing forces. The increase in the friction coefficient has also increased in drawing stresses. The increase in die angle also increased the drawing stress distribution for the other three materials outside C365. According to the results of the analysis, it is found that the designed drawing die is suitable for drawing. The lowest drawing stress distribution and drawing forces were obtained for AA5052. Drawing die parameters have a direct effect on the results. In addition, lubricants used for drawing have a significant effect on drawing forces.Keywords: cold tube drawing, drawing force, drawing stress, semi die angle
Procedia PDF Downloads 166736 Negative Pressures of Ca. -20 MPA for Water Enclosed into a Metal Berthelot Tube under a Vacuum Condition
Authors: K. Hiro, Y. Imai, M. Tanji, H. Deguchi, K. Hatari
Abstract:
Negative pressures of liquids have been expected to contribute many kinds of technology. Nevertheless, experiments for subjecting liquids which have not too small volumes to negative pressures are difficult even now. The reason of the difficulties is because the liquids tend to generate cavities easily. In order to remove cavitation nuclei, an apparatus for enclosing water into a metal Berthelot tube under vacuum conditions was developed. By using the apparatus, negative pressures for water rose to ca. -20 MPa. This is the highest value for water in metal Berthelot tubes. Results were explained by a traditional crevice model. KeywordsKeywords: Berthelot method, negative pressure, cavitation nuclei, water
Procedia PDF Downloads 333735 Comparison of Anterolateral Thigh Flap with or without Acellular Dermal Matrix in Repair of Hypopharyngeal Squamous Cell Carcinoma Defect: A Retrospective Study
Authors: Yaya Gao, Bing Zhong, Yafeng Liu, Fei Chen
Abstract:
Aim: The purpose of this study was to explore the difference between acellular dermal matrix (ADM) combined with anterolateral thigh (ALT) flap and ALT flap alone. Methods: HSCC patients were treated and divided into group A (ALT) and group B (ALT+ADM) between January 2014 and December 2018. We compared and analyzed the intraoperative information and postoperative outcomes of the patients. Results: There were 21 and 17 patients in group A and group B, respectively. The operation time, blood loss, defect size and anastomotic vessel selection showed no significant difference between two groups. The postoperative complications, including wound bleeding (n=0 vs. 1, p=0.459), wound dehiscence (n=0 vs. 1, p=0.459), wound infection (n=5vs.3, p=0.709), pharyngeal fistula (n=5vs.4, p=1.000) and hypoproteinemia (n=11 vs. 12, p=0.326) were comparable between the groups. Dysphagia at 6 months (number of liquid diets=0vs. 0; number of partial tube feedings=1vs. 1; number of total tube feedings=1vs. 0, p=0.655) also showed no significant differences. However, significant differences was observed in dysphagia at 12 months (number of liquid diets=0vs. 0; number of partial tube feedings=3 vs. 1; number of total tube feedings=10vs. 1, p=0.006). Conclusion: For HSCC patients, the use of the ALT flap combined ADM, compared to ALT treatment, showed better swallowing function at 12 months. The ALT flap combined ADM may serve as a safe and feasible alternative for selected HSCC patients.Keywords: hypopharyngeal squamous cell carcinoma, anterolateral thigh free flap, acellular dermal matrix, reconstruction, dysphagia
Procedia PDF Downloads 77734 Early and Mid-Term Results of Anesthetic Management of Minimal Invasive Coronary Artery Bypass Grafting Using One Lung Ventilation
Authors: Devendra Gupta, S. P. Ambesh, P. K Singh
Abstract:
Introduction: Minimally invasive coronary artery bypass grafting (MICABG) is a less invasive method of performing surgical revascularization. Minimally invasive direct coronary artery bypass (MIDCAB) provides many anesthetic challenges including one lung ventilation (OLV), managing myocardial ischemia, and pain. We present an early and midterm result of the use of this technique with OLV. Method: We enrolled 62 patients for analysis operated between 2008 and 2012. Patients were anesthetized and left endobronchial tube was placed. During the procedure left lung was isolated and one lung ventilation was maintained through right lung. Operation was performed utilizing off pump technique of coronary artery bypass grafting through a minimal invasive incision. Left internal mammary artery graft was done for single vessel disease and radial artery was utilized for other grafts if required. Postoperative ventilation was done with single lumen endotracheal tube. Median follow-up is 2.5 years (6 months to 4 years). Results: Median age was 58.5 years (41-77) and all were male. Single vessel disease was present in 36, double vessel in 24 and triple vessel disease in 2 patients. All the patients had normal left ventricular size and function. In 2 cases difficulty were encounter in placement of endobronchial tube. In 1 case cuff of endobronchial tube was ruptured during intubation. High airway pressure was developed on OLV in 1 case and surgery was accomplished with two lung anesthesia with low tidal volume. Mean postoperative ventilation time was 14.4 hour (11-22). There was no perioperative and 30 day mortality. Conversion to median sternotomy to complete the operation was done in 3.23% (2 out of 62 patients). One patient had acute myocardial infarction postoperatively and there were no deaths during follow-up. Conclusion: MICABG is a safe and effective method of revascularization with OLV in low risk candidates for coronary artery bypass grafting.Keywords: MIDCABG, one lung ventilation, coronary artery bypass grafting, endobronchial tube
Procedia PDF Downloads 425733 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance
Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria
Abstract:
This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.Keywords: plasma antenna, fluorescent tube, CST, plasma parameters
Procedia PDF Downloads 388732 Investigation of Ignition Delay for Low Molecular Hydrocarbon Fuel and Oxygen Mixture behind the Reflected Shock
Authors: K. R. Guna, Aldin Justin Sundararaj, B. C. Pillai, A. N. Subash
Abstract:
A systematic study has been made for ignition delay times measurement behind a reflected shock wave for the low molecular weight hydrocarbon fuel in argon simulated gas mixtures. The low molecular hydrocarbon fuel–oxygen was diluted with argon for desired concentration is taken for the study. The suitability of the shock tube for measuring the ignition delay time is demonstrated by measuring the ignition delay for the liquefied petroleum gas for equivalence ratios (ф=0.5 & 1) in the temperature range 1150-1650 K. The pressure range was fixed from 5-15 bar. The ignition delay was measured by recording the ignition-induced pressure jump and emission from CH radical simultaneously. From conducting experiments, it was found that the ignition delay time for liquefied petroleum gas reduces with increase in temperature. The shock tube was calibrated for ethane-oxygen gas mixture and the results obtained from this study is compared with the earlier reported values and found to be comparably well suited for the measurement of ignition delay times. The above work was carried out using the shock tube facility at propulsion and high enthalpy laboratory, Karunya University.Keywords: ignition delay, LPG, reflected shock, shock wave
Procedia PDF Downloads 252731 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler
Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya
Abstract:
The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue
Procedia PDF Downloads 118730 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System
Authors: O. Afshar
Abstract:
A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.Keywords: receiver tube, heat convection, heat conduction, Nusselt number
Procedia PDF Downloads 356729 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube
Authors: Cathal Merz, Gareth O’Donnell
Abstract:
Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.Keywords: neurovascular catheter, coil reinforced tube, buckling, three-point bend, tensile
Procedia PDF Downloads 117728 Analysis of Control by Flattening of the Welded Tubes
Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche
Abstract:
In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.Keywords: flattening, destructive testing, tube drafts, finished tube, Castem 2001
Procedia PDF Downloads 446727 Human Immuno-Deficiency Virus Co-Infection with Hepatitis B Virus and Baseline Cd4+ T Cell Count among Patients Attending a Tertiary Care Hospital, Nepal
Authors: Soma Kanta Baral
Abstract:
Background: Since 1981, when the first AIDS case was reported, worldwide, more than 34 million people have been infected with HIV. Almost 95 percent of the people infected with HIV live in developing countries. As HBV & HIV share similar routes of transmission by sexual intercourse or drug use by parenteral injection, co-infection is common. Because of the limited access to healthcare & HIV treatment in developing countries, HIV-infected individuals are present late for care. Enumeration of CD4+ T cell count at the time of diagnosis has been useful to initiate the therapy in HIV infected individuals. The baseline CD4+ T cell count shows high immunological variability among patients. Methods: This prospective study was done in the serology section of the Department of Microbiology over a period of one year from august 2012 to July 2013. A total of 13037 individuals subjected for HIV test were included in the study comprising of 4982 males & 8055 females. Blood sample was collected by vein puncture aseptically with standard operational procedure in clean & dry test-tube. All blood samples were screened for HIV as described by WHO algorithm by Immuno-chromatography rapid kits. Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. After informed consent, HIV positive individuals were screened for HBsAg by Immuno-chromatography rapid kits (Hepacard). Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. EDTA blood samples were collected from the HIV sero-positive individuals for baseline CD4+ T count. Then, CD4+ T cells count was determined by using FACS Calibur Flow Cytometer (BD). Results: Among 13037 individuals screened for HIV, 104 (0.8%) were found to be infected comprising of 69(66.34%) males & 35 (33.65%) females. The study showed that the high infection was noted in housewives (28.7%), active age group (30.76%), rural area (56.7%) & in heterosexual route (80.9%) of transmission. Out of total HIV infected individuals, distribution of HBV co-infection was found to be 6(5.7%). All co- infected individuals were married, male, above the age of 25 years & heterosexual route of transmission. Baseline CD4+ T cell count of HIV infected patient was found higher (mean CD4+ T cell count; 283cells/cu.mm) than HBV co-infected patients (mean CD4+ T cell count; 91 cells/cu.mm). Majority (77.2%) of HIV infected & all co-infected individuals were presented in our center late (CD4+ T cell count;< 350/cu. mm) for diagnosis and care. Majority of co- infected 4 (80%) were late presented with advanced AIDS stage (CD4+ count; <200/cu.mm). Conclusions: The study showed a high percentage of HIV sero-positive & co- infected individuals. Baseline CD4+ T cell count of majority of HIV infected individuals was found to be low. Hence, more sustained and vigorous awareness campaigns & counseling still need to be done in order to promote early diagnosis and management.Keywords: HIV/AIDS, HBsAg, co-infection, CD4+
Procedia PDF Downloads 217726 Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M
Authors: A. Yönetken, A. Erol, A. Yakar, G. Peşmen
Abstract:
The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.Keywords: composite, electroless nickel plating, powder metallurgy, sintering
Procedia PDF Downloads 277725 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube
Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi
Abstract:
In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.Keywords: nanofluid, heat transfer oil, mixed convection, inclined tube, laminar flow
Procedia PDF Downloads 256724 Eradication of Apple mosaic virus from Corylus avellana L. via Cryotherapy and Confirmation of Virus-Free Plants via Reverse Transcriptase Polymerase Chain Reaction
Authors: Ergun Kaya
Abstract:
Apple mosaic virus (ApMV) is an ilarvirus causing harmful damages and product loses in many plant species. Because of xylem and phloem vessels absence, plant meristem tissues used for meristem cultures are virus-free, but sometimes only meristem cultures are not sufficient for virus elimination. Cryotherapy, a new method based on cryogenic techniques, is used for virus elimination. In this technique, 0.1-0.3mm meristems are excised from organized shoot apex of a selected in vitro donor plant and these meristems are frozen in liquid nitrogen (-196 °C) using suitable cryogenic technique. The aim of this work was to develop an efficient procedure for ApMV-free hazelnut via cryotherapy technique and confirmation of virus-free plants using Reverse Transcriptase-PCR technique. 100% virus free plantlets were obtained using droplet-vitrification method involved cold hardening in vitro cultures of hazelnut, 24 hours sucrose preculture of meristems on MS medium supplemented with 0.4M sucrose, and a 90 min PVS2 treatment in droplets.Keywords: droplet vitrification, hazelnut, liquid nitrogen, PVS2
Procedia PDF Downloads 160723 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems
Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims
Abstract:
The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification
Procedia PDF Downloads 555