Search results for: quantification accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4191

Search results for: quantification accuracy

4071 Electricity Demand Modeling and Forecasting in Singapore

Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh

Abstract:

In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.

Keywords: power industry, electricity demand, modeling, forecasting

Procedia PDF Downloads 640
4070 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
4069 Total-Reflection X-Ray Spectroscopy as a Tool for Element Screening in Food Samples

Authors: Hagen Stosnach

Abstract:

The analytical demands on modern instruments for element analysis in food samples include the analysis of major, trace and ultra-trace essential elements as well as potentially toxic trace elements. In this study total reflection, X-ray fluorescence analysis (TXRF) is presented as an analytical technique, which meets the requirements, defined by the Association of Official Agricultural Chemists (AOAC) regarding the limit of quantification, repeatability, reproducibility and recovery for most of the target elements. The advantages of TXRF are the small sample mass required, the broad linear range from µg/kg up to wt.-% values, no consumption of gases or cooling water, and the flexible and easy sample preparation. Liquid samples like alcoholic or non-alcoholic beverages can be analyzed without any preparation. For solid food samples, the most common sample pre-treatment methods are mineralization, direct deposition of the sample onto the reflector without/with minimal treatment, mainly as solid suspensions or after extraction. The main disadvantages are due to the possible peaks overlapping, which may lower the accuracy of quantitative analysis and the limit in the element identification. This analytical technique will be presented by several application examples, covering a broad range of liquid and solid food types.

Keywords: essential elements, toxic metals, XRF, spectroscopy

Procedia PDF Downloads 133
4068 Cut-Off of CMV Cobas® Taqman® (CAP/CTM Roche®) for Introduction of Ganciclovir Pre-Emptive Therapy in Allogeneic Hematopoietic Stem Cell Transplant Recipients

Authors: B. B. S. Pereira, M. O. Souza, L. P. Zanetti, L. C. S. Oliveira, J. R. P. Moreno, M. P. Souza, V. R. Colturato, C. M. Machado

Abstract:

Background: The introduction of prophylactic or preemptive therapies has effectively decreased the CMV mortality rates after hematopoietic stem cell transplantation (HSCT). CMV antigenemia (pp65) or quantitative PCR are methods currently approved for CMV surveillance in pre-emptive strategies. Commercial assays are preferred as cut-off levels defined by in-house assays may vary among different protocols and in general show low reproducibility. Moreover, comparison of published data among different centers is only possible if international standards of quantification are included in the assays. Recently, the World Health Organization (WHO) established the first international standard for CMV detection. The real time PCR COBAS Ampliprep/ CobasTaqMan (CAP/CTM) (Roche®) was developed using the WHO standard for CMV quantification. However, the cut-off for the introduction of antiviral has not been determined yet. Methods: We conducted a retrospective study to determine: 1) the sensitivity and specificity of the new CMV CAP/CTM test in comparison with pp65 antigenemia to detect episodes of CMV infection/reactivation, and 2) the cut-off of viral load for introduction of ganciclovir (GCV). Pp65 antigenemia was performed and the corresponding plasma samples were stored at -20°C for further CMV detection by CAP/CTM. Comparison of tests was performed by kappa index. The appearance of positive antigenemia was considered the state variable to determine the cut-off of CMV viral load by ROC curve. Statistical analysis was performed using SPSS software version 19 (SPSS, Chicago, IL, USA.). Results: Thirty-eight patients were included and followed from August 2014 through May 2015. The antigenemia test detected 53 episodes of CMV infection in 34 patients (89.5%), while CAP/CTM detected 37 episodes in 33 patients (86.8%). AG and PCR results were compared in 431 samples and Kappa index was 30.9%. The median time for first AG detection was 42 (28-140) days, while CAP/CTM detected at a median of 7 days earlier (34 days, ranging from 7 to 110 days). The optimum cut-off value of CMV DNA was 34.25 IU/mL to detect positive antigenemia with 88.2% of sensibility, 100% of specificity and AUC of 0.91. This cut-off value is below the limit of detection and quantification of the equipment which is 56 IU/mL. According to CMV recurrence definition, 16 episodes of CMV recurrence were detected by antigenemia (47.1%) and 4 (12.1%) by CAP/CTM. The duration of viremia as detected by antigenemia was shorter (60.5% of the episodes lasted ≤ 7 days) in comparison to CAP/CTM (57.9% of the episodes lasting 15 days or more). This data suggests that the use of antigenemia to define the duration of GCV therapy might prompt early interruption of antiviral, which may favor CMV reactivation. The CAP/CTM PCR could possibly provide a safer information concerning the duration of GCV therapy. As prolonged treatment may increase the risk of toxicity, this hypothesis should be confirmed in prospective trials. Conclusions: Even though CAP/CTM by ROCHE showed great qualitative correlation with the antigenemia technique, the fully automated CAP/CTM did not demonstrate increased sensitivity. The cut-off value below the limit of detection and quantification may result in delayed introduction of pre-emptive therapy.

Keywords: antigenemia, CMV COBAS/TAQMAN, cytomegalovirus, antiviral cut-off

Procedia PDF Downloads 191
4067 Improvement of Piezoresistive Pressure Sensor Accuracy by Means of Current Loop Circuit Using Optimal Digital Signal Processing

Authors: Peter A. L’vov, Roman S. Konovalov, Alexey A. L’vov

Abstract:

The paper presents the advanced digital modification of the conventional current loop circuit for pressure piezoelectric transducers. The optimal DSP algorithms of current loop responses by the maximum likelihood method are applied for diminishing of measurement errors. The loop circuit has some additional advantages such as the possibility to operate with any type of resistance or reactance sensors, and a considerable increase in accuracy and quality of measurements to be compared with AC bridges. The results obtained are dedicated to replace high-accuracy and expensive measuring bridges with current loop circuits.

Keywords: current loop, maximum likelihood method, optimal digital signal processing, precise pressure measurement

Procedia PDF Downloads 529
4066 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 362
4065 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 80
4064 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms

Authors: Rikson Gultom

Abstract:

Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.

Keywords: abusive language, hate speech, machine learning, optimization, social media

Procedia PDF Downloads 128
4063 Algorithm for Quantification of Pulmonary Fibrosis in Chest X-Ray Exams

Authors: Marcela de Oliveira, Guilherme Giacomini, Allan Felipe Fattori Alves, Ana Luiza Menegatti Pavan, Maria Eugenia Dela Rosa, Fernando Antonio Bacchim Neto, Diana Rodrigues de Pina

Abstract:

It is estimated that each year one death every 10 seconds (about 2 million deaths) in the world is attributed to tuberculosis (TB). Even after effective treatment, TB leaves sequelae such as, for example, pulmonary fibrosis, compromising the quality of life of patients. Evaluations of the aforementioned sequel are usually performed subjectively by radiology specialists. Subjective evaluation may indicate variations inter and intra observers. The examination of x-rays is the diagnostic imaging method most accomplished in the monitoring of patients diagnosed with TB and of least cost to the institution. The application of computational algorithms is of utmost importance to make a more objective quantification of pulmonary impairment in individuals with tuberculosis. The purpose of this research is the use of computer algorithms to quantify the pulmonary impairment pre and post-treatment of patients with pulmonary TB. The x-ray images of 10 patients with TB diagnosis confirmed by examination of sputum smears were studied. Initially the segmentation of the total lung area was performed (posteroanterior and lateral views) then targeted to the compromised region by pulmonary sequel. Through morphological operators and the application of signal noise tool, it was possible to determine the compromised lung volume. The largest difference found pre- and post-treatment was 85.85% and the smallest was 54.08%.

Keywords: algorithm, radiology, tuberculosis, x-rays exam

Procedia PDF Downloads 418
4062 Hydrological Characterization of a Watershed for Streamflow Prediction

Authors: Oseni Taiwo Amoo, Bloodless Dzwairo

Abstract:

In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.

Keywords: hydrological characteristic, stream flow, runoff discharge, land and climate

Procedia PDF Downloads 341
4061 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 79
4060 Quantitative Polymerase Chain Reaction Analysis of Phytoplankton Composition and Abundance to Assess Eutrophication: A Multi-Year Study in Twelve Large Rivers across the United States

Authors: Chiqian Zhang, Kyle D. McIntosh, Nathan Sienkiewicz, Ian Struewing, Erin A. Stelzer, Jennifer L. Graham, Jingrang Lu

Abstract:

Phytoplankton plays an essential role in freshwater aquatic ecosystems and is the primary group synthesizing organic carbon and providing food sources or energy to ecosystems. Therefore, the identification and quantification of phytoplankton are important for estimating and assessing ecosystem productivity (carbon fixation), water quality, and eutrophication. Microscopy is the current gold standard for identifying and quantifying phytoplankton composition and abundance. However, microscopic analysis of phytoplankton is time-consuming, has a low sample throughput, and requires deep knowledge and rich experience in microbial morphology to implement. To improve this situation, quantitative polymerase chain reaction (qPCR) was considered for phytoplankton identification and quantification. Using qPCR to assess phytoplankton composition and abundance, however, has not been comprehensively evaluated. This study focused on: 1) conducting a comprehensive performance comparison of qPCR and microscopy techniques in identifying and quantifying phytoplankton and 2) examining the use of qPCR as a tool for assessing eutrophication. Twelve large rivers located throughout the United States were evaluated using data collected from 2017 to 2019 to understand the relation between qPCR-based phytoplankton abundance and eutrophication. This study revealed that temporal variation of phytoplankton abundance in the twelve rivers was limited within years (from late spring to late fall) and among different years (2017, 2018, and 2019). Midcontinent rivers had moderately greater phytoplankton abundance than eastern and western rivers, presumably because midcontinent rivers were more eutrophic. The study also showed that qPCR- and microscope-determined phytoplankton abundance had a significant positive linear correlation (adjusted R² 0.772, p-value < 0.001). In addition, phytoplankton abundance assessed via qPCR showed promise as an indicator of the eutrophication status of those rivers, with oligotrophic rivers having low phytoplankton abundance and eutrophic rivers having (relatively) high phytoplankton abundance. This study demonstrated that qPCR could serve as an alternative tool to traditional microscopy for phytoplankton quantification and eutrophication assessment in freshwater rivers.

Keywords: phytoplankton, eutrophication, river, qPCR, microscopy, spatiotemporal variation

Procedia PDF Downloads 101
4059 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture

Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi

Abstract:

Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.

Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection

Procedia PDF Downloads 63
4058 Computational Models for Accurate Estimation of Joint Forces

Authors: Ibrahim Elnour Abdelrahman Eltayeb

Abstract:

Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.

Keywords: joint force, joint model, optimisation problem, validation

Procedia PDF Downloads 170
4057 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection

Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok

Abstract:

The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.

Keywords: RJ45, automatic annotation, object tracking, 3D projection

Procedia PDF Downloads 167
4056 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs

Authors: Malo Pocheau-Lesteven, Olivier Le Maître

Abstract:

Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.

Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program

Procedia PDF Downloads 157
4055 Examining the Changes in Complexity, Accuracy, and Fluency in Japanese L2 Writing Over an Academic Semester

Authors: Robert Long

Abstract:

The results of a one-year study on the evolution of complexity, accuracy, and fluency (CAF) in the compositions of Japanese L2 university students throughout a semester are presented in this study. One goal was to determine if any improvement in writing abilities over this academic term had occurred, while another was to examine methods of editing. Participants had 30 minutes to write each essay with an additional 10 minutes allotted for editing. As for editing, participants were divided into two groups, one of which utilized an online grammar checker, while the other half self-edited their initial manuscripts. From the three different institutions, there was a total of 159 students. Research questions focused on determining if the CAF had evolved over the previous year, identifying potential variations in editing techniques, and describing the connections between the CAF dimensions. According to the findings, there was some improvement in accuracy (fewer errors) in all three of the measures), whereas there was a marked decline in complexity and fluency. As for the second research aim relating to the interaction among the three dimensions (CAF) and of possible increases in fluency being offset by decreases in grammatical accuracy, results showed (there is a logical high correlation with clauses and word counts, and mean length of T-unit (MLT) and (coordinate phrase of T-unit (CP/T) as well as MLT and clause per T-unit (C/T); furthermore, word counts and error/100 ratio correlated highly with error-free clause totals (EFCT). Issues of syntactical complexity had a negative correlation with EFCT, indicating that more syntactical complexity relates to decreased accuracy. Concerning a difference in error correction between those who self-edited and those who used an online grammar correction tool, results indicated that the variable of errors-free clause ratios (EFCR) had the greatest difference regarding accuracy, with fewer errors noted with writers using an online grammar checker. As for possible differences between the first and second (edited) drafts regarding CAF, results indicated there were positive changes in accuracy, the most significant change seen in complexity (CP/T and MLT), while there were relatively insignificant changes in fluency. Results also indicated significant differences among the three institutions, with Fujian University of Technology having the most fluency and accuracy. These findings suggest that to raise students' awareness of their overall writing development, teachers should support them in developing more complex syntactic structures, improving their fluency, and making more effective use of online grammar checkers.

Keywords: complexity, accuracy, fluency, writing

Procedia PDF Downloads 39
4054 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller

Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland

Abstract:

This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.

Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace

Procedia PDF Downloads 336
4053 Composite Forecasts Accuracy for Automobile Sales in Thailand

Authors: Watchareeporn Chaimongkol

Abstract:

In this paper, we compare the statistical measures accuracy of composite forecasting model to estimate automobile customer demand in Thailand. A modified simple exponential smoothing and autoregressive integrate moving average (ARIMA) forecasting model is built to estimate customer demand of passenger cars, instead of using information of historical sales data. Our model takes into account special characteristic of the Thai automobile market such as sales promotion, advertising and publicity, petrol price, and interest rate for loan. We evaluate our forecasting model by comparing forecasts with actual data using six accuracy measurements, mean absolute percentage error (MAPE), geometric mean absolute error (GMAE), symmetric mean absolute percentage error (sMAPE), mean absolute scaled error (MASE), median relative absolute error (MdRAE), and geometric mean relative absolute error (GMRAE).

Keywords: composite forecasting, simple exponential smoothing model, autoregressive integrate moving average model selection, accuracy measurements

Procedia PDF Downloads 362
4052 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 240
4051 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG

Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat

Abstract:

Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.

Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy

Procedia PDF Downloads 520
4050 Evaluation of DNA Paternity Testing Accuracy of Child Trafficking Cases

Authors: Wing Kam Fung, Kexin Yu

Abstract:

Child trafficking has been a serious problem in modern China. The Chinese government has established a national anti-trafficking DNA database to help reunite missing children with their families. The database collects DNA information from missing children's parents, trafficked and homeless children, then conducts paternity tests to find matched pairs. This paper considers the matching accuracy in such cases by looking into the exclusion probability in paternity testing. First, the situation of child trafficking in China is introduced. Next, derivations of the exclusion probability for both one-parent and two-parents cases are given, followed by extension to allow for 1 or 2 mutations. The accuracy of paternity testing of child trafficking cases is then assessed using the exclusion probabilities and available data. Finally, the number of loci that should be used to ensure a correct match is investigated.

Keywords: child trafficking, DNA database, exclusion probability, paternity testing

Procedia PDF Downloads 457
4049 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 583
4048 A Review of Accuracy Optical Surface Imaging Systems for Setup Verification During Breast Radiotherapy Treatment

Authors: Auwal Abubakar, Ahmed Ahidjo, Shazril Imran Shaukat, Noor Khairiah A. Karim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: The use of optical surface imaging systems (OSISs) is increasingly becoming popular in radiotherapy practice, especially during breast cancer treatment. This study reviews the accuracy of the available commercial OSISs for breast radiotherapy. Method: A literature search was conducted and identified the available commercial OSISs from different manufacturers that are integrated into radiotherapy practice for setup verification during breast radiotherapy. Studies that evaluated the accuracy of the OSISs during breast radiotherapy using cone beam computed tomography (CBCT) as a reference were retrieved and analyzed. The physics and working principles of the systems from each manufacturer were discussed together with their respective strength and limitations. Results: A total of five (5) different commercially available OSISs from four (4) manufacturers were identified, each with a different working principle. Six (6) studies were found to evaluate the accuracy of the systems during breast radiotherapy in conjunction with CBCT as a goal standard. The studies revealed that the accuracy of the system in terms of mean difference ranges from 0.1 to 2.1 mm. The correlation between CBCT and OSIS ranges between 0.4 and 0.9. The limit of agreements obtained using bland Altman analysis in the studies was also within an acceptable range. Conclusion: The OSISs have an acceptable level of accuracy and could be used safely during breast radiotherapy. The systems are non-invasive, ionizing radiation-free, and provide real-time imaging of the target surface at no extra concomitant imaging dose. However, the system should only be used to complement rather than replace x-ray-based image guidance techniques such as CBCT.

Keywords: optical surface imaging system, Cone beam computed tomography (CBCT), surface guided radiotherapy, Breast radiotherapy

Procedia PDF Downloads 66
4047 Kinect Station: Using Microsoft Kinect V2 as a Total Station Theodolite for Distance and Angle Determination in a 3D Cartesian Environment

Authors: Amin Amini

Abstract:

A Kinect sensor has been utilized as a cheap and accurate alternative to 3D laser scanners and electronic distance measurement (EDM) systems. This research presents an inexpensive and easy-to-setup system that utilizes the Microsoft Kinect v2 sensor as a surveying and measurement tool and investigates the possibility of using such a device as a replacement for conventional theodolite systems. The system was tested in an indoor environment where its accuracy in distance and angle measurements was tested using virtual markers in a 3D Cartesian environment. The system has shown an average accuracy of 97.94 % in measuring distances and 99.11 % and 98.84 % accuracy for area and perimeter, respectively, within the Kinect’s surveying range of 1.5 to 6 meters. The research also tested the system competency for relative angle determination between two objects.

Keywords: kinect v2, 3D measurement, depth map, ToF

Procedia PDF Downloads 67
4046 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure

Authors: Kai Zhang, Xi Jiang

Abstract:

Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.

Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification

Procedia PDF Downloads 275
4045 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor

Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh

Abstract:

Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.

Keywords: acoustic, aptasensor, detection, nonlinear

Procedia PDF Downloads 566
4044 Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats

Authors: D. S. Mohale, A. P. Dewani, A. S.tripathi, A. V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days.

Keywords: malondialdehyde-thiobarbituric acid complex, levofloxacin, HPLC, oxidative stress

Procedia PDF Downloads 334
4043 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 210
4042 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 333