Search results for: online sequential extreme learning machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11519

Search results for: online sequential extreme learning machine

11399 Tolerating Input Faults in Asynchronous Sequential Machines

Authors: Jung-Min Yang

Abstract:

A method of tolerating input faults for input/state asynchronous sequential machines is proposed. A corrective controller is placed in front of the considered asynchronous machine to realize model matching with a reference model. The value of the external input transmitted to the closed-loop system may change by fault. We address the existence condition for the controller that can counteract adverse effects of any input fault while maintaining the objective of model matching. A design procedure for constructing the controller is outlined. The proposed reachability condition for the controller design is validated in an illustrative example.

Keywords: asynchronous sequential machines, corrective control, fault tolerance, input faults, model matching

Procedia PDF Downloads 424
11398 Enhancing Experiential Learning in a Smart Flipped Classroom: A Case Study

Authors: Fahri Benli, Sitalakshmi Venkartraman, Ye Wei, Fiona Wahr

Abstract:

A flipped classroom which is a form of blended learning shifts the focus from a teacher-centered approach to a learner-centered approach. However, not all learners are ready to take the active role of knowledge and skill acquisition through a flipped classroom and they continue to delve in a passive mode of learning. This challenges educators in designing, scaffolding and facilitating in-class activities for students to have active learning experiences in a flipped classroom environment. Experiential learning theories have been employed by educators in the past in physical classrooms based on the principle that knowledge could be actively developed through direct experience. However, with more of online teaching witnessed recently, there are inherent limitations in designing and simulating an experiential learning activity for an online environment. In this paper, we explore enhancing experiential learning using smart digital tools that could be employed in a flipped classroom within a higher education setting. We present the use of smart collaborative tools online to enhance the experiential learning activity to teach higher-order cognitive concepts of business process modelling as a case study.

Keywords: experiential learning, flipped classroom, smart software tools, online learning higher-order learning attributes

Procedia PDF Downloads 189
11397 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning

Authors: Arun Sanjel, Greg Speegle

Abstract:

Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.

Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC

Procedia PDF Downloads 106
11396 Fostering Enriched Teaching and Learning Experience Using Effective Cyber-Physical Learning Environment

Authors: Shubhakar K., Nachamma S., Judy T., Jacob S. C., Melvin Lee, Kenneth Lo

Abstract:

In recent years, technological advancements have ushered in a new era of education characterized by the integration of technology-enabled devices and online tools. The cyber-physical learning environment (CPLE) is a prime example of this evolution, merging remote cyber participants with in-class learners through immersive technology, interactive digital whiteboards, and online communication platforms like Zoom and MS Teams. This approach transforms the teaching and learning experience into a more seamless, immersive, and inclusive one. This paper outlines the design principles and key features of CPLE that support both teaching and group-based activities. We also explore the key characteristics and potential impact of such environments on educational practices. By analyzing user feedback, we evaluate how technology enhances teaching and learning in a cyber-physical setting, its impact on learning outcomes, user-friendliness, and areas for further enhancement to optimize the teaching and learning environment.

Keywords: cyber-physical class, hybrid teaching, online learning, remote learning, technology enabled learning

Procedia PDF Downloads 37
11395 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease

Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena

Abstract:

Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.

Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics

Procedia PDF Downloads 97
11394 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
11393 E-Immediacy in Saudi Higher Education Context: Female Students’ Perspectives

Authors: Samar Alharbi, Yota Dimitriadi

Abstract:

The literature on educational technology in Saudi Arabia reveals female learners’ unwillingness to study fully online courses in higher education despite the fact that Saudi universities have offered a variety of online degree programmes to undergraduate students in many regions of the country. The root causes keeping female students from successfully learning in online environments are limited social interaction, lack of motivation and difficulty with the use of e-learning platforms. E-immediacy remains an important method of online teaching to enhance students’ interaction and support their online learning. This study explored Saudi female students’ perceptions, as well as the experiences of lecturers’ immediacy behaviours in online environments, who participate in fully online courses using Blackboard at a Saudi university. Data were collected through interviews with focus groups. The three focus groups included five to seven students each. The female participants were asked about lecturers’ e-immediacy behaviours and which e-immediacy behaviours were important for an effective learning environment. A thematic analysis of the data revealed three main themes: the encouragement of student interaction, the incorporation of social media and addressing the needs of students. These findings provide lecturers with insights into instructional designs and strategies that can be adopted in using e-immediacy in effective ways, thus improving female learners’ interactions as well as their online learning experiences.

Keywords: e-learning, female students, higher education, immediacy

Procedia PDF Downloads 348
11392 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 211
11391 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 126
11390 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 189
11389 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
11388 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 34
11387 Exploring How Online Applications Help Students to Learn Music Virtually: A Study in an Australian Music Academy

Authors: Ali Shah

Abstract:

This paper outlines the case study experience of using a variety of online strategies in an Australian music academy context during covid times. The study aimed at exploring how online applications help students to learn music, specifically playing musical instruments, composing songs, and performing virtually. To explore this, music teachers’ perceptions and experiences regarding online learning, the teaching strategies they implemented, and the challenges they faced were examined. For the purpose of this study, a qualitative research structure was adopted through the use of three data collection tools. These methods included pre- and post-research individual interviews of teachers and students, analysis of their lesson plans, virtual classroom observations of the teachers followed by the researcher’sown reflections, post-observation discussions, and teachers’ reflective journals. The findings revealed that teachers had a theoretical understanding of virtual learning and recent musical application such as Flowkey, Skoove, and Piano marvel, which are benefits of e-learning. While teachers faced challenges in implementing strategies to teach keyboard/piano online, overall, both students and teachers felt the positive impact of online applications and strategies on their learning and felt that modern technology made it possible for anyone to take music lessons at home.

Keywords: music, keyboard, piano, online learning, virtual learning

Procedia PDF Downloads 75
11386 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 209
11385 Online Faculty Professional Development: An Approach to the Design Process

Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova

Abstract:

Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.

Keywords: community of practice, customized, faculty development, inclusive design

Procedia PDF Downloads 175
11384 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 230
11383 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 340
11382 Online Graduate Students’ Perspective on Engagement in Active Learning in the United States

Authors: Ehi E. Aimiuwu

Abstract:

As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework.  Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software.  Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email.  Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study.  About 42.9% appreciated syllabus usefulness and professor’s expertise.

Keywords: class facilitation, course management, online teaching, online education, student engagement

Procedia PDF Downloads 129
11381 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
11380 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing

Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi

Abstract:

This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.

Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning

Procedia PDF Downloads 31
11379 Online Classroom Instruction and Collaborative Learning: Problems and Prospects Among Undergraduate Students of Obafemi Awolowo University, Ile-Ife, Nigeria

Authors: Bello Theodora O., Animola Odunayo V., Owoade Johnson T.

Abstract:

With the advent of Covid-19, online classroom instruction became a very important mode of instruction delivery during which learners were engaged in both collaborative and online interactive learning process, but along with it are challenges as well as its deliverables. This study therefore investigated the various online platform used by the students for learning among fresh undergraduate students of Obafemi Awolowo University, Ile-Ife, Osun Sate. It also assessed the student’s perception towards online learning in the university and examined the influence of collaborative learning among the students. Lastly, it examined the problems that are associated with collaborative online learning instruction in the university. These were with a view to providing empirical information on problems and prospects of online classroom instruction among fresh undergraduate physical science students of Obafemi Awolowo University, Ile-Ife. The study employed a descriptive survey research technique. The population comprised all the fresh undergraduates in physical science departments of Obafemi Awolowo University, Ile-Ife. The sample consisted two hundred freshmen in physical science departments of Obafemi Awolowo University, Ile-Ife, who were selected using simple random techniques. During the selection, a questionnaire was used to collect data from the respondents. The data were analyzed using appropriate descriptive of frequency, simple percentage, and mean. Results showed that Google Meet 149(74.5%), Telegram 120(60.0%), and Google Classroom 143(71.5%), are the prominent online classroom instruction used by the students in Obafemi Awolowo University, Ile-Ife. The results also showed that the freshmen’s perception towards online classroom instruction in Obafemi Awolowo University, Ile-Ife is low with cluster mean of 2.97. It further revealed that collaborative learning enhances the learning ability of below average learners more than that of the above average and average students (73.6%). Finally, the result showed that they are affirmative of the problems associated with online classroom instruction in Obafemi Awolowo University, Ile-Ife with cluster mean of 3.01. The result concluded that most Online platform used by the fresher’s students in Obafemi Awolowo University, Ile-Ife are Google Meet, Telegram and Google Classroom. The students have negatives perception towards online classroom instruction and the students are affirmative of the problems associated with online classroom instruction among physical science freshmen in Obafemi Awolowo University, Ile-Ife.

Keywords: online, instruction, freshmen, physical science, collaborative

Procedia PDF Downloads 64
11378 Software Transactional Memory in a Dynamic Programming Language at Virtual Machine Level

Authors: Szu-Kai Hsu, Po-Ching Lin

Abstract:

As more and more multi-core processors emerge, traditional sequential programming paradigm no longer suffice. Yet only few modern dynamic programming languages can leverage such advantage. Ruby, for example, despite its wide adoption, only includes threads as a simple parallel primitive. The global virtual machine lock of official Ruby runtime makes it impossible to exploit full parallelism. Though various alternative Ruby implementations do eliminate the global virtual machine lock, they only provide developers dated locking mechanism for data synchronization. However, traditional locking mechanism error-prone by nature. Software Transactional Memory is one of the promising alternatives among others. This paper introduces a new virtual machine: GobiesVM to provide a native software transactional memory based solution for dynamic programming languages to exploit parallelism. We also proposed a simplified variation of Transactional Locking II algorithm. The empirical results of our experiments show that support of STM at virtual machine level enables developers to write straightforward code without compromising parallelism or sacrificing thread safety. Existing source code only requires minimal or even none modi cation, which allows developers to easily switch their legacy codebase to a parallel environment. The performance evaluations of GobiesVM also indicate the difference between sequential and parallel execution is significant.

Keywords: global interpreter lock, ruby, software transactional memory, virtual machine

Procedia PDF Downloads 285
11377 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
11376 Literature Review: Adversarial Machine Learning Defense in Malware Detection

Authors: Leidy M. Aldana, Jorge E. Camargo

Abstract:

Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.

Keywords: Malware, adversarial, machine learning, defense, attack

Procedia PDF Downloads 63
11375 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 521
11374 Learning Compression Techniques on Smart Phone

Authors: Farouk Lawan Gambo, Hamada Mohammad

Abstract:

Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.

Keywords: data compression, learning preference, mobile learning, multimedia

Procedia PDF Downloads 447
11373 Instance Selection for MI-Support Vector Machines

Authors: Amy M. Kwon

Abstract:

Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.

Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning

Procedia PDF Downloads 34
11372 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 340
11371 Improving Learning and Teaching of Software Packages among Engineering Students

Authors: Sara Moridpour

Abstract:

To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students.

Keywords: teaching software packages, undergraduate students, blended learning and teaching, authentic assessment

Procedia PDF Downloads 115
11370 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 168