Search results for: metabolic networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3552

Search results for: metabolic networks

3432 Towards Security in Virtualization of SDN

Authors: Wanqing You, Kai Qian, Xi He, Ying Qian

Abstract:

In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.

Keywords: SDN, network, virtualization, security

Procedia PDF Downloads 429
3431 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks

Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy

Abstract:

With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.

Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS

Procedia PDF Downloads 340
3430 Multi-Omics Integrative Analysis Coupled to Control Theory and Computational Simulation of a Genome-Scale Metabolic Model Reveal Controlling Biological Switches in Human Astrocytes under Palmitic Acid-Induced Lipotoxicity

Authors: Janneth Gonzalez, Andrés Pinzon Velasco, Maria Angarita

Abstract:

Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatorypathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, broad studies with a systemic point of view on the neurodegenerative role of PA and the neuro-protective mechanisms of tibolone are lacking. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also applied a control theory approach to identify those reactions that exert more control in the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a switch in energy source use through inhibition of folate cycle and fatty acid β‐oxidation and upregulation of ketone bodies formation. We found 25 metabolic switches under PA‐mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation of metabolic pathways that may increase neurotoxicity and represent potential treatment targets. Finally, the overall framework of our approach facilitates the understanding of complex metabolic regulation, and it can be used for in silico exploration of the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.

Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics

Procedia PDF Downloads 99
3429 Metabolic Costs and Chemical Profiles of Wax Production in Cryptolaemus montrouzieri and Tenuisvalvae notata

Authors: Nataly De La Pava, Christian S. A. Silva-Torres, Arodí P. Favaris, José Maurício S. Bento

Abstract:

The lady beetles Tenuisvalve notata and Cryptolaemus montrouzieri are important predators of mealybugs (Hemiptera: Pseudococcidae). Similar to the prey, these lady beetles produce wax filaments that cover their body during the larval stage. It has been hypothesized that lady beetle body wax chemical profiles are similar to their prey as i) a mechanism of camouflage and ii) conveying protection to the lady beetle larvae against aphid-tending predatory ants. In this study, we tested those hypotheses for the predators T. notata and C. montrouzieri and two mealybug prey species, Ferissia dasyrilii, and Planococcus citri. Next, we evaluated the influence of feeding on cuticular chemistry during predator development and identified possible metabolic costs associated with wax production. Cuticular wax samples were analyzed by GC-MS and GC-FID. Also, the metabolic cost linked to wax production was evaluated in the 4th instar larvae of the two predators when subjected to body wax removal from 0 to 4 times. Results showed that predator body wax profiles are not similar to the chemical profile of prey body wax. There was a metabolic cost associated with wax removal; predators (male and female) showed a significant reduction in adult body weight when the wax was removed. This suggests the reallocation of energy to wax replacement instead of growth. In addition, it was detected effects of wax removal on fecundity and egg viability. The results do not support the hypothesis that predators mimic the cuticular wax composition of prey as a means of camouflage.

Keywords: biological control, body wax, coccinellids, cuticular hydrocarbons, metabolism cost, reproduction

Procedia PDF Downloads 79
3428 Leveraging Deep Q Networks in Portfolio Optimization

Authors: Peng Liu

Abstract:

Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.

Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization

Procedia PDF Downloads 35
3427 The Pharmacology and Physiology of Steroid Oral Contraceptives

Authors: Ragy Raafat Gaber Attaalla

Abstract:

PIP: This review, based on 2 large-scale studies, discusses the pharmacology and physiology of oral steroid contraceptives (OCs). The pharmacological distinction between synthetic and naturally occurring steroids centers on changes in biological activity dependent on compound formulation and an individual's metabolism. OC mechanism of action is explained as the main prevention of ovulation by interference with gonadotropin-releasing hormone. Since some 52 metabolic alterations have been reported in OC users, these phenomena are dealt with in 3 categories: 1) effects on the primary target organs of the female reproductive tract (ovary, myometrium, endometrium, cervix, vagina, breasts, and hypothalamus), 2) general metabolic effects (serum proteins, carbohydrate metabolism, lipid metabolism, water and electrolyte metabolism, body weight, tryptophan metabolism, and vitamins and minerals), and 3) effects on other organ systems (liver, central nervous system, skin, genitourinary, gastrointestinal tract, eye, immune phenomena, and effect on subsequent fertility). The choice of the proper OC formulation and use of OCs by adolescents are discussed. Assessment of OC safety, contraindications, and patient monitoring are provided.

Keywords: steroid oral contraceptives, ovulation, female reproductive tract, metabolic effects

Procedia PDF Downloads 96
3426 Community Structure Detection in Networks Based on Bee Colony

Authors: Bilal Saoud

Abstract:

In this paper, we propose a new method to find the community structure in networks. Our method is based on bee colony and the maximization of modularity to find the community structure. We use a bee colony algorithm to find the first community structure that has a good value of modularity. To improve the community structure, that was found, we merge communities until we get a community structure that has a high value of modularity. We provide a general framework for implementing our approach. We tested our method on computer-generated and real-world networks with a comparison to very known community detection methods. The obtained results show the effectiveness of our proposition.

Keywords: bee colony, networks, modularity, normalized mutual information

Procedia PDF Downloads 409
3425 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.

Keywords: zinc extraction, efficiency, neural networks, operating condition

Procedia PDF Downloads 547
3424 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS

Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim

Abstract:

Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.

Keywords: E. histolytica, ESA, proteomics, biomarker

Procedia PDF Downloads 344
3423 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease

Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette

Abstract:

Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.

Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment

Procedia PDF Downloads 339
3422 Effects of Dietary Copper Supplementation on the Freshwater Prawn, Macrobrachium rosenbergii

Authors: Muralisankar Thirunavukkarasu, Saravana Bhavan Periyakali, Santhanam Perumal

Abstract:

The present study was performed to assess the effects of dietary copper (Cu) on growth, biochemical constituents, digestive enzyme activities, enzymatic antioxidant and metabolic enzymes of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The Cu was supplemented at 0, 10, 20, 40, 60 and 80 mg kg-1 with the basal diets. Cu supplemented diets were fed to M. rosenbergii PL for a period of 90 days. At the end of the feeding experiment, 40 mg kg-1 Cu supplemented feeds fed PL showed significant (P < 0.05) improvement in survival, growth, digestive enzyme activities and concentrations of biochemical constituents. However, PL fed with 60 to 80 mg Cu kg-1 showed negative performance. Activities of enzymatic antioxidants, metabolic enzymes and lipid peroxidation in the muscle and hepatopancreas showed insignificant alterations (P > 0.05) up to 40 mg kg-1 Cu supplemented feeds fed PL. Whereas, 60 and 80 mg of Cu kg-1 supplemented feeds fed PL showed significant alterations on these antioxidants and metabolic enzymes levels. It indicates that beyond 40 mg Cu kg-1 diets were produced some toxic to M. rosenbergii PL. Therefore, the present study suggests that 40 mg Cu kg-1 can be supplemented in the diets of M. rosenbergii PL for regulating better survival and growth.

Keywords: antioxidants, biochemical constituents, copper, growth, Macrobrachium rosenbergii

Procedia PDF Downloads 225
3421 Defining the Tipping Point of Tolerance to CO₂-Induced Ocean Acidification in Larval Dusky Kob Argyrosomus japonicus (Pisces: Sciaenidae)

Authors: Pule P. Mpopetsi, Warren M. Potts, Nicola James, Amber Childs

Abstract:

Increased CO₂ production and the consequent ocean acidification (OA) have been identified as one of the greatest threats to both calcifying and non-calcifying marine organisms. Traditionally, marine fishes, as non-calcifying organisms, were considered to have a higher tolerance to near-future OA conditions owing to their well-developed ion regulatory mechanisms. However, recent studies provide evidence to suggest that they may not be as resilient to near-future OA conditions as previously thought. In addition, earlier life stages of marine fishes are thought to be less tolerant than juveniles and adults of the same species as they lack well-developed ion regulatory mechanisms for maintaining homeostasis. This study focused on the effects of near-future OA on larval Argyrosomus japonicus, an estuarine-dependent marine fish species, in order to identify the tipping point of tolerance for the larvae of this species. Larval A. japonicus in the present study were reared from the egg up to 22 days after hatching (DAH) under three treatments. The three treatments, (pCO₂ 353 µatm; pH 8.03), (pCO₂ 451 µatm; pH 7.93) and (pCO₂ 602 µatm; pH 7.83) corresponded to levels predicted to occur in year 2050, 2068 and 2090 respectively under the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (IPCC RCP) 8.5 model. Size-at-hatch, growth, development, and metabolic responses (standard and active metabolic rates and metabolic scope) were assessed and compared between the three treatments throughout the rearing period. Five earlier larval life stages (hatchling – flexion/post-flexion) were identified by the end of the experiment. There were no significant differences in size-at-hatch (p > 0.05), development or the active metabolic (p > 0.05) or metabolic scope (p > 0.05) of fish in the three treatments throughout the study. However, the standard metabolic rate was significantly higher in the year 2068 treatment but only at the flexion/post-flexion stage which could be attributed to differences in developmental rates (including the development of the gills) between the 2068 and the other two treatments. Overall, the metabolic scope was narrowest in the 2090 treatment but varied according to life stage. Although not significantly different, metabolic scope in the 2090 treatment was noticeably lower at the flexion stage compared to the other two treatments, and the development appeared slower, suggesting that this could be the stage most prone to OA. The study concluded that, in isolation, OA levels predicted to occur between 2050 and 2090 will not negatively affect size-at-hatch, growth, development, and metabolic responses of larval A. japonicus up to 22 DAH (flexion/post-flexion stage). The present study also identified the tipping point of tolerance (where negative impacts will begin) in larvae of the species to be between the years 2090 and 2100.

Keywords: climate change, ecology, marine, ocean acidification

Procedia PDF Downloads 135
3420 Sportomics Analysis of Metabolic Responses in Olympic Sprint Canoeists

Authors: A. Magno-França, A. M. Magalhães-Neto, F. Bachini, E. Cataldi, A. Bassini, L. C. Cameron

Abstract:

Sprint canoeing (SC) is part of the Olympic Games since 1936. Athletes compete in solo or double races of 200m and 1000m (40 sec and 240 sec, respectively). Due to its high intensity and duration, SC is extremely useful to study the blood kinetics of some metabolites in high energetic demand. Sportomics is a field of study combining “-omics” sciences with classical biochemical analyses in order to understand sports induced systemic changes. Here, we compare Sportomics findings during SC training sessions to describe metabolic responses of five top-level canoeists. Five Olympic world-class male athletes were evaluated during two days of training.

Keywords: biochemistry of exercise, metabolomics, injury markers, sportomics

Procedia PDF Downloads 516
3419 Bone Mineral Density in Type 2 Diabetes Mellitus Postmenopausal Egyptian Female Patients: Correlation with Fetuin-A Level and Metabolic Parameters

Authors: Ahmed A. M. Shoaib, Heba A. Esaily, Mahmoud M. Emara, Eman A. E. Badr, Amany S. Khalifa, Mayada M. M., Abdel-Raizk

Abstract:

Background: DM is associated with metabolic bone diseases, osteoporosis, low-impact fractures and falls in geriatrics. Fetuin-A, which is a serum protein produced by the liver and promotes bone mineralization, is an independent risk factor for type 2 diabetes. Aim: Evaluation of fetuin-A level and bone mineral density in postmenopausal Egyptian female patients with type 2 diabetes mellitus and their correlation with each other & with other metabolic parameters. Patients and methods: Seventy postmenopausal female patients with type II diabetes and thirty postmenopausal female as control were included in this study. Measurement of Fetuin-A together with metabolic parameters and DXA in wrist, hip and spine, ALP, CBC, FBS, PP2H and HBA1c was done in all participants. Results: - Fetuin-A level was found to be highly significant (p< 0.001) between diabetic and nondiabetic groups and negatively correlated with BMD in spine. No difference in BMD was found between patients and control groups while significant negative correlation was found between FBS and hip BMD (<0.05) and between 2hpp and HBA1c with spine BMD in the diabetic group (<0.05). Osteoporosis represented 12.9% in spine area and 7.2% in hip and wrist areas in diabetic patients, while osteopenia were found in 58.5%, 57.1%, and 37.1% in diabetic patients in spine, wrist, and hip respectively. Conclusion: - type II diabetes cannot be considered as a risk factor for osteoporosis; while glycemic parameters (FBS, 2hpp & HBA1c) and serum Fetuin-A levels were correlated with BMD in diabetics. Good glycemic control can be protective against osteoporosis in diabetic elderly.

Keywords: fetuin-A, BMD, postmenopausal, DM type II

Procedia PDF Downloads 267
3418 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 81
3417 Lean Mass and Fat Mass Distribution in Ukrainian Postmenopausal Women with Abdominal Овesity and Metabolic Syndrome

Authors: V. V. Povoroznyuk, Lar. P. Martynyuk, N. I. Dzerovych, Lil. P. Martyntyuk

Abstract:

Objective: Menopause-related changes in female body are associated with the greater risk of metabolic syndrome (MS), which includes obesity, dyslipidemia, impaired glucose tolerance, hypertension. The aim of our study was to reveal peculiarities of fat and lean mass distribution between postmenopausal women with abdominal obesity and with MS. Materials and Methods: The sample consisted of 43 postmenopausal 60 – 69 years old women (age: mean = 64,8; S.D. = 0,4); duration of menopause: mean = 14,5; S.D.= 0,9). The diagnosis of MS was considered according to IDF (2005 yr) criteria. Lean and fat mass distrubution were measured by dual-energy X-ray absortiometry, and were compared for the cohorts with and without MS. Data were analyzed using Statistical Package 6.0 (Statsoft). Results: Findings revealed that 24 (55,8 %) of postmenopausal women had MS. In patients with and without MS compared, fat mass was higher in the former group (41248,25±2263,89 and 29817,68±2397,78 respectively; F=11,9; p=0,001) and at different body regions also: gynoid fat (6563,72±348,19 and 5115,21±392,43 respectively; F=7,6; p=0,008), android fat (3815,45±200,8128 and 2798,15±282,79 respectively; F=9,06; p=0,004. Lean mass comparing didn’t show significant differences in female with and without MS (42548,0±1239,18 and 40667,53±1223,78 respectively; F=1,1; p=0,29) and at different body regions also. Conclusion: These findings suggest that in postmenopausal women with MS there is prevalence of fat mass without increasing of lean mass quantity in compare to female with abdominal obesity without MS.

Keywords: lean mass, fat mass, овesity, metabolic syndrome, women, postmenopausal period

Procedia PDF Downloads 461
3416 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 409
3415 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks

Authors: Khelifa Benahmed, Tarek Benahmed

Abstract:

There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.

Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks

Procedia PDF Downloads 353
3414 Association of Genetic Variants of Apolipoprotein A5 Gene with the Metabolic Syndrome in the Pakistani Population

Authors: Muhammad Fiaz, Muhammad Saqlain, Bernard M. Y. Cheung, S. M. Saqlan Naqvi, Ghazala Kaukab Raja

Abstract:

Background: Association of C allele of rs662799 SNP of APOA5 gene with metabolic syndrome (MetS) has been reported in different populations around the world. A case control study was conducted to explore the relationship of rs662799 variants (T/C) with the MetS and the associated risk phenotypes in a population of Pakistani origin. Methods: MetS was defined according to the IDF criteria. Blood samples were collected from the Pakistan Institute of Medical Sciences, Islamabad, Pakistan for biochemical profiling and DNA extraction. Genotyping of rs662799 was performed using mass ARRAY, iPEX Gold technology. A total of 712 unrelated case and control subjects were genotyped. Data were analyzed using Plink software and SPSS 16.0. Results: The risk allele C of rs662799 showed highly significant association with MetS (OR=1.5, Ρ=0.002). Among risk phenotypes, dyslipidemia, and obesity showed strong association with SNP (OR=1.49, p=0.03; OR =1.46, p=0.01) respectively in models adjusted for age and gender. Conclusion: The rs662799C allele is a significant risk marker for MetS in the local Pakistani population studied. The effect of the SNP is more on dyslipidemia than the other components of the MetS.

Keywords: metabolic syndrome, APOA5, rs662799, dyslipidemia, obesity

Procedia PDF Downloads 505
3413 Breath Ethanol Imaging System Using Real Time Biochemical Luminescence for Evaluation of Alcohol Metabolic Capacity

Authors: Xin Wang, Munkbayar Munkhjargal, Kumiko Miyajima, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

The measurement of gaseous ethanol plays an important role of evaluation of alcohol metabolic capacity in clinical and forensic analysis. A 2-dimensional visualization system for gaseous ethanol was constructed and tested in visualization of breath and transdermal alcohol. We demonstrated breath ethanol measurement using developed high-sensitive visualization system. The concentration of breath ethanol calculated with the imaging signal was significantly different between the volunteer subjects of ALDH2 (+) and (-).

Keywords: breath ethanol, ethnaol imaging, biochemical luminescence, alcohol metabolism

Procedia PDF Downloads 351
3412 Applications of Artificial Neural Networks in Civil Engineering

Authors: Naci Büyükkaracığan

Abstract:

Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.

Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics

Procedia PDF Downloads 415
3411 A Methodology for Sustainable Interoperability within Collaborative Networks

Authors: Aicha Koulou, Norelislam El Hami, Nabil Hmina

Abstract:

This paper aims at presenting basic concepts and principles in order to develop a methodology to set up sustainable interoperability within collaborative networks. Definitions and clarifications related to the concept of interoperability and sustainability are given. Interoperability levels and cycle that are components supporting the methodology are presented; a structured approach and related phases are proposed.

Keywords: Interoperability, sustainability, collaborative networks, sustainable Interoperability

Procedia PDF Downloads 149
3410 Effect of Antioxidant-Rich Nutraceutical on Serum Glucose, Lipid Profile and Oxidative Stress Markers of Salt-Induced Metabolic Syndrome in Rats

Authors: Nura Lawal, Lawal Suleiman Bilbis, Rabiu Aliyu Umar, Anas A. Sabir

Abstract:

Metabolic syndrome (MS) a high-risk condition involving obesity, dyslipidemia, hypertension, and diabetes mellitus is prevalent in Nigeria. The study aims to formulate an antioxidant-rich nutraceutical from locally available foodstuff (onion, garlic, ginger, tomato, lemon, palm oil, watermelon seeds) and investigate their effects on blood pressure, body weight, serum glucose, lipid profile, insulin and oxidative stress markers in salt-induced rats. The rats were placed on 8% salt diet for 6 weeks and then supplementation and treatment with nutraceutical and nifedipine in the presence of salt diet for additional 4 weeks. Feeding rats with salt diet for 6 weeks increased blood pressure and body weight of the salt-loaded rats relative to control. Significant (P < 0.001) increase in serum blood glucose and lipid profile, and the decrease in high-density lipoprotein-cholesterol (HDL-C) was observed in salt-loaded rats as compared with control. Both supplementation and treatment (nifedipine) lowered the blood pressure but the only supplementation lowered the body weight. Supplementation with nutraceutical resulted in significant (P < 0.001) decrease in the serum blood glucose, lipid profile, malonyldialdehyde (MDA), insulin levels, insulin resistance, and increased HDL-C and antioxidant indices. The percentage protection against atherogenesis was 76.5±2.13%. There is strong positive correlation between blood pressure, body weight and serum blood glucose, lipid profile, markers of oxidative stress and strong negative correlation with HDL-C and antioxidant status. The results suggest that the nutraceuticals are useful in reversing most of the component of metabolic syndrome and might be beneficial in the treatment of patients with metabolic syndrome.

Keywords: metabolic syndrome, hypertension, diabetes mallitus, obesity

Procedia PDF Downloads 250
3409 Metabolic and Phylogenetic Profiling of Rhizobium leguminosarum Strains Isolated from NZ Soils of Varying pH

Authors: Anish Shah, Steve A. Wakelin, Derrick Moot, Aurélie Laugraud, Hayley J. Ridgway

Abstract:

A mixed pasture system of ryegrass-clover is used in New Zealand, where clovers are generally inoculated with commercially available strains of rhizobia. The community of rhizobia living in the soil and the way in which they interact with the plant are affected by different biotic and abiotic factors. In general, bacterial richness and diversity in soil varies by soil pH. pH also affects cell physiology and acts as a master variable that controls the wider soil physiochemical conditions such as P availability, Al release and micronutrient availability. As such, pH can have both primary and secondary effects on soil biology and processes. The aim of this work was to investigate the effect of soil pH on the genetic diversity and metabolic profile of Rhizobium leguminosarum strains nodulating clover. Soils were collected from 12 farms across New Zealand which had a pH(water) range of between 4.9 and 7.5, with four acidic (pH 4.9 – 5.5), four ‘neutral’ (5.8 – 6.1) and four alkaline (6.5 – 7.5) soils. Bacteria were recovered from nodules of Trifolium repens (white clover) and T. subterraneum (subterranean clover) grown in the soils. The strains were cultured and screened against a range of pH-amended media to demonstrate whether they were adapted to pH levels similar to their native soils. The strains which showed high relative growth at a given pH (~20% of those isolated) were selected for metabolic and taxonomic profiling. The Omnilog (Biolog Inc., Hayward, CA) phenotype array was used to perform assays on carbon (C) utilisation for selected strains. DNA was extracted from the strains which had differing C utilisation profiles and PCR products for both forward and reverse primers were sequenced for the following genes: 16S rRNA, recA, nodC, nodD and nifH (symbiotic).

Keywords: bacterial diversity, clover, metabolic and taxonomic profiling, pH adaptation, rhizobia

Procedia PDF Downloads 260
3408 The Transcription Factor HNF4a: A Key Player in Haematological Disorders

Authors: Tareg Belali, Mosleh Abomughaid, Muhanad Alhujaily

Abstract:

HNF4a is one of the steroid hormone receptor family of transcription factors with roles in the development of the liver and the regulation of several critical metabolic pathways, such as glycolysis, drug metabolism, and apolipoproteins and blood coagulation. The transcriptional potency of HNF4a is well known due to its involvement in diabetes and other metabolic diseases. However, recently HNF4a has been discovered to be closely associated with several haematological disorders, mainly because of genetic mutations, drugs, and hepatic disorders. We review HNF4a structure and function and its role in haematological disorders. We discuss possible good therapies that are based on targeting HNF4a.

Keywords: hepatocyte nuclear factor 4 alpha, HNF4a nuclear receptor, steroid hormone receptor family of transcription factors, hematological disorders

Procedia PDF Downloads 98
3407 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 301
3406 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis

Authors: Mhaned Oubounyt, Jan Baumbach

Abstract:

Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.

Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks

Procedia PDF Downloads 153
3405 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 170
3404 Optimizing Glycemic Control with AI-Guided Dietary Supplements: A Randomized Trial in Type 2 Diabetes

Authors: Evgeny Pokushalov, Claire Garcia, Andrey Ponomarenko, John Smith, Michael Johnson, Inessa Pak, Evgenya Shrainer, Dmitry Kudlay, Leila Kasimova, Richard Miller

Abstract:

This study evaluated the efficacy of an AI-guided dietary supplement regimen compared to a standard physician-guided regimen in managing Type 2 diabetes (T2D). A total of 160 patients were randomly assigned to either the AI-guided group (n=80) or the physician-guided group (n=80) and followed over 90 days. The AI-guided group received 5.3 ± 1.2 supplements per patient, while the physician-guided group received 2.7 ± 0.6 supplements per patient. The AI system personalized supplement types and dosages based on individual genetic and metabolic profiles. The AI-guided group showed a significant reduction in HbA1c levels from 7.5 ± 0.8% to 7.1 ± 0.7%, compared to a reduction from 7.6 ± 0.9% to 7.4 ± 0.8% in the physician-guided group (mean difference: -0.3%, 95% CI: -0.5% to -0.1%; p < 0.01). Secondary outcomes, including fasting plasma glucose, HOMA-IR, and insulin levels, also improved more in the AI-guided group. Subgroup analyses revealed that the AI-guided regimen was particularly effective in patients with specific genetic polymorphisms and elevated metabolic markers. Safety profiles were comparable between both groups, with no serious adverse events reported. In conclusion, the AI-guided dietary supplement regimen significantly improved glycemic control and metabolic health in T2D patients compared to the standard physician-guided approach, demonstrating the potential of personalized AI-driven interventions in diabetes management.

Keywords: Type 2 diabetes, AI-guided supplementation, personalized medicine, glycemic control, metabolic health, genetic polymorphisms, dietary supplements, HbA1c, fasting plasma glucose, HOMA-IR, personalized nutrition

Procedia PDF Downloads 14
3403 Cellular Architecture of Future Wireless Communication Networks

Authors: Mohammad Yahaghifar

Abstract:

Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks.

Keywords: future challenges in networks, cellur architecture, visible light communication, 5G wireless technologies, spatial modulation, massiva mimo, cognitive radio network, green communications

Procedia PDF Downloads 489