Search results for: layered material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6748

Search results for: layered material

6628 Challenging Human Trade in Sub-Saharan Africa and Beyond: A Foresight Approach to Contextualizing and Understanding the Consequences of Sub-Saharan Africa’s Demographic Emergence

Authors: Ricardo Schnug

Abstract:

This paper puts the transnational crime of human trafficking in the context of Sub-Saharan Africa and its quickly growing youth bulge. By mapping recent and concurrent trends and emerging issues, it explores the implications that it has not only for the region itself but also for the greater global dynamics of the issue. Through the application of Causal Layered Analysis to various alternative future scenarios as well as the identification of the core narrative surrounding the international discourse, it is possible to understand more deeply the forces that underlie future trafficking and what change becomes possible. With the provision of a reconstructed narrative that avoids the current blind spots, this research points out the need for a new and organic leadership paradigm that allows for a more holistic and future-oriented inquiry about socio-economic and political change and what it entails for a transnational crime such as human trafficking. 'Ubuntu' as a social and leadership philosophy then, provides the principles needed for creating this path towards a truly preferred future. Furthermore, this paper inspires follow-up research and the continuous monitoring and transdisciplinary research of this region’s demographic emergence as well as its possible consequences that have been explored in this inquiry.

Keywords: causal layered analysis, emerging issues, human trafficking, scenarios, sub-Saharan Africa

Procedia PDF Downloads 169
6627 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 130
6626 Transient Freshwater-Saltwater Transition-Zone Dynamics in Heterogeneous Coastal Aquifers

Authors: Antoifi Abdoulhalik, Ashraf Ahmed

Abstract:

The ever growing threat of saltwater intrusion has prompted the need to further advance the understanding of underlying processes related to SWI for effective water resource management. While research efforts have mainly been focused on steady state analysis, studies on the transience of saltwater intrusion mechanism remain very scarce and studies considering transient SWI in heterogeneous medium are, as per our knowledge, simply inexistent. This study provides for the first time a quantitative analysis of the effect of both inland and coastal water level changes on the transition zone under transient conditions in layered coastal aquifer. In all, two sets of four experiments were completed, including a homogeneous case, and four layered cases: case LH and case HL presented were two bi-layered scenarios where a low K layer was set at the top and the bottom, respectively; case HLH and case LHL presented two stratified aquifers with High K–Low K–High K and Low K–High K– Low K pattern, respectively. Experimental automated image analysis technique was used here to quantify the main SWI parameters under high spatial and temporal resolution. The findings of this study provide an invaluable insight on the underlying processes responsible of transition zone dynamics in coastal aquifers. The results show that in all the investigated cases, the width of the transition zone remains almost unchanged throughout the saltwater intrusion process regardless of where the boundary change occurs. However, the results demonstrate that the width of the transition zone considerably increases during the retreat, with largest amplitude observed in cases LH and LHL, where a low K was set at the top of the system. In all the scenarios, the amplitude of widening was slightly smaller when the retreat was prompted by instantaneous drop of the saltwater level than when caused by inland freshwater rise, despite equivalent absolute head change magnitude. The magnitude of head change significantly caused larger widening during the saltwater wedge retreat, while having no impact during the intrusion phase.

Keywords: freshwater-saltwater transition-zone dynamics, heterogeneous coastal aquifers, laboratory experiments, transience seawater intrusion

Procedia PDF Downloads 214
6625 Prediction of Pile-Raft Responses Induced by Adjacent Braced Excavation in Layered Soil

Authors: Linlong Mu, Maosong Huang

Abstract:

Considering excavations in urban areas, the soil deformation induced by the excavations usually causes damage to the surrounding structures. Displacement control becomes a critical indicator of foundation design in order to protect the surrounding structures. Evaluation, the damage potential of the surrounding structures induced by the excavations, usually depends on the finite element method (FEM) because of the complexity of the excavation and the variety of the surrounding structures. Besides, evaluation the influence of the excavation on surrounding structures is a three-dimensional problem. And it is now well recognized that small strain behaviour of the soil influences the responses of the excavation significantly. Three-dimensional FEM considering small strain behaviour of the soil is a very complex method, which is hard for engineers to use. Thus, it is important to obtain a simplified method for engineers to predict the influence of the excavations on the surrounding structures. Based on large-scale finite element calculation with small-strain based soil model coupling with inverse analysis, an empirical method is proposed to calculate the three-dimensional soil movement induced by braced excavation. The empirical method is able to capture the small-strain behaviour of the soil. And it is suitable to be used in layered soil. Then the free-field soil movement is applied to the pile to calculate the responses of the pile in both vertical and horizontal directions. The asymmetric solutions for problems in layered elastic half-space are employed to solve the interactions between soil points. Both vertical and horizontal pile responses are solved through finite difference method based on elastic theory. Interactions among the nodes along a single pile, pile-pile interactions, pile-soil-pile interaction action and soil-soil interactions are counted to improve the calculation accuracy of the method. For passive piles, the shadow effects are also calculated in the method. Finally, the restrictions of the raft on the piles and the soils are summarized as: (1) the summations of the internal forces between the elements of the raft and the elements of the foundation, including piles and soil surface elements, is equal to 0; (2) the deformations of pile heads or of the soil surface elements are the same as the deformations of the corresponding elements of the raft. Validations are carried out by comparing the results from the proposed method with the results from the model tests, FEM and other existing literatures. From the comparisons, it can be seen that the results from the proposed method fit with the results from other methods very well. The method proposed herein is suitable to predict the responses of the pile-raft foundation induced by braced excavation in layered soil in both vertical and horizontal directions when the deformation is small. However, more data is needed to verify the method before it can be used in practice.

Keywords: excavation, pile-raft foundation, passive piles, deformation control, soil movement

Procedia PDF Downloads 204
6624 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 221
6623 Causality, Special Relativity and Non-existence of Material Particles of Zero Rest Mass

Authors: Mohammad Saleem, Mujahid Kamran

Abstract:

It is shown that causality, the principle that cause must precede effect, leads inter alia, to highly significant result that the velocity of a material particle cannot be even equal to that of light. Consequently, combined with special relativity, it leads to the conclusion that material particles of zero rest mass cannot exist in nature. Thus, causality, a principle without which nature would be incomprehensible, combined with special relativity, forbids the existence of material particles of zero rest mass. For instance, the neutrinos, as is now known, are material particles of non-zero rest mass. The situation changes when we consider the gauge particles. In fact, when the principle of causality was proposed, the concept of gauge particles had not yet been introduced. Now we know that photon, a gauge particle with zero rest mass does exist in nature. Therefore, principle of causality, as generally stated, is valid only for material particles. For gauge particles, in order to make the statement of causality consistent with experiment, it has to be modified: The cause should either precede or be simultaneous with the effect. Combined with special relativity, it allows gauge particles of zero rest mass.

Keywords: causality, gauge particles, material particles, special relativity

Procedia PDF Downloads 470
6622 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel

Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci

Abstract:

316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.

Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna

Procedia PDF Downloads 290
6621 Brokerage and Value-Creation: Trading Practices in the English Market of 20th-Century Maps

Authors: Shaun Lim

Abstract:

This paper presents a 9-month ethnographic case study of the value creating strategies employed by an Oxford market-trader of 20th-century maps. Maps are usually valued and sold as either antique objets d’art or useful navigational tools, with 20th-century maps precariously lying between the boundary of the aesthetic and utilitarian value-regimes. Here, the brokerage practices involved in the framing of outdated, lowly valued maps into vintage commodities will be examined. Ethnographic material of the unstudied market of old maps is introduced and situated in the second-hand, antique and collectible spheres of exchange. The map-trader as a broker is the ethnographic and methodological starting point of this paper. Brokerage is understood through the activity of framing that defines and brackets the value-regimes of commodities with the aid of market and framing devices. The trader’s activities will be examined in three parts. (1) The post-sourcing industry: the altering, mounting and tagging of maps before putting them into market circulation. Mounts, frames and tags are seen as market devices that authenticates and frames maps with aesthetic and symbolic values along with the disentanglement of its use value. (2) The market-display: the constitution of space that encourages the relations of looking at maps as aesthetic objects, while the categorical arrangement of the display contributes to legitimising of the collectability of maps. (3) The salesmanship strategies of the trader: the match-making of customers with maps of meaningful value, and the mediating of knowledge through the verbal articulation of the map’s symbolic values. Ultimately, value is not created in an accumulative sense, but is layered and superimposed to cater to a wide spectrum of patrons. The trader creates demand for his goods by mediating and articulating value-regimes already coherent to potential patrons.

Keywords: art and material culture, brokerage, commodification, framing, markets, value

Procedia PDF Downloads 122
6620 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions

Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou

Abstract:

Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces.  Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.

Keywords: graphene, chemical vapor deposition, carbon source, low temperature growth

Procedia PDF Downloads 140
6619 Direct In-Situ Ring Opening Polymerization of E-caprolactone to Produce Biodegradable PCL/Montmorillonite Nanocomposites

Authors: Amine Harrane, Mahmoud Belalia

Abstract:

During the last decade, polymer layered silicate nanocomposites have received increasing attention from scientists and industrial researchers because they generally exhibit greatly improved mechanical, thermal, barrier and flame-retardant properties at low clay content in comparison with unfilled polymers or more conventional micro composites. Poly(ε-caprolactone) (PCL)-layered silicate nanocomposites have the advantage of adding biocompatibility and biodegradability to the traditional properties of nanocomposites. They can be prepared by in situ ring-opening polymerization of ε-caprolactone using a conventional initiator to induce polymerization in the presence of an organophilic clay, such as organomodified montmorillonite. Messersmith and Giannelis used montmorillonite exchanged with protonated 12-amino dodecanoic acid and Cr3+ exchanged fluorohectorite, a synthetic mica type of silicate. Sn-based catalysts such as tin (II) octoate and dibutyltin (IV) dimethoxide have been reported to efficiently promote the polymerization of ε-caprolactone in the presence of organomodified clays. In this work, we have used an alternative method to prepare PCL/montmorillonite nanocomposites. The cationic polymerization of ε-caprolactone was initiated directly by Maghnite-TOA, organomodified montmorillonite clay, to produce nanocomposites (Scheme 1). Resulted from nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), force atomic microscopy (AFM) and thermogravimetry.

Keywords: polycaprolactone, polycaprolactone/clay nanocomposites, biodegradables nanocomposites, Maghnite, Insitu polymeriation

Procedia PDF Downloads 45
6618 Detection of Nanotoxic Material Using DNA Based QCM

Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na

Abstract:

Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nanotoxic material, qcm, frequency, in situ sensing

Procedia PDF Downloads 397
6617 Residual Affects of Humic Matter from Sub-Bituminous in Binding Aluminium at Oxisol to Increase Production of Upland Rice

Authors: Herviyanti, Gusnidar, M. Harianti

Abstract:

The objective of this research were: a) using low-rank coal (subbituminous) as main humate material sources because this material will not be anthracite, and cannot using to be an energy sources b) to examine residual effects of humic matter from subbituminous which was combined with P fertilizers to adsorp Al and Fe metal, improving soil fertility, and increasing P fertilizing efficiency and Oxisol productivity. Therefore, optimalization crop productivity of upland rice can be achieved. The experiment was designed using a 3 x 4 factorial with 3 replications in randomly groups design. The 1st factor was 3 ways incubating humate material with P-fertilizer, which are: I1 = Incubation of humate material 1 week, then incubation P-fertilizers 1 week; I2 = Incubation of humate materials and P fertilizers directly into the soil for 2 weeks; and I3 = humate material and P fertilizer mixed for 1 week, then incubation to the soil for 1 week. The 2nd factor was residual effects of humate material and P-fertilizer combination which are 4 doses H1 = 400 ppm (0.8 Mg/ha) + 100% R; H2 = 400 ppm + 75% R; H3 = 800 ppm (1.6 Mg/ha) + 100% R,; and H4 = 800 ppm + 75% R. The 2nd year research results showed that the best treatment was founded residue effect of 800 ppm humate material and 100% R P-fertilizer doses in I3 way incubation that is equal to 6.19 t ha-1 upland rice yield. However, this result is almost the same as residual effects of 800 ppm humate material + 75% R P-fertilizer doses and upland rice yield the 1st year. It was concluded that addition of humate material can given the efficiency of P-fertilizer using up to 25% until the 2nd season planted.

Keywords: humate materials, P-fertilizer, subbituminous, upland rice

Procedia PDF Downloads 359
6616 Development and Characterization of a Bio-Sourced Composite Material Based on Phase Change Material and Hemp Shives

Authors: Hachmi Toifane, Pierre Tittelein, Anh Dung Tran Le, Laurent Zalewsi

Abstract:

This study introduces a composite material composed of bio-sourced phase-change material (PCM) of plant origin combined with hemp shives, developed in response to environmental challenges in the construction sector. The state of the art emphasizes the low thermal storage capacity of bio-based materials and highlights increasing need for developing sustainable materials that offer optimal thermal, mechanical, and hydric performances. The combining of PCM's thermal properties and hygric properties of hemp shives results in a material that combines lightness, strength, and hygrothermal regulation. Various formulations are being assessed and compared to conventional hemp concrete. Thermal characterization includes the measurements of thermal conductivity and numerical simulations to evaluate the thermal storage capacity. The results indicate that the addition of PCM significantly enhances the material's thermal storage capacity, positioning this one as a promising, eco-friendly solution for sustainable construction and for improving the energy efficiency of buildings.

Keywords: hemp composite, bio-sourced phase change material, thermal storage, hemp shives

Procedia PDF Downloads 15
6615 Material Fracture Dynamic of Vertical Axis Wind Turbine Blade

Authors: Samir Lecheb, Ahmed Chellil, Hamza Mechakra, Brahim Safi, Houcine Kebir

Abstract:

In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc.

Keywords: blade, crack, frequency, material, SIF

Procedia PDF Downloads 525
6614 Crack Opening Investigation in Fiberconcrete

Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Work has three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. Length of steel fiber was 26 mm, diameter 0.5 mm. On the obtained force- displacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. Surface of fiber channel in concrete matrix after pull-out test (fiber angle to pulling out force direction 70°). At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiber concrete prisms (with dimensions 10x10x40 cm) subjected to 4-point bending. After testing was analyzed main crack. On the main crack’s both surfaces were recognized all pulled out fibers their locations, angles to crack surface and lengths of pull-out fibers parts. At the third stage elaborated prediction model for the fiber-concrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack.

Keywords: fiberconcrete, pull-out, fiber channel, layered fiberconcrete

Procedia PDF Downloads 412
6613 Modifications in Design of Lap Joint of Fiber Metal Laminates

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The continuous development and exploitation of materials and designs have diverted the attention of the world towards the use of robust composite materials known as fiber-metal laminates in many high-performance applications. The hybrid structure of fiber metal laminates makes them a material of choice for various applications such as aircraft skin panels, fuselage floorings, door panels and other load bearing applications. The synergistic effect of properties of metals and fibers reinforced laminates are responsible for their high damage tolerance as the metal element provides better fatigue and impact properties, while high stiffness and better corrosion properties are inherited from the fiber reinforced matrix systems. They are mostly used as a layered structure in different joint configurations such as lap and but joints. The FML layers are usually bonded with each other using either mechanical fasteners or adhesive bonds. This research work is also focused on modification of an adhesive bonded joint as a single lap joint of carbon fibers based CARALL FML has been modified to increase interlaminar shear strength and avoid delamination. For this purpose different joint modification techniques such as the introduction of spews and shoulder to modify the bond shape and use of nanofillers such as carbon nano-tubes as a reinforcement in the adhesive materials, have been utilized to improve shear strength of lap joint of the adhesively bonded FML layers. Both the simulation and experimental results showed that lap joint with spews and shoulders configuration have better properties due to stress distribution over a large area at the corner of the joint. The introduction of carbon nanotubes has also shown a positive effect on shear stress and joint strength as they act as reinforcement in the adhesive bond material.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 269
6612 Light and Scanning Electron Microscopic Studies on Corneal Ontogeny in Buffalo

Authors: M. P. S. Tomar, Neelam Bansal

Abstract:

Histomorphological, histochemical and scanning electron microscopic observations were recorded in developing cornea of buffalo fetuses. The samples from fetal cornea were collected in appropriate fixative from slaughter house and Veterinary Clinics, GADVASU, Ludhiana. The microscopic slides were stained for detailed histomorphological and histochemical studies. The scanning electron microscopic studies were performed at Electron microscopy & Nanobiology Lab, PAU Ludhiana. In present study, it was observed that, in 36 days (d) fetus, the corneal epithelium was well marked single layered structure which was placed on stroma mesenchyme. Cornea appeared as the continuation of developing sclera. The thickness of cornea and its epithelium increased as well as the epithelium started becoming double layered in 47d fetus at corneo-scleral junction. The corneal thickness in this stage suddenly increased thus easily distinguished from developing sclera. The separation of corneal endothelium from stroma was evident as a single layered epithelium. The stroma possessed numerous fibroblasts in 49d stage eye. Descemet’s membrane was appeared at 52d stage. The limbus area was separated by a depression from the developing cornea in 61d stage. In 65d stage, the Bowman’s layer was more developed. Fibroblasts were arranged parallel to each other as well as parallel to the surface of developing cornea in superficial layers. These fibroblasts and fibers were arranged in wavy pattern in the center of stroma. Corneal epithelium started to be stratified as a double layered epithelium was present in this age of fetal eye. In group II (>120 Days), the corneal epithelium was stratified towards a well marked irido-corneal angle. The stromal fibroblasts followed a complete parallel arrangement in its entire thickness. In full term fetuses, a well developed cornea was observed. It was a fibrous layer which had five distinct layers. From outside to inwards were described as the outer most layer was the 7-8 layered corneal epithelial, subepithelial basement membrane (Bowman’s membrane), substantia propria or stroma, posterior limiting membrane (Descemet’s membrane) and the posterior epithelium (corneal endothelium). The corneal thickness and connective tissue elements were continued to be increased. It was 121.39 + 3.73µ at 36d stage which increased to 518.47 + 4.98 µ in group III fetuses. In fetal life, the basement membrane of corneal epithelium and endothelium depicted strong to intense periodic Acid Schiff’s (PAS) reaction. At the irido-corneal angle, the endothelium of blood vessels was also positive for PAS activity. However, cornea was found mild positive for alcian blue reaction. The developing cornea showed strong reaction for basic proteins in outer epithelium and the inner endothelium layers. Under low magnification scanning electron microscope, cornea showed two types of cells viz. light cells and dark cells. The light cells were smaller in size and had less number of microvilli in their surface than in the dark cells. Despite these surface differences between light and dark cells, the corneal surface showed the same general pattern of microvilli studding all exposed surfaces out to the cell margin. which were long (with variable height), slight tortuous slender and possessed a micro villus shaft with a very prominent knob.

Keywords: buffalo, cornea, eye, fetus, ontogeny, scanning electron microscopy

Procedia PDF Downloads 125
6611 Characterization of Carbon/Polyamide 6,6 (C/PA66) Composite Material for Dry and Wet Conditions

Authors: Tariq Bashir, Muhammad Waseem Tahir, Ulf Stigh, Behnaz Baghaie, Mikael Skrifvars

Abstract:

Absorption of moisture may cause many problems in a composite material, such as delamination, degradation of the strength and increase in the weight. For small coupons, the increase in weight may be negligible, however, for large structures increase in weight due to moisture absorption may be quite significant. Polyamides (PA6, PA66) absorb more moisture as compared to other thermoplastics. There are many parameters which affect the moisture absorption of the composite material for example temperature, pressure, type of matrix and fibers, thickness of the material and relative humidity (RH) etc. So, it is utmost important to investigate the impact of moisture on PA66 based composites which can be done by characterizing the mechanical properties of composite materials both for dry and wet conditions. In this study, laminates of C/PA66 composite are manufactured by first heating the commingled material in conventional oven at a temperature of 220 °C followed by pressing in a manual hot press for 20 minutes with preheated platen at 220 °C. To observe the moisture absorption of the composite, coupons of the material were placed in a climate chamber at five different conditions 0, 25, 50, 75 and 100% RH for 24 hours. Five specimens were used for each condition. These coupons were weighed before placing in the climate chamber and just after removing from the chamber to observe the moisture absorption of the material. The mechanical characterization such as tensile strength, flexural modulus, impact strength and DMTA of C/PA66 material are performed at 0, 50 and 100 % RH. The work is going on for the testing of the material and results will be presented in full paper.

Keywords: Carbon/Polyamide 66 composites, structural composites, mechanical characterizations, wet and dry conditions

Procedia PDF Downloads 217
6610 Shock and Particle Velocity Determination from Microwave Interrogation

Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert

Abstract:

Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.

Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation

Procedia PDF Downloads 186
6609 Assessment of the Potential of Fuel-derived Rice Husk Ash as Pozzolanic Material

Authors: Jesha Faye T. Librea, Leslie Joy L. Diaz

Abstract:

Fuel-derived rice husk ash (fRHA) is a waste material from industries employing rice husk as a biomass fuel which, on the downside, causes disposal and environmental problems. To mitigate this, the fRHA was evaluated for use in other applications such as a pozzolanic material for the construction industry. In this study, the assessment of the potential of fRHA as pozzolanic supplementary cementitious material was conducted by determining the chemical and physical properties of fRHA according to ASTM C618, evaluating the fineness of the material according to ASTM C430, and determining its pozzolanic activity using Luxan Method. The material was found to have a high amorphous silica content of around 95.82 % with traces of alkaline and carbon impurities. The retained carbon residue is 7.18 %, which is within the limit of the specifications for natural pozzolans indicated in ASTM C618. The fineness of the fRHA is at 88.88 % retained at a 45-micron sieve, which, however, exceeded the limit of 34 %. This large particle size distribution was found to affect the pozzolanic activity of the fRHA. This was shown in the Luxan test, where the fRHA was identified as non-pozzolan due to its low pozzolanic activity index of 0.262. Thus, further processing must be done to the fRHA to pass the required ASTM fineness, have a higher pozzolanic activity index, and fully qualify as a pozzolanic material.

Keywords: rice husk ash, pozzolanic, fuel-derived ash, supplementary cementitious material

Procedia PDF Downloads 28
6608 Review on PETG Material Parts Made Using Fused Deposition Modeling

Authors: Dhval Chauhan, Mahesh Chudasama

Abstract:

This study has been undertaken to give a review of Polyethylene Terephthalate Glycol (PETG) material used in Fused Deposition Modelling (FDM). This paper offers a review of the existing literature on polyethylene terephthalate glycol (PETG) material, the objective of the paper is to providing guidance on different process parameters that can be used to improve the strength of the part by performing various testing like tensile, compressive, flexural, etc. This work is target to find new paths that can be used for further development of the use of fiber reinforcement in PETG material.

Keywords: PETG, FDM, tensile strength, flexural strength, fiber reinforcement

Procedia PDF Downloads 159
6607 Pre-Lithiation of SiO₂ Nanoparticles-Based Anode for Lithium Ion Battery Application

Authors: Soraya Hoornam, Zeinab Sanaee

Abstract:

Lithium-ion batteries are widely used for providing energy for mobile electronic devices. Graphite is a traditional anode material that was used in almost all commercialized lithium-ion batteries. It gives a specific capacity of 372 mAh/g for lithium storage. But there are multiple better choices for storing lithium that propose significantly higher specific capacities. As an example, silicon-based materials can be mentioned. In this regard, SiO₂ material can offer a huge specific capacity of 1965 mAh/g. Due to this high lithium storage ability, large volume change occurs in this electrode material during insertion and extraction of lithium, which may lead to cracking and destruction of the electrode. The use of nanomaterials instead of bulk material can significantly solve this problem. In addition, if we insert lithium in the active material of the battery before its cycling, which is called pre-lithiation, a further enhancement in the performance is expected. Here, we have fabricated an anode electrode of the battery using SiO₂ nanomaterial mixed with Graphite and assembled a lithium-ion battery half-cell with this electrode. Next, a pre-lithiation was performed on the SiO₂ nanoparticle-containing electrode, and the resulting anode material was investigated. This electrode has great potential for high-performance lithium-ion batteries.

Keywords: SiO₂ nanoparticles, lithium-ion battery, pre-lithiation, anode material

Procedia PDF Downloads 83
6606 Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material

Authors: Bi Yan-Qiang, Shang Yonghong, Lin Boying, Ji Xinyan, Li Xiyuan

Abstract:

The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body.

Keywords: infrared non-destructive, thermal insulation material, reliability, connection

Procedia PDF Downloads 353
6605 A Conceptual Framework and a Mathematical Equation for Managing Construction-Material Waste and Cost Overruns

Authors: Saidu Ibrahim, Winston M. W. Shakantu

Abstract:

The problem of construction material waste remains unresolved, as a significant percentage of the materials delivered to some project sites end up as waste which might result in additional project cost. Cost overrun is a problem which affects 90% of the completed projects in the world. The argument on how to eliminate it has been on-going for the past 70 years, but there is neither substantial improvement nor significant solution for mitigating its detrimental effects. Research evidence has proposed various construction cost overruns and material-waste management approaches; nonetheless, these studies failed to give a clear indication on the framework and the equation for managing construction material waste and cost overruns. Hence, this research aims to develop a conceptual framework and a mathematical equation for managing material waste and cost overrun in the construction industry. The paper adopts the desktop methodological approach. This involves comparing the causes of material waste and those of cost overruns from the literature to determine the possible relationship. The review revealed a relationship between material waste and cost overrun that; increase in material waste would result to a corresponding increase in the amount of cost overrun at both the pre-contract and the post contract stages of a project. It was found from the equation that achieving an effective construction material waste management must ensure a “Good Quality-of-Planning, Estimating, and Design Management” and a “Good Quality- of-Construction, Procurement and Site Management”; a decrease in “Design Complexity” which would reduce “Material Waste” and subsequently reduce the amount of cost overrun by 86.74%. The conceptual framework and the mathematical equation developed in this study are recommended to the professionals of the construction industry.

Keywords: conceptual framework, cost overrun, material waste, project stags

Procedia PDF Downloads 266
6604 Texture Observation of Bending by XRD and EBSD Method

Authors: Takashi Sakai, Yuri Shimomura

Abstract:

The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper.

Keywords: bending, electron backscatter diffraction, X-ray diffraction, microstructure, IPF map, orientation distribution function

Procedia PDF Downloads 301
6603 Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, inclination, analyzed, carbon

Procedia PDF Downloads 31
6602 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study

Authors: Colin Smith, Linsey S Passarella

Abstract:

Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.

Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy

Procedia PDF Downloads 103
6601 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, reinforced concrete slab, smeared reinforcements

Procedia PDF Downloads 164
6600 The Design Optimization for Sound Absorption Material of Multi-Layer Structure

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.

Keywords: sound absorption material, sound impedance tube, sound absorption coefficient, optimization design

Procedia PDF Downloads 259
6599 Utilization of Fly Ash as Backfilling Material in Indian Coal Mines

Authors: P. Venkata Karthik, B. Kranthi Kumar

Abstract:

Fly ash is a solid waste product of coal based electric power generating plants. Fly ash is the finest of coal ash particles and it is transported from the combustion chamber by exhaust gases. Fly ash is removed by particulate emission control devices such as electrostatic precipitators or filter fabric bag-houses. It is a fine material with spherical particles. Large quantities of fly ash discharged from coal-fired power stations are a major problem not only in terms of scarcity of land available for its disposal, but also in environmental aspects. Fly ash can be one of the alternatives and can be a viable option to use as a filling material. This paper contains the problems associated with fly ash generation, need for its management and the efficacy of fly ash composite as a backfilling material. By conducting suitable geotechnical investigations and numerical modelling techniques, the fly ash composite material was tested. It also contains case studies of typical Indian opencast and underground coal mines.

Keywords: backfilling, fly ash, high concentration slurry disposal, power plant, void infilling

Procedia PDF Downloads 229