Search results for: gravitational confinement
189 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4
Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh
Abstract:
Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.Keywords: ZnO, nanorods, hydrothermal, KMnO4
Procedia PDF Downloads 405188 Treatment of Leaden Sludge of Algiers Refinery by Electrooxidation
Authors: K. Ighilahriz, M. Taleb Ahmed, R. Maachi
Abstract:
Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%.Keywords: electrooxidation, leaching, leaden sludge, oil industry
Procedia PDF Downloads 231187 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases
Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner
Abstract:
Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.Keywords: aerosol processes, Brownian coagulation, gravitational settling, transport regulations
Procedia PDF Downloads 121186 Flap Structure Geometry in Breakthrough Structure: A Case Study from the Southern Tunisian Atlas Example, Orbata Anticline
Authors: Soulef Amamria, Mohamed Sadok Bensalem, Mohamed Ghanmi
Abstract:
The structural and sedimentological study of fault-related- folds in the Southern Tunisian Atlas is distinguished by a special geometry of the gravitational structures. This distinct geometry is observable in the example of a flap structure in Jebel Ben Zannouch with the formation of a stuck syncline. This geometry can be explained by the mechanism of major thrusting in Orbata anticline in the occidental extremity of Gafsa chains, with asymmetrical flank dips and hinge migration kinematics. These kinematics was originally controlled by the Breakthrough structure; the study of this special geometry of gravity flap structure depends on the sedimentation domain, shortening ratios, and erosion speed. This study constitutes one of the complete examples of kinematic model validation on a field scale.Keywords: fault-related-folds, southern Tunisian Atlas, flap structure, breakthrough
Procedia PDF Downloads 106185 Experiment of Geophysical Exploration in Egypt
Authors: Ramadan Fayez Zowaid Hussein
Abstract:
Exploration geophysics is an applied branch of geophysics, and it is very important to use such a method in Egypt and not just Egypt but in Africa and the Middle East. This research aims to work deeply on the importance of this method, and this paper focuses more on the benefits of the exploration of geophysics and how to apply it to scientific methods. It helps to discover earthquakes and assist in seismology. It also helps to map the surface structure of a region and also magnetic techniques, including aeromagnetic surveys to map magnetic anomalies. This is known that having a great experience in this field as it was very interesting reading a lot and searching about this matter and this technology, and all was found made this fantastic: as the method is existing and we do not use it. It costs a lot, but one believes that this method is very important; for example, in discovering earthquakes, check the surface of the ground easily; it makes us see the surface of the ground clearly so we can find the elements of the earth easily. In conclusion, geophysical exploration use is very important, and it must be highlighted and considered to be discussed in the Middle East, not just in the Middle East but also in Africa.Keywords: geophysics, magnetic, gravitational, hydrocarbon exploration
Procedia PDF Downloads 92184 Effect of the Structural Parameters on Subbands of Fibonacci AlxGa1-xAs/GaAs Superlattices
Authors: Y. Sefir, Z. Aziz, S. Cherid, Z. F. Meghoufel, F. Bendahama, S. Terkhi, B. Bouadjemi. A. Zitouni S. Bentata
Abstract:
This work is to study the effect of the variation of structural parameters on the band structure in the quasiperiodic Fibonacci superlattices AlxGa1-xAs/GaAs using the formalism of the transfer matrix and Airy function. Our results show that increasing the width of Fibonacci’s wells of allows to the confinement of subminibands with a widening of minigaps, this causes a consistent and coherent fragmentation. The barrier thickness of Fibonacci bf acts on the width of subminibands by controlling the interaction force between neighboring eigenstates. Its increase gives rise to singularly extended states. The barrier height Fibonacci Vf permit to control the degree of structural disorder in these structures. The variation of these parameters permits the design of laser with modulated wavelength. Procedia PDF Downloads 376183 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling
Authors: Alastair Hales, Xi Jiang
Abstract:
Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics
Procedia PDF Downloads 224182 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects
Authors: Defne Akay, Bekir S. Kandemir
Abstract:
In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.Keywords: coulomb impurity, graphene cones, graphene quantum dots, topological defects
Procedia PDF Downloads 298181 Motion of a Dust Grain Type Particle in Binary Stellar Systems
Authors: Rajib Mia, Badam Singh Kushvah
Abstract:
In this present paper, we use the photogravitational version of the restricted three body problem (RTBP) in binary systems. In the photogravitational RTBP, an infinitesimal particle (dust grain) is moving under the gravitational attraction and radiation pressure from the two bigger primaries. The third particle does not affect the motion of two bigger primaries. The zero-velocity curves, zero-velocity surfaces and their projections on the plane are studied. We have used existing analytical method to solve the equations of motion. We have obtained the Lagrangian points in some binary stellar systems. It is found that mass reduction factor affects the Lagrangian points. The linear stability of Lagrangian points is studied and found that these points are unstable. Moreover, trajectories of the infinitesimal particle at the triangular points are studied.Keywords: binary systems, Lagrangian points, linear stability, photogravitational RTBP, trajectories
Procedia PDF Downloads 259180 Monte Carlo Neutronic Calculations on Laser Inertial Fusion Energy (LIFE)
Authors: Adem Acır
Abstract:
In this study, time dependent neutronic analysis of incineration of minor actinides of a Laser Fusion Inertial Confinement Fusion Fission Energy (LIFE) engine was performed. The calculations were carried out by using MCNP codes with ENDF/B.VI neutron data library. In the neutronic calculations, TRISO particles fueled with minor actinides with natural lithium coolant were performed. The natural lithium cooled LIFE engine used 10 % TRISO fuel minor actinides composition. Tritium breeding ratios (TBR) and energy multiplication factor (M) burnup values were computed as 1.46 and 3.75, respectively. The reactor operation time was calculated as ~ 21 years. The burnup values were obtained as ~1060 GWD/MT, respectively. As a result, the very higher burnup were achieved of LIFE engine.Keywords: Monte Carlo, minor actinides, nuclear waste, LIFE engine
Procedia PDF Downloads 293179 Seismic Retrofit of Rectangular Columns Using Fiber Reinforced Polymers
Authors: E. L. Elghazy, A. M. Sanad, M. G. Ghoneim
Abstract:
Over the past two decades research has shown that fiber reinforced polymers can be efficiently, economically and safely used for strengthening and rehabilitation of reinforced concrete (RC) structures. Designing FRP confined concrete columns requires reliable analytical tools that predict the level of performance and ductility enhancement. A numerical procedure is developed aiming at determining the type and thickness of FRP jacket needed to achieve a certain level of ductility enhancement. The procedure starts with defining the stress strain curve, which is used to obtain moment curvature relationship then displacement ductility ratio of reinforced concrete cross-sections subjected to bending moment and axial force. Three sets of published experimental tests were used to validate the numerical procedure. Comparisons between predicted results obtained by using the proposed procedure and actual results of experimental tests proved the reliability of the proposed procedure.Keywords: columns, confinement, ductility, FRP, numerical
Procedia PDF Downloads 453178 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.Keywords: bio-heat, boussinesq, conduction, convection, eye
Procedia PDF Downloads 346177 Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum
Authors: Li Li, Lei Wang, Chenglin Du, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu
Abstract:
Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies.Keywords: breathing mode, plasmonics, quantum dot, strong coupling, ultraviolet
Procedia PDF Downloads 204176 Research on Space Discharge Flying Saucers Cruising Between Planets
Authors: Jiang Hua Zhou
Abstract:
According to the article "New Theoretical System of Physics in the 21st Century" published by the author, it is proposed to use the "scientific principle" of the "balanced distance" between "gravity" and "repulsion" between "planets" to "research" - "space flying saucer", and The formula for the law of universal repulsion between substances is proposed. Under the guidance of the new theoretical system, according to the principle of "planet" gravitational and repulsive force, the research and development idea of developing discharge-type "space flying saucer" is put forward. This paper expounds the reasons why flying saucers have the following characteristics: Flying Saucers can fly at high speed, change direction immediately, hover at any height on the earth, and there is no sound when flying. With the birth of the theoretical system of physics in the 21st century advocated by the author, a era of interstellar "space flying saucer" research will be created.Keywords: planet, attraction, repulsive force, balance spacing, scientific principles, research, space, flying saucer
Procedia PDF Downloads 126175 Investigation of Sick Building Syndrome in Student Dormitories
Authors: Maryam Ghasemi
Abstract:
Sick Building Syndrome (SBS) occurs when residents experience negative health impacts linked to their time spent there. Nevertheless, no single symptom or cause can be identified immediately. The confinement may be concentrated or localized in a particular room or area or spread throughout the building. Often, predicaments appear when a building is determined or maintained differently from its original design or intended operating procedures or purposes. Sometimes indoor air problems result from poor building design and occupant activities. This is a case study about a problem that is still going on in the Alfam Studios Dormitory. The goal is to find out if there is a case of SBS at the Eastern Mediterranean University (EMU). The methodology used in this article is both qualitative and quantitative. The information was gathered through a review of the literature, observations, a questionnaire, and interviews with the students' neighbors. There are twelve studio rooms, and in each studio room, two students live. The questionnaires and discussions took place with all twenty-four students. This study showed that in the dormitory design, ventilation and lighting in terms of sick building syndrome might not have been considered.Keywords: sick building, lighting, ventilation, illness, humidity
Procedia PDF Downloads 81174 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets
Authors: Simone Galati, Adriano Troia
Abstract:
Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.Keywords: cavitation, drug delivery, nanodroplets, ultra-sound
Procedia PDF Downloads 113173 On Energy Condition Violation for Shifting Negative Mass Black Holes
Authors: Manuel Urueña Palomo
Abstract:
In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.Keywords: black holes, CPT symmetry, negative mass, time transformation
Procedia PDF Downloads 154172 Induced-Gravity Inflation in View of the Bicep2 Results
Authors: C. Pallis
Abstract:
Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential.Keywords: cosmology, supersymmetric models, supergravity, modified gravity
Procedia PDF Downloads 721171 The Probability Foundation of Fundamental Theoretical Physics
Authors: Quznetsov Gunn
Abstract:
In the study of the logical foundations of probability theory, it was found that the terms and equations of the fundamental theoretical physics represent terms and theorems of the classical probability theory, more precisely, of that part of this theory, which considers the probability of dot events in the 3 + 1 space-time. In particular, the masses, moments, energies, spins, etc. turn out of parameters of probability distributions such events. The terms and the equations of the electroweak and of the quark-gluon theories turn out the theoretical-probabilistic terms and theorems. Here the relation of a neutrino to his lepton becomes clear, the W and Z bosons masses turn out dynamic ones, the cause of the asymmetry between particles and antiparticles is the impossibility of the birth of single antiparticles. In addition, phenomena such as confinement and asymptotic freedom receive their probabilistic explanation. And here we have the logical foundations of the gravity theory with phenomena dark energy and dark matter.Keywords: classical theory of probability, logical foundation of fundamental theoretical physics, masses, moments, energies, spins
Procedia PDF Downloads 299170 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation
Authors: Ahmed S. Abdulrasool
Abstract:
Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall
Procedia PDF Downloads 399169 Effect of Low Plastic Clay Quantity on Behavioral Characteristics of Loose Sand
Authors: Roza Rahbari
Abstract:
After the Nigatta earthquake in Japan, in 1960, the liquefaction and its related hazards, moved to the thick of matter. Most of the research have been carried out on clean sands and silty sands so far, in order to study the effect of fine particles, confinement pressures, density and so on. However, because of this delusion that adhesiveness of clay prevents the liquefaction in sand, studies on clayey sands have not been taken seriously. However, several liquefactions happened in clayey sands in recent years, and lead to the necessity of more studies in this field. The studies which were carried out so far focused on high plastic clays. In this paper, the effect of low plasticity clays on the behavioral characteristics of sands is discussed. Thus, some triaxial tests were carried out on clean sands and clayey sands with different percentages of added clay. Specimens were compacted in various densities to study the effect of quantity of clay on various densities, too. Based on the findings, the amount of clay affects the behavior of sand greatly and leads to substantial changes in peak bearing capacity and steady state values.Keywords: liquefaction, clay, sand, triaxial, monotonic, failure
Procedia PDF Downloads 244168 Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process
Authors: Farzad Vakili-Farahani, Joern Lungershausen, Kilian Wasmer
Abstract:
Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes.Keywords: wobbled laser beam welding, wobbling function, beam oscillation, micro welding
Procedia PDF Downloads 333167 The Study of Fine and Nanoscale Gold in the Ores of Primary Deposits and Gold-Bearing Placers of Kazakhstan
Authors: Omarova Gulnara, Assubayeva Saltanat, Tugambay Symbat, Bulegenov Kanat
Abstract:
The article discusses the problem of developing a methodology for studying thin and nanoscale gold in ores and placers of primary deposits, which will allow us to develop schemes for revealing dispersed gold inclusions and thus improve its recovery rate to increase the gold reserves of the Republic of Kazakhstan. The type of studied gold, is characterized by a number of features. In connection with this, the conditions of its concentration and distribution in ore bodies and formations, as well as the possibility of reliably determining it by "traditional" methods, differ significantly from that of fine gold (less than 0.25 microns) and even more so from that of larger grains. The mineral composition of rocks (metasomatites) and gold ore and the mineralization associated with them were studied in detail on the Kalba ore field in Kazakhstan. Mineralized zones were identified, and samples were taken from them for analytical studies. The research revealed paragenetic relationships of newly formed mineral formations at the nanoscale, which makes it possible to clarify the conditions for the formation of deposits with a particular type of mineralization. This will provide significant assistance in developing a scheme for study. Typomorphic features of gold were revealed, and mechanisms of formation and aggregation of gold nanoparticles were proposed. The presence of a large number of particles isolated at the laboratory stage from concentrates of gravitational enrichment can serve as an indicator of the presence of even smaller particles in the object. Even the most advanced devices based on gravitational methods for gold concentration provide extraction of metal at a level of around 50%, while pulverized metal is extracted much worse, and gold of less than 1 micron size is extracted at only a few percent. Therefore, when particles of gold smaller than 10 microns are detected, their actual numbers may be significantly higher than expected. In particular, at the studied sites, enrichment of slurry and samples with volumes up to 1 m³ was carried out using a screw lock or separator to produce a final concentrate weighing up to several kilograms. Free gold particles were extracted from the concentrates in the laboratory using a number of processes (magnetic and electromagnetic separation, washing with bromoform in a cup to obtain an ultracontentrate, etc.) and examined under electron microscopes to investigate the nature of their surface and chemical composition. The main result of the study was the detection of gold nanoparticles located on the surface of loose metal grains. The most characteristic forms of gold secretions are individual nanoparticles and aggregates of different configurations. Sometimes, aggregates form solid dense films, deposits, and crusts, all of which are confined to the negative forms of the nano- and microrelief on the surfaces of golden. The results will provide significant knowledge about the prevalence and conditions for the distribution of fine and nanoscale gold in Kazakhstan deposits, as well as the development of methods for studying it, which will minimize losses of this type of gold during extraction. Acknowledgments: This publication has been produced within the framework of the Grant "Development of methodology for studying fine and nanoscale gold in ores of primary deposits, placers and products of their processing" (АР23485052, №235/GF24-26).Keywords: electron microscopy, microminerology, placers, thin and nanoscale gold
Procedia PDF Downloads 28166 Theoretical Stress-Strain Model for Confined Concrete by Rectangular Reinforcement
Authors: Mizam Dogan, Hande Gökdemir
Abstract:
In reinforced concrete elements, reinforcement steel bars are placed in concrete both longitudinal and lateral directions. The lateral reinforcement (called as confinement) which is used for confining circular RC elements is in a spiral shape. If the cross section of RC element is rectangular, stirrups should be rectangular too. At very high compressive stresses concrete will reach its limit strain value and therefore concrete outside the lateral reinforcement, which is not confined, will crush and start to spell. At this stage, concrete core of the RC element tries to expand laterally as a reason of high Poisson’s ratio value of concrete. Such a deformation is prevented by the lateral reinforcement which applies lateral passive pressure on concrete. At very high compressive stresses, the strength of reinforced column member rises to four times σ 2. This increase in strength of member is related to the properties of rectangular stirrups. In this paper, effect of stirrup step spacing to column behavior is calculated and presented confined concrete model is proved by numerical solutions.Keywords: confined concrete, concrete column, stress-strain, stirrup, solid, frame
Procedia PDF Downloads 453165 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms
Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim
Abstract:
The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.Keywords: BESS, firefly algorithm, PVDG, voltage fluctuation
Procedia PDF Downloads 323164 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions
Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra
Abstract:
In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.Keywords: aerosol, CFD, deposition, coagulation
Procedia PDF Downloads 147163 Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification
Authors: Shaohua Li, Aihua Zhang, Kelly Zatopek, Saba Parvez, Andrew F. Gardner, Ivan R. Corrêa Jr., Christopher J. Noren, Ming-Qun Xu
Abstract:
Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface.Keywords: immobilized enzymes, biocatalysis, poly(ethylene oxide), surface modification
Procedia PDF Downloads 310162 'Wandering Uterus': An Analogy of Perception of Women in Hippocratic Corpus and Post-Modern Times
Authors: Ankita Sharma
Abstract:
The study proposes to review the perception of women in the Classical Age (500-336 BC) when Greek Philosophy was in bloom. It was observed that women had very few rights and were still under the control of men. One of the possible reasons for this exclusion was woman’s biology that had a huge influence on her being seen as inferior to men. The text ‘Hippocratic Corpus’ focuses on the biological construct of the female body in classical Greek science that perpetuated the idea of women as second-class citizens and were considered inherently weaker than men. The research highlights the significance of the text that was used to encourage women of that time to get married and produce children and how till today the perception remains the same. The Greek belief of need for confinement and control of 'wandering uterus' has led to superior understanding of men. The pivotal emphasis of this research is to women and their bodies that are depicted in a misogynistic way which paved the way for Hippocratic writers to influence the society’s attitude towards women in their writings. It is intended to draw attention to the prevailing cultural assumptions and preconceived notions about female anatomy that had a pervasive influence in the following centuries with its roots being in ancient science.Keywords: classical Greek theory, women, wandering womb, modern ideology
Procedia PDF Downloads 197161 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots
Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano
Abstract:
Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.Keywords: quantum semiconductors, nanostructures, quantum dots, spin polarization
Procedia PDF Downloads 276160 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili
Abstract:
In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.Keywords: acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene
Procedia PDF Downloads 371