Search results for: fundamental equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3536

Search results for: fundamental equations

3416 Modeling of a Small Unmanned Aerial Vehicle

Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader

Abstract:

Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.

Keywords: UAV, equations of motion, modeling, linearization

Procedia PDF Downloads 743
3415 Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez Camus, Carlos Lizama

Abstract:

In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution.

Keywords: attractive mild solutions, integral Volterra equations, neutral type equations, non-local in time equations

Procedia PDF Downloads 160
3414 Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations

Authors: Mohammad Vahedi Torshizi

Abstract:

In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets.

Keywords: bending stress, contact stress, plantary, mathematical equations

Procedia PDF Downloads 289
3413 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation

Procedia PDF Downloads 187
3412 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability

Procedia PDF Downloads 250
3411 Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation

Authors: Jatupon Em-Udom, Nirand Pisutha-Arnond

Abstract:

The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure.

Keywords: driving forces and flux, evolution equation, non equilibrium thermodynamics, Onsager’s reciprocal relation, phase field crystal model, thermodynamics of single-component solid

Procedia PDF Downloads 305
3410 Some Basic Problems for the Elastic Material with Voids in the Case of Approximation N=1 of Vekua's Theory

Authors: Bakur Gulua

Abstract:

In this work, we consider some boundary value problems for the plate. The plate is the elastic material with voids. The state of plate equilibrium is described by the system of differential equations that is derived from three-dimensional equations of equilibrium of an elastic material with voids (Cowin-Nunziato model) by Vekua's reduction method. Its general solution is represented by means of analytic functions of a complex variable and solutions of Helmholtz equations. The problem is solved analytically by the method of the theory of functions of a complex variable.

Keywords: the elastic material with voids, boundary value problems, Vekua's reduction method, a complex variable

Procedia PDF Downloads 127
3409 Nonhomogeneous Linear Fractional Differential Equations Will Bessel Functions of the First Kind Giving Hypergeometric Functions Solutions

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

Fractional derivatives have become very important in several areas of Engineering, however, the solutions of simple differential equations are not known. Here we are considering the simplest first order nonhomogeneous differential equations with Bessel regular functions of the first kind, in this way the solutions have been found which are hypergeometric solutions for any fractional derivative of order α, where α is rational number α=m/p, between zero and one. The way to find this result is by using Laplace transform and the Caputo definitions of fractional derivatives. This method is for values longer than one. However for α entire number the hypergeometric functions are Kumer type, no integer values of alpha, the hypergeometric function is more complicated is type ₂F₃(a,b,c, t2/2). The argument of the hypergeometric changes sign when we go from the regular Bessel functions to the modified Bessel functions of the first kind, however it integer seems that using precise values of α and considering no integers values of α, a solution can be obtained in terms of two hypergeometric functions. Further research is required for future papers in order to obtain the general solution for any rational value of α.

Keywords: Caputo, fractional calculation, hypergeometric, linear differential equations

Procedia PDF Downloads 197
3408 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: fire dynamics, flame propagation, locomotive fire, soot flow pattern, non-air-conditioned coaches

Procedia PDF Downloads 293
3407 Comparing Numerical Accuracy of Solutions of Ordinary Differential Equations (ODE) Using Taylor's Series Method, Euler's Method and Runge-Kutta (RK) Method

Authors: Palwinder Singh, Munish Sandhir, Tejinder Singh

Abstract:

The ordinary differential equations (ODE) represent a natural framework for mathematical modeling of many real-life situations in the field of engineering, control systems, physics, chemistry and astronomy etc. Such type of differential equations can be solved by analytical methods or by numerical methods. If the solution is calculated using analytical methods, it is done through calculus theories, and thus requires a longer time to solve. In this paper, we compare the numerical accuracy of the solutions given by the three main types of one-step initial value solvers: Taylor’s Series Method, Euler’s Method and Runge-Kutta Fourth Order Method (RK4). The comparison of accuracy is obtained through comparing the solutions of ordinary differential equation given by these three methods. Furthermore, to verify the accuracy; we compare these numerical solutions with the exact solutions.

Keywords: Ordinary differential equations (ODE), Taylor’s Series Method, Euler’s Method, Runge-Kutta Fourth Order Method

Procedia PDF Downloads 358
3406 A Physical Theory of Information vs. a Mathematical Theory of Communication

Authors: Manouchehr Amiri

Abstract:

This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived.

Keywords: physical theory of information, binary data matrix model, Shannon information theory, bit information principle

Procedia PDF Downloads 171
3405 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: asymptotics, continuous spectrum, difference equations, eigenvalues, jost functions, spectral singularities

Procedia PDF Downloads 446
3404 Comparison of the Boundary Element Method and the Method of Fundamental Solutions for Analysis of Potential and Elasticity

Authors: S. Zenhari, M. R. Hematiyan, A. Khosravifard, M. R. Feizi

Abstract:

The boundary element method (BEM) and the method of fundamental solutions (MFS) are well-known fundamental solution-based methods for solving a variety of problems. Both methods are boundary-type techniques and can provide accurate results. In comparison to the finite element method (FEM), which is a domain-type method, the BEM and the MFS need less manual effort to solve a problem. The aim of this study is to compare the accuracy and reliability of the BEM and the MFS. This comparison is made for 2D potential and elasticity problems with different boundary and loading conditions. In the comparisons, both convex and concave domains are considered. Both linear and quadratic elements are employed for boundary element analysis of the examples. The discretization of the problem domain in the BEM, i.e., converting the boundary of the problem into boundary elements, is relatively simple; however, in the MFS, obtaining appropriate locations of collocation and source points needs more attention to obtain reliable solutions. The results obtained from the presented examples show that both methods lead to accurate solutions for convex domains, whereas the BEM is more suitable than the MFS for concave domains.

Keywords: boundary element method, method of fundamental solutions, elasticity, potential problem, convex domain, concave domain

Procedia PDF Downloads 90
3403 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions

Authors: Ebru Dural, M. Zulfu Asık

Abstract:

Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.

Keywords: laminated glass, mathematical model, nonlinear behavior, PVB

Procedia PDF Downloads 319
3402 Applying Genetic Algorithm in Exchange Rate Models Determination

Authors: Mehdi Rostamzadeh

Abstract:

Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.

Keywords: exchange rate, genetic algorithm, fundamental models, technical models

Procedia PDF Downloads 273
3401 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions

Authors: Yacine Arioua

Abstract:

In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.

Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness

Procedia PDF Downloads 264
3400 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial

Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew

Abstract:

Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.

Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration

Procedia PDF Downloads 272
3399 Quantification of Glucosinolates in Turnip Greens and Turnip Tops by Near-Infrared Spectroscopy

Authors: S. Obregon-Cano, R. Moreno-Rojas, E. Cartea-Gonzalez, A. De Haro-Bailon

Abstract:

The potential of near-infrared spectroscopy (NIRS) for screening the total glucosinolate (t-GSL) content, and also, the aliphatic glucosinolates gluconapin (GNA), progoitrin (PRO) and glucobrassicanapin (GBN) in turnip greens and turnip tops was assessed. This crop is grown for edible leaves and stems for human consumption. The reference values for glucosinolates, as they were obtained by high performance liquid chromatography on the vegetable samples, were regressed against different spectral transformations by modified partial least-squares (MPLS) regression (calibration set of samples n= 350). The resulting models were satisfactory, with calibration coefficient values from 0.72 (GBN) to 0.98 (tGSL). The predictive ability of the equations obtained was tested using a set of samples (n=70) independent of the calibration set. The determination coefficients and prediction errors (SEP) obtained in the external validation were: GNA=0.94 (SEP=3.49); PRO=0.41 (SEP=1.08); GBN=0.55 (SEP=0.60); tGSL=0.96 (SEP=3.28). These results show that the equations developed for total glucosinolates, as well as for gluconapin can be used for screening these compounds in the leaves and stems of this species. In addition, the progoitrin and glucobrassicanapin equations obtained can be used to identify those samples with high, medium and low contents. The calibration equations obtained were accurate enough for a fast, non-destructive and reliable analysis of the content in GNA and tGSL directly from NIR spectra. The equations for PRO and GBN can be employed to identify samples with high, medium and low contents.

Keywords: brassica rapa, glucosinolates, gluconapin, NIRS, turnip greens

Procedia PDF Downloads 144
3398 Propagation of W Shaped of Solitons in Fiber Bragg Gratings

Authors: Mezghiche Kamel

Abstract:

We present solitary wave solutions for the perturbed nonlinear Schrodinger (PNLS) equation describing propagation of femtosecond light pulses through the fiber Bragg grating structure where the pulse dynamics is governed by the nonlinear-coupled mode (NLCM) equations. Using the multiple scale analysis, we reduce the NLCM equations into the perturbed nonlinear Schrodinger (PNLS) type equation. Unlike the reported solitary wave solutions of the PNLS equation, the novel ones can describe W shaped of solitons and their properties.

Keywords: fiber bragg grating, nonlinear-coupled mode equations, w shaped of solitons, PNLS

Procedia PDF Downloads 769
3397 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates

Authors: Babak Safaei, A. M. Fattahi

Abstract:

Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method

Procedia PDF Downloads 329
3396 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus

Procedia PDF Downloads 173
3395 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations

Authors: O. Acan, Y. Keskin

Abstract:

In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.

Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method

Procedia PDF Downloads 433
3394 Impact of Neuron with Two Dendrites in Heart Behavior

Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue

Abstract:

Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.

Keywords: neural networks, neuron, dendrites, heart behavior, ECG

Procedia PDF Downloads 86
3393 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator

Procedia PDF Downloads 76
3392 Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium

Authors: Faghihnia Torshizi Mostafa, Saitoh Masato

Abstract:

An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum.

Keywords: Winkler-foundation, fundamental frequency of soil stratum, normalized inertial bending strain, harmonic excitation

Procedia PDF Downloads 415
3391 Develop a Software to Hydraulic Redesign a Depropanizer Column to Minimize Energy Consumption

Authors: Mahdi Goharrokhi, Rasool Shiri, Eiraj Naser

Abstract:

A depropanizer column of a particular refinery was redesigned in this work. That is, minimum reflux ratio, minimum number of trays, feed tray location and the hydraulic characteristics of the tower were calculated and compared with the actual values of the existing tower. To Design review of the tower, fundamental equations were used to develop software which its results were compared with two commercial software results. In each case PR EOS was used. Based on the total energy consumption in reboiler and condenser, feed tray location was also determined using case study definition for tower.

Keywords: column, hydraulic design, pressure drop, energy consumption

Procedia PDF Downloads 424
3390 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 128
3389 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model

Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma

Abstract:

An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.

Keywords: Black-Scholes partial differential equations, Ito process, option price valuation, partial differential equations

Procedia PDF Downloads 145
3388 Existence of Minimal and Maximal Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez-Camus

Abstract:

In this work is proved the existence of at least one minimal and maximal mild solutions to the Cauchy problem, for fractional evolution equation of neutral type, involving a general kernel. An operator A generating a resolvent family and integral resolvent family on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Kuratowski measure of noncompactness and fixed point theorems, specifically Darbo-type, and an iterative method of lower and upper solutions, based in an order in X induced by a normal cone P. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the theory of resolvent families, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, the existence of minimal and maximal mild solutions was proved through in an iterative method of lower and upper solutions, using the Azcoli-Arzela Theorem, and the Gronwall’s inequality. Finally, we recovered the case derivate in Caputo sense.

Keywords: fractional evolution equations, Volterra integral equations, minimal and maximal mild solutions, neutral type equations, non-local in time equations

Procedia PDF Downloads 176
3387 Stochastic Age-Structured Population Models

Authors: Arcady Ponosov

Abstract:

Many well-known age-structured population models are derived from the celebrated McKendrick-von Foerster equation (MFE), also called the biological conservation law. A similar technique is suggested for the stochastically perturbed MFE. This technique is shown to produce stochastic versions of the deterministic population models, which appear to be very different from those one can construct by simply appending additive stochasticity to deterministic equations. In particular, it is shown that stochastic Nicholson’s blowflies model should contain both additive and multiplicative stochastic noises. The suggested transformation technique is similar to that used in the deterministic case. The difference is hidden in the formulas for the exact solutions of the simplified boundary value problem for the stochastically perturbed MFE. The analysis is also based on the theory of stochastic delay differential equations.

Keywords: boundary value problems, population models, stochastic delay differential equations, stochastic partial differential equation

Procedia PDF Downloads 254