Search results for: financial forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3330

Search results for: financial forecasting

3210 Islamic Financial Engineering: An Overview

Authors: Mahfoud Djebbar

Abstract:

The past two decades or so have witnessed phenomenal growth of the Islamic financial services industry. The whole industry has been thriving at about 15 percent per annum. This development entails the Islamic financial engineering, IFE, to some kind of crossroads, lagging behind its conventional counterpart. Therefore, IFE, and particularly traded products development, and in order to achieve its goals, two approaches are available, i.e., replicating engineering and innovative engineering. We also try to emphasis the innovative strategy since it guards the Islamic identity of different financial products and processes, and thereby, improves the creativity in the Islamic financial industry. The attempt also centers on sukukization (Islamic securitization), innovation, liquidity management, and risk management and hedging in the Islamic financial system. Finally, the challenges facing IFE are also addressed.

Keywords: islamic financial engineering, hedging and risk management, innovation, securitization, money market instruments, islamic capital markets

Procedia PDF Downloads 553
3209 Composite Forecasts Accuracy for Automobile Sales in Thailand

Authors: Watchareeporn Chaimongkol

Abstract:

In this paper, we compare the statistical measures accuracy of composite forecasting model to estimate automobile customer demand in Thailand. A modified simple exponential smoothing and autoregressive integrate moving average (ARIMA) forecasting model is built to estimate customer demand of passenger cars, instead of using information of historical sales data. Our model takes into account special characteristic of the Thai automobile market such as sales promotion, advertising and publicity, petrol price, and interest rate for loan. We evaluate our forecasting model by comparing forecasts with actual data using six accuracy measurements, mean absolute percentage error (MAPE), geometric mean absolute error (GMAE), symmetric mean absolute percentage error (sMAPE), mean absolute scaled error (MASE), median relative absolute error (MdRAE), and geometric mean relative absolute error (GMRAE).

Keywords: composite forecasting, simple exponential smoothing model, autoregressive integrate moving average model selection, accuracy measurements

Procedia PDF Downloads 362
3208 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 47
3207 Impact of Financial and Non-Financial Motivation on Motivating Employees

Authors: Al-Yaqdhan Al-Rawahi, Kaneez Fatima Sadriwala

Abstract:

The purpose of this paper is to discover the readiness of Civil Service Employee Pension Fund (CSEPF), a governmental organization, in motivating its staff. Exploratory survey has been conducted in order to extract needed information. For this purpose we proposed a questionnaire to understand staff viewpoint of motivation. Data was analyzed by using SPSS 15.0 for Windowsand Excel. Major results prove that good working conditions is the most important factor of staff and sympathetic help with personal problem is the least important one. Also the relationship between financial motivation and employee motivation is very weak, whereas with non-financial motivation and employee motivation is moderate. Future research may focus on studying all departments of CSEPF.

Keywords: financial motivation, non-financial motivation, employee motivation

Procedia PDF Downloads 385
3206 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 450
3205 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles

Authors: Andreas Gohs, Reinhold Kosfeld

Abstract:

This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.

Keywords: bass diffusion model, electric vehicles, forecasting performance, market diffusion

Procedia PDF Downloads 166
3204 Usage of Internet Technology in Financial Education and Financial Inclusion by Students of Economics Universities

Authors: B. Frączek

Abstract:

The paper analyses the usage of the Internet by university students in Visegrad Countries (4V Countries) who study economic fields in their formal and informal financial education and captures the areas of untapped potential of Internet in educational processes. Higher education and training, technological readiness, and the financial market development are in the group of pillars, that are key for efficiency driven economies. These three pillars have become an inspiration to the research on using the Internet in the financial education among economic university students as the group of the best educated people in finance. The financial education is a process that allows for improving the level of financial literacy. In turn, the financial literacy it is the set of financial knowledge, skills, awareness and patterns influencing the financial decisions. The level of financial literacy influences the level of financial well-being of individuals, determines the scale of saving of households and at the same time gives the greater chance for sustainable and more predictable development of the financial market with the positive impact on economy. The financial literacy is necessary for each group of society but its appropriate level is desirable especially in respect of economics students as future participants of financial markets as well as the experts and advisors in financial decision making. The low level of financial literacy is the great problem of many target groups in both developing and developed countries and the financial education is seen as the best way of improving this situation. Also the financial inclusion plays the special role in enhancing the level of financial literacy in the aspect of education by practice as well as due to interrelation between level of financial literacy and degree of financial inclusion. Despite many initiatives under financial education, the level of financial literacy is still very low. Scientists still search for new ways of solving this problem. One of the proposal is more effective usage of the new technology in financial education, especially the Internet, because of the growing popularity of e-learning and the increasing number of Internet users, especially among young people who are called the Generation Net. Due to special role of the university students studying the economics fields for the future financial markets, students of four universities from Visegrad Countries (Czech Republic, Hungary, Poland and Slovakia) were invited to participate in the survey. The aim of the article is to present the level and ways of using the Internet technology in financial education and indicating the so far unused or underused opportunities.

Keywords: financial education, financial inclusion, financial literacy, internet and university education

Procedia PDF Downloads 313
3203 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
3202 Financial Analysis of Selected Private Healthcare Organizations with Special Referance to Guwahati City, Assam

Authors: Mrigakshi Das

Abstract:

The private sector investments and quantum of money required in this sector critically hinges on the financial risk and returns the sector offers to providers of capital. Therefore, it becomes important to understand financial performance of hospitals. Financial Analysis is useful for decision makers in a variety of settings. Consider the small proprietary hospitals, say, Physicians Clinic. The managers of such clinic need the information that financial statements provide. Attention to Financial Statements of healthcare Organizations can provide answers to questions like: How are they doing? What is their rate of profit? What is their solvency and liquidity position? What are their sources and application of funds? What is their Operational Efficiency? The researcher has studied Financial Statements of 5 Private Healthcare Organizations in Guwahati City.

Keywords: not-for-profit organizations, financial analysis, ratio analysis, profitability analysis, liquidity analysis, operational efficiency, capital structure analysis

Procedia PDF Downloads 548
3201 Comparative Regionalism: The Case of Financial Integration in Association of Southeast Asian Nations

Authors: Sharon Kun-Amornpong

Abstract:

In this paper, ASEAN financial integration will be discussed from the perspective of the rule of law. The methodology of the paper is comparative regionalism. It will compare the role of the rule of law in ASEAN financial integration with that of the European Union with particular focuses on, for example, institutions and values. The paper argues that in the realm of financial integration, the rule of law is one of the most important factors that could help strengthen and promote financial integration in ASEAN. This is despite the fact that the ‘ASEAN Way’ emphasises non-interference and utilises a consensus-based cooperation rather than formal institutions. Nevertheless, the rule of law for ASEAN financial integration should be situated in its own historical, cultural, and political contexts. In addition, in the case of ASEAN, the rule of law cannot take root if it does not come from the demand of the people in this region. For instance, a reform or creation of legal institutions should not be imposed by international financial institutions. The paper will conclude that law has a normative force. It could shape expectation of market participants and promote deeper financial integration if norms that the law generates have become a significant norm in the society or industry.

Keywords: Association of Southeast Asian Nations, ASEAN, comparative regionalism, financial integration, the rule of law

Procedia PDF Downloads 207
3200 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 106
3199 A Model of Preventing Global Financial Crisis: Gauss Law Model Proposal Used in Electrical Field Calculations

Authors: Arzu K. Kamberli

Abstract:

This article examines the relationship between economics and physics, starting with Adam Smith, with a new econophysics approach in Economics-Physics with the Gauss Law model proposal using for the Electric Field calculation, which will allow us to anticipate the Global Financial Crisis. For this purpose, the similarities between the Gauss Law using the electric field calculations and the global financial crisis have been explained on the formula, and a model has been suggested to predict the risks of the financial systems from the electricity field calculations. Thus, this study is expected to help for preventing the Global Financial Crisis with the contribution of the science of economics and physics from the aspect of econophysics.

Keywords: econophysics, electric field, financial system, Gauss law, global financial crisis

Procedia PDF Downloads 284
3198 Settlement of Dispute and the Islamic Financial Institutions

Authors: Yusuf Sani Abubakar

Abstract:

This paper investigates mechanisms of settlement of disputes at the Islamic Financial Institutions (IFIs). Dispute settlement at the Islamic Financial Institutions (IFIs) can be both through litigation as well as Alternative Dispute Resolution (ADR). The paper aims to investigate how disputes are settled at the Islamic Financial Institutions (IFIs), as it is natural to have disagreements between different parties involved in the business of Islamic Financial Institutions (IFIs). The paper adopts a qualitative methodology where the sources are taken from journals, books, websites etc. In analyzing the data obtained from the sources, content analysis will be used. In addition to writings on this topic by various writers, this paper will add to the literature and will recommend certain effective ways of solving disputes arising between parties participating in the business of Islamic Financial Institutions (IFIs).

Keywords: Islamic finance, dispute resolution, Islamic financial institutions, litigation

Procedia PDF Downloads 165
3197 The Effect of Integrated Reporting on Corporate Financial Performance: A Bibliometric Analysis

Authors: Adhila Sandra Devy, Evangeline Syalomita Silitonga

Abstract:

The landscape of corporate governance and accountability has led to the emergence of Integrated Reporting (IR) in response to the shortcomings of traditional reporting frameworks. Developed by The International Integrated Reporting Council (IIRC), IR aims to offer stakeholders a comprehensive view of a company’s performance by integrating financial and non-financial disclosures. This study analyzes literature on Integrated Reporting and Corporate Financial Performance from 2013 to 2024, employing a descriptive analysis methodology. 31 relevant articles were gathered from various sources, indicating a positive correlation between integrated reporting and financial performance, albeit without conclusive evidence of long-term impact.

Keywords: integrated reporting, corporate financial performance, corporate performance, firm performance, bibliometric analysis

Procedia PDF Downloads 41
3196 Financial Literacy as an Important Skill for Household Financial Decision Making

Authors: Rimac Smiljanic Ana, Pepur Sandra, Bulog Ivana

Abstract:

Financial decision-making in the household is not simple, and it demands that the decision-maker has proper knowledge and skills. Usually, high uncertainty, risk, and stress surround household financial decision-making since it is extremely important and critical for household wealth accumulation and for the well-being of all household members. Generally, skilful people tend to have higher confidence in certain tasks they perform, and they achieve better results. Therefore, in the household context, the possession of certain skills by the ones who make financial decisions for the household is of particular importance. This paper addresses financial literacy as an important skill for household decision-making. Apart from financial literacy, the paper also considers other factors, such as employment, education, and age, as significant for household financial decision-making. The analysis is based on quantitative individual-level survey data. The data collection was conducted during January and February 2021 in Croatia through an online survey. To reach a wide variety of participants, the snowball sampling method was used. The result revealed interesting and somewhat puzzling results. Our results point to the importance of financial literacy skills for household decision-making.

Keywords: skill, financial literacy, decision-making, household financijal decision making

Procedia PDF Downloads 96
3195 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
3194 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data

Authors: Rudra P. Pradhan

Abstract:

This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.

Keywords: energy consumption, financial development, FATF countries, Panel VECM

Procedia PDF Downloads 265
3193 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate

Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe

Abstract:

This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.

Keywords: ARIMA, error metrices, model selection, SETAR

Procedia PDF Downloads 242
3192 Effects of Financial Development on Economic Growth in South Asia

Authors: Anupam Das

Abstract:

Although financial liberalization has been one of the most important policy prescriptions of international organizations like the World Bank and the IMF, the effect of financial liberalization on economic growth in developing countries is far from unanimous. Since the '80s, South Asian countries made a significant development in liberalization the financial sector. However, due to unavailability of a sufficient number of time series observations, the relationship between economic growth and financial development has not been investigated adequately. We aim to fill this gap by examining time series data of five developing countries from the South Asian region: Bangladesh, India, Pakistan, Sri Lanka, and Nepal. Applying the cointegration tests and Granger causality within the vector error correction model (VECM), we do not find unanimous evidence of financial development on positive economic growth. These results are helpful for developing countries which have been trying to liberalize the financial sector in recent decades.

Keywords: economic growth, financial development, Granger causality, South Asia

Procedia PDF Downloads 369
3191 Impact of Financial Inclusion on Gender Inequality: An Empirical Examination

Authors: Sumanta Kumar Saha, Jie Qin

Abstract:

This study analyzes the impact of financial inclusion on gender inequality in 126 countries belonging to different income groups during the 2005–2019 period. Due to its positive influence on poverty alleviation, economic growth, women empowerment, and income inequality reduction, financial inclusion may help reduce gender equality. This study constructs a novel composite financial inclusion index and applies both fixed-effect panel estimation and instrumental variable approach to examine the impact of financial inclusion on gender inequality. The results indicate that financial inclusion can reduce gender inequality in developing and low- and lower-middle-income countries, but not in higher-income countries. The impact is not always immediate. Past financial inclusion initiatives have a significant influence on future gender inequality. Financial inclusion is also significant if the poverty level is high and women's access to financial services is low compared to men. When the poverty level is low, or women have equal access to financial services, financial inclusion does not significantly affect gender inequality. The study finds that compulsory education and improvement in institutional quality promote gender equality in developing countries apart from financial inclusion. The study proposes that lower-income countries use financial inclusion initiatives to improve gender equality. Other countries need to focus on other aspects such as promoting educational support and institutional quality improvements to achieve gender equality.

Keywords: financial inclusion, gender inequality, institutional quality, women empowerment

Procedia PDF Downloads 126
3190 The Mediatory Role of Innovation in the Link between Social and Financial Performance

Authors: Bita Mashayekhi, Amin Jahangard, Milad Samavat, Saeid Homayoun

Abstract:

In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation.

Keywords: ESG, financial performance, innovation, social performance, structural equation modeling

Procedia PDF Downloads 101
3189 Assessment-Assisted and Relationship-Based Financial Advising: Using an Empirical Assessment to Understand Personal Investor Risk Tolerance in Professional Advising Relationships

Authors: Jerry Szatko, Edan L. Jorgensen, Stacia Jorgensen

Abstract:

A crucial component to the success of any financial advising relationship is for the financial professional to understand the perceptions, preferences and thought-processes carried by the financial clients they serve. Armed with this information, financial professionals are more quickly able to understand how they can tailor their approach to best match the individual preferences and needs of each personal investor. Our research explores the use of a quantitative assessment tool in the financial services industry to assist in the identification of the personal investor’s consumer behaviors, especially in terms of financial risk tolerance, as it relates to their financial decision making. Through this process, the Unitifi Consumer Insight Tool (UCIT) was created and refined to capture and categorize personal investor financial behavioral categories and the financial personality tendencies of individuals prior to the initiation of a financial advisement relationship. This paper discusses the use of this tool to place individuals in one of four behavior-based financial risk tolerance categories. Our discoveries and research were aided through administration of a web-based survey to a group of over 1,000 individuals. Our findings indicate that it is possible to use a quantitative assessment tool to assist in predicting the behavioral tendencies of personal consumers when faced with consumer financial risk and decisions.

Keywords: behavior-based advising, financial relationship building, risk capacity based on behavior, risk tolerance, systematic way to assist in financial relationship building

Procedia PDF Downloads 166
3188 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 102
3187 The Development of Fiscal Policy in Light of Economic Systems

Authors: Djehich Mohamed Yousri

Abstract:

This research tries to highlight the different stages and developments of financial policy which has evolved significantly in its means and mechanism, goals as well, according to the successful developments of the society, in addition to that, the role of the country has been developed from custody to intervening country, that evolution does not impact only on financial science but it was reflected on financial system concepts, that helped fr transport it from neutral financial policy to intervening policy, since each stage was characterized by a set of characteristics, financial policy considers like reflective mirror to the role of state in all times, when the state has been absent as an organized authority to society, the role of financial policy was weakened and has been limited under the impact of ideology which exists at all time, financial role has was limited until the state intervened in all aspects of life, the state role is also influential in economic, social, and political life, this study highlighting the most important developments of financial policy under successful economic systems.

Keywords: public expenditure, government spending, taxes, revenues public, economics

Procedia PDF Downloads 118
3186 Financial Planning Framework: A Perspective of Wealth Accumulation and Retirement Planning

Authors: Stanley Yap, Mahadevan Supramaniam, Chong Wei Ying, Fatemeh Kimiyaghalam

Abstract:

Purpose: The paper shows the framework of financial planning in a different paradigm. It highlights the results from a focus group on retirement planning in the aspect of financial literacy and wealth accumulation in Malaysia. Design/methodology/approach: A focus group consisted of thirty individuals and divided into six different clusters amongst 25 to 55 years old. The selection of focus group members is pertaining to retirement planning behavior and saving profile from the different level of educations. Findings: Our results show, firstly, the focus group reflects individual capacity on saving attitude, financial literacy and awareness towards financial products. Secondly, availability, accessibility and affordability which are the significant factors that influence saving attitude, financial literacy and awareness on personal retirement planning behavior. Practical implications: The participants express the concerns of retirement planning during their golden years and the current financial products in the Malaysian financial market. Originality/value: This study is a different approach that recognizes the needs of the consumers in the context of retirement planning and wealth accumulation. Therefore, customers should obtain financial services and products from financial providers to achieve financial independence.

Keywords: retirement planning, wealth accumulation, financial literacy, focus group, saving attitude, availability, accessibility, affordability

Procedia PDF Downloads 356
3185 A Financial Analysis of the Current State of IKEA: A Case Study

Authors: Isabela Vieira, Leonor Carvalho Garcez, Adalmiro Pereira, Tânia Teixeira

Abstract:

In the present work, we aim to analyse IKEA as a company, by focusing on its development, financial analysis and future benchmarks, as well as applying some of the knowledge learned in class, namely hedging and other financial risk mitigation solutions, to understand how IKEA navigates and protects itself from risk. The decision that led us to choose IKEA for our casework has to do with the long history of the company since the 1940s and its high internationalization in 63 different markets. The company also has clear financial reports which aided us in the making of the present essay and naturally, was a factor that contributed to our decision.

Keywords: Ikea, financial risk, risk management, hedge

Procedia PDF Downloads 51
3184 Deposit Guarantee Fund: One Perspective

Authors: Rute Abreu, Fátima David, Liliane Cristina Segura

Abstract:

The Deposit Guarantee Fund (DGF) and its communication with the Society, in general, and with the deposit client of Financial Institutions, in particular, is discussed through the challenges of the accounting and financial report. The Bank of Portugal promotes the Portuguese Deposit Guarantee Fund (PDGF) as a financial institution that enhanced the market confidence and stability on the deposit-insurance system. Due to the nature of their functions, it must be subject to regulation and supervision that provides a first line of defense against adversely affect confidence on the Portuguese financial market. First, this research provides evidence of the effectiveness of the protection mechanisms on the deposit insurance system, which provides high and equal protection to all stakeholders. Second, it emphasizes the need of requirements of rigorous accounting process and effective financial report to reduce the moral hazard implications. Third, this research focuses on the need of total disclosure of the financial information which gives higher transparency and protection to deposit client of financial institutions.

Keywords: deposit guarantee fund, Portugal, accounting, financial report

Procedia PDF Downloads 436
3183 Islamic Banking: An Ultimate Source of Financial Inclusion

Authors: Tasawar Nawaz

Abstract:

Promotion of socioeconomic justice through redistribution of wealth is one of the most salient features of Islamic economic system. Islamic financial institutions known as Islamic banks are used to implement this in practice under the guidelines of Islamic Shariah law. Islamic banking systems strive to promote and achieve financial inclusion among the society by offering interest-free banking and risk-sharing financing solutions. Shariah-compliant micro finance is one of the most popular financial instruments used by Islamic banks to enhance access to finance. Benevolent loan (or Qard-al-Hassanah) is one of the popular financial tools used by the Islamic banks to promote financial inclusion. This aspect of Islamic banking is empirically examined in this paper with specific reference to firm’s resources, largely defined here as intellectual capital. The paper finds that Islamic banks promote financial inclusion by exploiting available resources especially, the human intellectual capital.

Keywords: financial inclusion, intellectual capital, Qard-al-Hassanah, Islamic banking

Procedia PDF Downloads 316
3182 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.

Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series

Procedia PDF Downloads 94
3181 Climate Related Financial Risk on Automobile Industry and the Impact to the Financial Institutions

Authors: Mahalakshmi Vivekanandan S.

Abstract:

As per the recent changes happening in the global policies, climate-related changes and the impact it causes across every sector are viewed as green swan events – in essence, climate-related changes can often happen and lead to risk and a lot of uncertainty, but needs to be mitigated instead of considering them as black swan events. This brings about a question on how this risk can be computed so that the financial institutions can plan to mitigate it. Climate-related changes impact all risk types – credit risk, market risk, operational risk, liquidity risk, reputational risk and other risk types. And the models required to compute this has to consider the different industrial needs of the counterparty, as well as the factors that are contributing to this – be it in the form of different risk drivers, or the different transmission channels or the different approaches and the granular form of data availability. This brings out the suggestion that the climate-related changes, though it affects Pillar I risks, will be a Pillar II risk. This has to be modeled specifically based on the financial institution’s actual exposure to different industries instead of generalizing the risk charge. And this will have to be considered as the additional capital to be met by the financial institution in addition to their Pillar I risks, as well as the existing Pillar II risks. In this paper, the author presents a risk assessment framework to model and assess climate change risks - for both credit and market risks. This framework helps in assessing the different scenarios and how the different transition risks affect the risk associated with the different parties. This research paper delves into the topic of the increase in the concentration of greenhouse gases that in turn cause global warming. It then considers the various scenarios of having the different risk drivers impacting the Credit and market risk of an institution by understanding the transmission channels and also considering the transition risk. The paper then focuses on the industry that’s fast seeing a disruption: the automobile industry. The paper uses the framework to show how the climate changes and the change to the relevant policies have impacted the entire financial institution. Appropriate statistical models for forecasting, anomaly detection and scenario modeling are built to demonstrate how the framework can be used by the relevant agencies to understand their financial risks. The paper also focuses on the climate risk calculation for the Pillar II Capital calculations and how it will make sense for the bank to maintain this in addition to their regular Pillar I and Pillar II capital.

Keywords: capital calculation, climate risk, credit risk, pillar ii risk, scenario modeling

Procedia PDF Downloads 137